intensity correlations in microdiffraction from ``amorphous

INTENSITY CORRELATIONS IN
MICRODIFFRACTION FROM ”AMORPHOUS”
MATERIALS
A. Howie, C. Mcgill, J. Rodenburg
To cite this version:
A. Howie, C. Mcgill, J. Rodenburg. INTENSITY CORRELATIONS IN MICRODIFFRACTION FROM ”AMORPHOUS” MATERIALS. Journal de Physique Colloques, 1985, 46 (C9),
pp.C9-59-C9-62. <10.1051/jphyscol:1985906>. <jpa-00225267>
HAL Id: jpa-00225267
https://hal.archives-ouvertes.fr/jpa-00225267
Submitted on 1 Jan 1985
HAL is a multi-disciplinary open access
archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.
L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.
JOURNAL DE PHYSIQUE
Colloque C 9 , supplément au n012, Tome 46, décembre 1985
A . Howie, C . A . McGill and J.M. Rodenburg
Cavendish Laboratory, MadingZey Roud, Cambridge, CB3 OHE, U.K.
Abstract
- Using 500-atom
c l u s t e r s r e p r e s e n t i n g various
amorphous
s t r u c t u r e s , we have computed d i f f r a c t e d i n t e n s i t i e s and i n t e n s i t y angular
c o r r e l a t i o n s which might be observed i n STEM. Appreciable d i f f e r e n c e s were
found between s t r u c t u r e s with t h e same RDF.
Preliminary experiments a r e
reported.
1
-
INTRODUCTION
The r e a l space image which a microscope provides is p a r t i c u l a r l y well s u i t e d f o r
s t r u c t u r a l s t u d i e s of a l 1 but t h e most highly disordered media and, folowing Abbe
theory, depends f o r its formation on t h e a b i l i t y of l e n s e s t o recombine d i f f r a c t e d
waves preserving ampli tude and phase c o r r e l a t i o n s .
I n electron lenses t h i s a b i l i ty
is confined by s p h e r i c a l a b e r r a t i o n and o t h e r problems t o a small angular range o of
o r d e r 1 0 - ~rad.
Consequently, although with e l e c t r o n s of s h o r t wavelength A t h e
r e s o l u t i o n a t t a i n a b l e i n conventional transmission e l e c t r o n microscopy is about
0.2 nm, t h e images a r e e s s e n t i a l l y two-dimensional p r o j e c t i o n s of t h e s t r u c t u r e .
T h i s p r o j e c t i o n e f f e c t was one of t h e main problems which bedevilled e f f o r t s t o
o b t a i n s t r u c t u r a l information about amorphous m a t e r i a l s by high r e s o l u t i o n e l e c t r o n
The images obtained were c h a r a c t e r i s e d by broken
microscopy ( f o r a review s e e / 1 / ) .
up patches of f r i n g e s i n b r i g h t f i e l d o r by a speckled appearance of small b r i g h t
s p o t s i n dark f i e l d and showed many f e a t u r e s a t t h e l i m i t of instrumental
resolution.
These e f f e c t s a r i s e from t h e overlap of t h e p r o j e c t e d images from
i n d i v i d u a l atoms and, except i n t h e very t h i n n e s t samples t 5 0.5 nm, a r e l i k e l y t o
be dominated by u n i n t e r e s t i n g and purely s t a t i s t i c a l overlaps between atoms widely
s e p a r a t e d i n t h e beam d i r e c t i o n whose l a t e r a l p o s i t i o n s a r e not s t r o n g l y c o r r e l a t e d .
The second major d i f f i c u l t y i n t h e microscopy of amorphous m a t e r i a l s is t o f i n d some
e f f i c i e n t way of e x t r a c t i n g u s e f u l and q u a n t i t a t i v e s t r u c t u r a l d a t a from t h e images.
Large numbers of t h e s e can be examined q u a l i t a t i v e l y o r even s e m i - q u a l i t a t i v e l y /2/
f o r s i g n i f i c a n t non-random f e a t u r e s , d e t a i l e d and q u i t e l a b o r i o u s comparisons can be
made w i t h image computations f o r s p e c i f i c atomic configurations.
