INTENSITY CORRELATIONS IN MICRODIFFRACTION FROM ”AMORPHOUS” MATERIALS A. Howie, C. Mcgill, J. Rodenburg To cite this version: A. Howie, C. Mcgill, J. Rodenburg. INTENSITY CORRELATIONS IN MICRODIFFRACTION FROM ”AMORPHOUS” MATERIALS. Journal de Physique Colloques, 1985, 46 (C9), pp.C9-59-C9-62. <10.1051/jphyscol:1985906>. <jpa-00225267> HAL Id: jpa-00225267 https://hal.archives-ouvertes.fr/jpa-00225267 Submitted on 1 Jan 1985 HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés. JOURNAL DE PHYSIQUE Colloque C 9 , supplément au n012, Tome 46, décembre 1985 A . Howie, C . A . McGill and J.M. Rodenburg Cavendish Laboratory, MadingZey Roud, Cambridge, CB3 OHE, U.K. Abstract - Using 500-atom c l u s t e r s r e p r e s e n t i n g various amorphous s t r u c t u r e s , we have computed d i f f r a c t e d i n t e n s i t i e s and i n t e n s i t y angular c o r r e l a t i o n s which might be observed i n STEM. Appreciable d i f f e r e n c e s were found between s t r u c t u r e s with t h e same RDF. Preliminary experiments a r e reported. 1 - INTRODUCTION The r e a l space image which a microscope provides is p a r t i c u l a r l y well s u i t e d f o r s t r u c t u r a l s t u d i e s of a l 1 but t h e most highly disordered media and, folowing Abbe theory, depends f o r its formation on t h e a b i l i t y of l e n s e s t o recombine d i f f r a c t e d waves preserving ampli tude and phase c o r r e l a t i o n s . I n electron lenses t h i s a b i l i ty is confined by s p h e r i c a l a b e r r a t i o n and o t h e r problems t o a small angular range o of o r d e r 1 0 - ~rad. Consequently, although with e l e c t r o n s of s h o r t wavelength A t h e r e s o l u t i o n a t t a i n a b l e i n conventional transmission e l e c t r o n microscopy is about 0.2 nm, t h e images a r e e s s e n t i a l l y two-dimensional p r o j e c t i o n s of t h e s t r u c t u r e . T h i s p r o j e c t i o n e f f e c t was one of t h e main problems which bedevilled e f f o r t s t o o b t a i n s t r u c t u r a l information about amorphous m a t e r i a l s by high r e s o l u t i o n e l e c t r o n The images obtained were c h a r a c t e r i s e d by broken microscopy ( f o r a review s e e / 1 / ) . up patches of f r i n g e s i n b r i g h t f i e l d o r by a speckled appearance of small b r i g h t s p o t s i n dark f i e l d and showed many f e a t u r e s a t t h e l i m i t of instrumental resolution. These e f f e c t s a r i s e from t h e overlap of t h e p r o j e c t e d images from i n d i v i d u a l atoms and, except i n t h e very t h i n n e s t samples t 5 0.5 nm, a r e l i k e l y t o be dominated by u n i n t e r e s t i n g and purely s t a t i s t i c a l overlaps between atoms widely s e p a r a t e d i n t h e beam d i r e c t i o n whose l a t e r a l p o s i t i o n s a r e not s t r o n g l y c o r r e l a t e d . The second major d i f f i c u l t y i n t h e microscopy of amorphous m a t e r i a l s is t o f i n d some e f f i c i e n t way of e x t r a c t i n g u s e f u l and q u a n t i t a t i v e s t r u c t u r a l d a t a from t h e images. Large numbers of t h e s e can be examined q u a l i t a t i v e l y o r even s e m i - q u a l i t a t i v e l y /2/ f o r s i g n i f i c a n t non-random f e a t u r e s , d e t a i l e d and q u i t e l a b o r i o u s comparisons can be made w i t h image computations f o r s p e c i f i c atomic configurations. However t h e l o c a l f l u c t u a t i o n s i n order which microscopy can d e t e c t have not a s yet provided any simple q u a n t i t a t i v e d a t a which can be used t o supplement t h e r a d i a l d i s t r i b u t i o n function. Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/jphyscol:1985906 C9-60 II - J O U R N A L D E PHYSIQUE SCANNING TRANSMISSION ELECTRON MICROSCOPY p o s s i b l e s o l u t i o n t o both of t h e s e problems is o f f e r e d by t h e scanning t r a n s m i s s i o n e l e c t r o n microscope (STEM) where a small s c a t t e r i n g volume is defined Microdiffraction by a f i n e l y focussed i n c i d e n t e l e c t r o n probe of diameter 0.5 nm. p a t t e r n s /3/ and energy l o s s s p e c t r a provide l o c a l information and s i g n a l s from a v a r i e t y of o t h e r d e t e c t o r s can generate images a s t h e probe is scanned over t h e sample. I n p a r t i c u l a r , using e i t h e r small a p e r t u r e o r annular d e t e c t o r s , dark f i e l d images can be obtained a s shown i n f i g . 1 a t a mean s c a t t e r i n g angle 8 = 0.1 rad. A Fig. 1 - Schematic STEM geometry showing f i e l d emission source F, probe forming l e n s L and specimen S. Detectors 1 and 2 a r e placed on an annulus a t a s c a t t e r i n g a n g l e 8 with azimuthal s e p a r a t i o n @. This is a much l a r g e r angle than is a v a i l a b l e i n t h e conventional e l e c t r o n microscope. I t has been shown /4/ t h a t overlap e f f e c t s a r e g r e a t l y reduced i n t h e annular d e t e c t o r image being confined t o p a i r s of atoms separated along t h e beam d i r e c t i o n by a d i s t a n c e Az i A/8 s i n 2 ( 8 / 2 ) . Following t h e work of Kam /5/ and t h e o p t i c a l c o r r e l a t i o n s t u d i e s of Clark e t a l / 6 / , i t is a l s o e v i d e n t t h a t u s e f u l q u a n t i t a t i v e s t r u c t u r a l d a t a might be obtained by examining c o r r e l a t i o n s between t h e s i g n a l i n t e n s i t i e s received by two or more dark f i e l d d e t e c t o r s . III - COMPUTATIONS To explore a s simply a s p o s s i b l e t h e c o r r e l a t i o n e f f e c t s l i k e l y t o be observed i n t h i n amorph~usf i l m s , we have c a l c u l a t e d , f o r a c l u s t e r of N 500 atoms under plane wave i n c i d e n t i l l u m i n a t i o n . t h e normalized d i f f r a c t e d i n t e n s i t y given by - The i n t e n s i t y was evaluated a t 104 p o i n t s on a sphere of r a d i u s K = 41~sin(8/;')/X with t h e s c a t t e r i n g angle 8 chosen t o match a d i f f u s e maximum i n t h e averagud d i f f r a c t i o n p a t t e r n . The c o r r e l a t i o n f u n c t i o n considered is given by This f u n c t i o n was then computed f o r two p o i n t s and Q l y i n g on t h e sphere and separated by a fixed angle $, the intensity product being averaged over al1 possible orientations of the cluster. We are making the assumption that this procedure adequately simulates the actual experiment where the convergent illumination probe in the STEM defines a scattering volume containing N atoms and the product of the signals received in two detectors (see fig. 1 ) is averaged over time as the probe is scanned across the sample. The azimuthal separation angle $L between the detectors can from a scattering diagram readily be shown to be related to IJI above by Fig. 2 shows the correlation function C($) for two models of amorphous Ge, the polyhedral (PT) model /7/ and the Polk continuous random network (CRN) model /8/. The difference in C($) for these,two models is substantial