Exercise Set 1 1. Find an equation of the line passing through the points (2, 1) and (4, −1) (Answer: x + y = 3) 2. Find an equation of the line passing through the point (1, 2) whos slope is 3 (Answer: y = 3x − 1) 3. Find an equation of the line passing through (2, 3) that is perpendicular to the line 2x − 3y = 4. (Answer: 3x + 2y = 12) In exercises 4-12, find the largest possible domain of the given function. √ 4. f (x) = x2 − 2x − 8 5. g(t) = ln(t3 − 2t + 1) √ 6. h(s) = 3 s5 − 3s2 + 2s x2 +1 7. k(x) = e x2 +4x+3 8. m(y) = y 4 +2y 3 −5y 2 +2y−3 y 3 +2y 2 −5y−6 9. n(s) = sin(s2 − 4) 10. p(t) = tan(2t + π) 11. r(x) = 3x155 − 5x23 + 25x2 − 2017x + 3 12. f (z) = sec( π2 z) In exercises 13-17, sketch the graph of the given parabola (a) by shifting, reflecting and scaling the graph of y = x2 , (b) by finding vertex and intercepts. 13. y = x2 − 2x − 2 14. y = x2 + 2x − 3 15. y = 12 − x2 − 4x 16. y = 2x2 − 8x + 6 17. y = x2 + 4x + 3 In exercises 18-20, sketch the graph of the given function by shifting, reflecting and scaling y = |x| 18. f (x) = 4 − |x + 2| 19. g(x) = |2x − 4| + 2 20. h(x) = 3 |x − 2| − 4 In exercises 21-45, evaluate the limits 21. lim x3 − 2x2 + 4x − 5 x→2 x4 − 2x2 + 1 x→−1 x3 − 5x2 − 4x + 2 22. lim x2 − 9 x→3 x3 − 27 23. lim x2 + 2x − 3 x→−3 x2 + 5x + 6 24. lim |x2 − 2x| + 4x x→0 |2x + 3| − |x2 − 3x − 3| 25. lim sin(x2 − 1) x→1 |x − 1| 26. lim 1 − cos(x + 2) + tan(x2 − 4) x→−2 sin(2x − 4) √ x−2 28. lim 2 x→4 x + x − 20 √ 3 x+3 29. lim x→−27 sin(x + 27) √ x−8 30. lim √ x→64 3 x − 4 27. lim x2 − 1 x→1 x3 − x2 − x + 1 31. lim 32. lim+ x3 − 2x2 + x − 4 x3 − 2x − 4 33. lim− x3 − 2x2 + x − 4 x3 − 2x − 4 x→2 x→2 2x + 3x2 − 4 x→−∞ 4x2 − 2x + x3 34. lim x2 − 3x + 4x4 x→∞ 2x3 + 3x4 − 5x − 4 35. lim x4 − 2x + 5 36. lim 3 x→−∞ x + 2x2 + 1 √ 37. lim x2 + x − 5 − x + 1 x→∞ 38. lim x→−∞ 39. lim √ x→∞ 40. lim 3x + 5 + x→−∞ 2x2 √ √ 9x2 + 21x − 8 √ 2 − 5x − x + 3 4x2 + x + 3 − 2x + 1 1 41. lim x cos x→0 x sin2 x x→∞ ln x 42. lim 1 − cos x x→−∞ e−x 43. lim sin(3x) tan(2x) + 5x2 x→0 x2 sin(5x) cot(7x) 2 1 45. lim x − 1 cos x→1 x3 − 1 44. lim 46. Let 2x + 4 0 2 x +2 3 f (x) = 2x + 1 0 3x −2 3x + 2 if x < −2 if x = −2 if −2 < x < 1 if x=1 if 1 < x < 3 if x=3 if 3 < x < 4 if 4<x Find all discontinuities of f (x) and classify them as removable or jump discontinuity. In exercises 47-50, find all vertical, horizontal and slant asymptote(s) of the given function, if exists. 47. f (x) = x3 −4x x2 +4x−12 48. g(t) = e1/t 49. h(s) = ln(x2 − 6x + 9) − ln(x2 + 3) 50. p(x) = 3x2 +2x+5 x2 −5x+6
© Copyright 2026 Paperzz