However t h e l o c a l
f l u c t u a t i o n s i n order which microscopy can d e t e c t have not a s yet provided any
simple q u a n t i t a t i v e d a t a which can be used t o supplement t h e r a d i a l d i s t r i b u t i o n
function.
Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/jphyscol:1985906
C9-60
II
-
J O U R N A L D E PHYSIQUE
SCANNING TRANSMISSION ELECTRON MICROSCOPY
p o s s i b l e s o l u t i o n t o both of t h e s e problems is o f f e r e d by t h e scanning
t r a n s m i s s i o n e l e c t r o n microscope (STEM) where a small s c a t t e r i n g volume is defined
Microdiffraction
by a f i n e l y focussed i n c i d e n t e l e c t r o n probe of diameter 0.5 nm.
p a t t e r n s /3/ and energy l o s s s p e c t r a provide l o c a l information and s i g n a l s from a
v a r i e t y of o t h e r d e t e c t o r s can generate images a s t h e probe is scanned over t h e
sample. I n p a r t i c u l a r , using e i t h e r small a p e r t u r e o r annular d e t e c t o r s , dark f i e l d
images can be obtained a s shown i n f i g . 1 a t a mean s c a t t e r i n g angle 8 = 0.1 rad.
A
Fig. 1 - Schematic STEM geometry showing f i e l d emission source F, probe forming
l e n s L and specimen S. Detectors 1 and 2 a r e placed on an annulus a t a s c a t t e r i n g
a n g l e 8 with azimuthal s e p a r a t i o n @.
This is a much l a r g e r angle than is a v a i l a b l e i n t h e conventional e l e c t r o n
microscope.
I t has been shown /4/ t h a t overlap e f f e c t s a r e g r e a t l y reduced i n t h e
annular d e t e c t o r image being confined t o p a i r s of atoms separated along t h e beam
d i r e c t i o n by a d i s t a n c e Az i A/8 s i n 2 ( 8 / 2 ) .
Following t h e work of Kam /5/ and t h e
o p t i c a l c o r r e l a t i o n s t u d i e s of Clark e t a l / 6 / , i t is a l s o e v i d e n t t h a t u s e f u l
q u a n t i t a t i v e s t r u c t u r a l d a t a might be obtained by examining c o r r e l a t i o n s between t h e
s i g n a l i n t e n s i t i e s received by two or more dark f i e l d d e t e c t o r s .
III
-
COMPUTATIONS
To explore a s simply a s p o s s i b l e t h e c o r r e l a t i o n e f f e c t s l i k e l y t o be observed i n
t h i n amorph~usf i l m s , we have c a l c u l a t e d , f o r a c l u s t e r of N
500 atoms under plane
wave i n c i d e n t i l l u m i n a t i o n . t h e normalized d i f f r a c t e d i n t e n s i t y given by
-
The i n t e n s i t y was evaluated a t
104 p o i n t s on a sphere of r a d i u s K = 41~sin(8/;')/X
with t h e s c a t t e r i n g angle 8 chosen t o match a d i f f u s e maximum i n t h e averagud
d i f f r a c t i o n p a t t e r n . The c o r r e l a t i o n f u n c t i o n considered is given by
This f u n c t i o n was then computed f o r two p o i n t s
and
Q
l y i n g on t h e sphere and
separated by a fixed angle $, the intensity product being averaged over al1 possible
orientations of the cluster.
We are making the assumption that this procedure
adequately simulates the actual experiment where the convergent illumination probe
in the STEM defines a scattering volume containing N atoms and the product of the
signals received in two detectors (see fig. 1 ) is averaged over time as the probe is
scanned across the sample. The azimuthal separation angle $L between the detectors
can from a scattering diagram readily be shown to be related to IJI above by
Fig. 2 shows the correlation function C($) for two models of amorphous Ge, the
polyhedral (PT) model /7/ and the Polk continuous random network (CRN) model /8/.
The difference in C($) for these,two models is substantial despite the fact that
they have quite similar radial distribution functions J(R) (also shown in fig. 2).