despite the fact that they have quite similar radial distribution functions J(R) (also shown in fig. 2). Fig. 2 - Correlation function C($) and R.D.F. (continuous line) and the PT model (broken line). J(R) for the Polk CRN mode1 the correlation function C($) can be analysed in Using the analysis of Kam /5/, terms of Legendre polynomials Pl(cos($)) with coefficients which can be obtained by expanding I(K) in spherical harmonics. Because of the need to satisfy Friedel's law, only even values of 1 occur. IV - PRELIMINARY EXPERIMENTAL RESULTS Since Our STEM is not currently fitted with multiple dark field detectors, we have attempted to collect data by using the Grigson post-specimen deflection scanning coils. These allow the diffraction pattern, and in particular any annular Segment of it to be recorded sequentially by scanning it over a detector placed on the instrumental axis. Apart from convenience, two advantages of this procedure are firstly that complete azimuthal autocorrelation functions could be computed for the whole annulus for each position of the incident probe and secondly that energy filtering might possibly be employed beyond the detector to remove the contribution of inelastic scattering. C9-62 JOURNAL DE PHYSIQUE Fig. 3 shows a t y p i c a l a n n u l a r s c a n o b t a i n e d i n t h i s way. A slow background i n t e n s i t y v a r i a t i o n is a p p a r e n t , p o s s i b l y due t o a s l i g h t e l l i p t i c i t y i n t h e Grigson s c a n . T h i s need n o t be a s e r i o u s problem s i n c e < I ( $ ) > can b e a c c u r a t e l y measured by a v e r a g i n g o v e r a l a r g e number of s c a n s from d i f f e r e n t p o i n t s on t h e specimen. The i n d i v i d u a l s c a n s c a n t h e n be c o r r e c t e d by d i v i d i n g by <I($)> and t h e a u t o c o r r e l a t i o n f u n c t i o n computed by F o u r i e r methods. E x p e r i e n c e s o f a r i n d i c a t e s t h a t t h i s is q u i t e a f e a s i b l e p r o c e d u r e , however o b s e r v a t i o n s o f t h e probe p o s i t i o n on t h e specimen i n d i c a t e s i g n i f i c a n t movement, by a b o u t 0 . 5 nm, is o c c u r r i n g d u r i n g t h e Grigson scan. We hope t o e l i m i n a t e t h i s e f f e c t e i t h e r by improved s c r e e n i n g o r by i n t r o d u c t i o n of a compensating d e f l e c t i o n o f t h e i n c i d e n t beam. Fig. 3 - Grigson a n n u l a r s c a n s I ( @ ) f o r t h e f i r s t d i f f u s e r i n g i n amorphous Ge. Upper c u r v e f o r f o c u s s e d p r o b e , lower c u r v e f o r d e f o c u s s e d probe. Both s c a n s have t h e same a v e r a g e i n t e n s i t y and a r e p l o t t e d on t h e same s c a l e . We thank D r P.H. G a s k e l l f o r v a l u a b l e d i s c u s s i o n s and f o r k i n d l y s u p p l y i n g t h e c l u s t e r c o o r d i n a t e s . F i n a n c i a l s u p p o r t from SERC and from VG S c i e n t i f i c is g r a t e f u l l y acknowledged. REFERENCES Howie, A . , J. Non-Cryst. S o l i d s 2 (1978) 41. Krivanek, O.L., G a s k e l l , P.H. and Howie, A . , N a t u r e 262 (1976) 454. Rodenburg, J . M . , ( s e e paper i n t h e s e proceedings). and Howie, A . , Shemica S c r i p t a f i (1979) 109. Gibson, J.M. (1977) 927. Kam, Z., Micromolecules C l a r k , N . A . , Ackerson, B . J . and Hurd, A . J . , Phys. Rev. L e t t . (1983) 1459. G a s k e l l P.H., P h i l . Mag. (1975) 211. P o l k , D.E. and Boudreaux, D.S, Phys. Rev. L e t t . 2 (1973) 92.
© Copyright 2026 Paperzz