Fig. 2 - Correlation function C($) and R.D.F.
(continuous line) and the PT model (broken line).
J(R)
for the Polk CRN mode1
the correlation function C($) can be analysed in
Using the analysis of Kam /5/,
terms of Legendre polynomials Pl(cos($)) with coefficients which can be obtained by
expanding I(K) in spherical harmonics. Because of the need to satisfy Friedel's law,
only even values of 1 occur.
IV
-
PRELIMINARY EXPERIMENTAL RESULTS
Since Our STEM is not currently fitted with multiple dark field detectors, we have
attempted to collect data by using the Grigson post-specimen deflection scanning
coils. These allow the diffraction pattern, and in particular any annular Segment
of it to be recorded sequentially by scanning it over a detector placed on the
instrumental axis. Apart from convenience, two advantages of this procedure are
firstly that complete azimuthal autocorrelation functions could be computed for the
whole annulus for each position of the incident probe and secondly that energy
filtering might possibly be employed beyond the detector to remove the contribution
of inelastic scattering.
C9-62
JOURNAL DE PHYSIQUE
Fig. 3 shows a t y p i c a l a n n u l a r s c a n o b t a i n e d i n t h i s way.
A slow background
i n t e n s i t y v a r i a t i o n is a p p a r e n t , p o s s i b l y due t o a s l i g h t e l l i p t i c i t y i n t h e Grigson
s c a n . T h i s need n o t be a s e r i o u s problem s i n c e < I ( $ ) > can b e a c c u r a t e l y measured by
a v e r a g i n g o v e r a l a r g e number of s c a n s from d i f f e r e n t p o i n t s on t h e specimen.
The
i n d i v i d u a l s c a n s c a n t h e n be c o r r e c t e d by d i v i d i n g by <I($)> and t h e a u t o c o r r e l a t i o n
f u n c t i o n computed by F o u r i e r methods.
E x p e r i e n c e s o f a r i n d i c a t e s t h a t t h i s is
q u i t e a f e a s i b l e p r o c e d u r e , however o b s e r v a t i o n s o f t h e probe p o s i t i o n on t h e
specimen i n d i c a t e s i g n i f i c a n t movement, by a b o u t 0 . 5 nm, is o c c u r r i n g d u r i n g t h e
Grigson scan.
We hope t o e l i m i n a t e t h i s e f f e c t e i t h e r by improved s c r e e n i n g o r by
i n t r o d u c t i o n of a compensating d e f l e c t i o n o f t h e i n c i d e n t beam.
Fig. 3 - Grigson a n n u l a r s c a n s I ( @ ) f o r t h e f i r s t d i f f u s e r i n g i n amorphous Ge.
Upper c u r v e f o r f o c u s s e d p r o b e , lower c u r v e f o r d e f o c u s s e d probe.
Both s c a n s have
t h e same a v e r a g e i n t e n s i t y and a r e p l o t t e d on t h e same s c a l e .
We thank D r P.H. G a s k e l l f o r v a l u a b l e d i s c u s s i o n s and f o r k i n d l y s u p p l y i n g t h e
c l u s t e r c o o r d i n a t e s . F i n a n c i a l s u p p o r t from SERC and from VG S c i e n t i f i c is
g r a t e f u l l y acknowledged.
REFERENCES
Howie, A . , J. Non-Cryst. S o l i d s 2 (1978) 41.
Krivanek, O.L., G a s k e l l , P.H. and Howie, A . , N a t u r e 262 (1976) 454.
Rodenburg, J . M . ,
( s e e paper i n t h e s e proceedings).
and Howie, A . , Shemica S c r i p t a f i (1979) 109.
Gibson, J.M.
(1977) 927.
Kam, Z., Micromolecules
C l a r k , N . A . , Ackerson, B . J . and Hurd, A . J . , Phys. Rev. L e t t .
(1983) 1459.
G a s k e l l P.H., P h i l . Mag.
(1975) 211.
P o l k , D.E. and Boudreaux, D.S, Phys. Rev. L e t t . 2 (1973) 92.