Simplifying - Alva Academy

9.
Simplifying
Exercise 1
Simplify the following:
1.
3x – (-4x) 2.
-5x – (+3x) 3.
4.
-6x – (- 4x) 5.
-12y + (-3y) 6.
7.
-8p + (-12p) 8.
11z – (-2z) 9.
10. 14c – (+12c)11. -8b – (-13b) 12.
13. 2p – (-8p) 14. 7y + (-9y) 15.
16.
18.
20.
22.
24.
-2y + (-3p) –4y
5x + 7y – (-2x)
2p – (-3z ) + 4p
9q – (+10r) + (-3q)
-4x – (-6y) + (-5y)
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.
39.
40.
-12q + (-8p) – (-9p) + (-3q)
-3x – (-12y) + (-2x) – (-3y)
5d – (-12e) + (-3e) + (-2d)
8n + 5p – (-2p) + (-8n)
12f + 6g – (-2y) + (+12f)
8p + 12q + 10q – 9p
12p – (-7q) + (-6p) – (-9q)
8p + 9q + 12r – (-7r) + 8q – (-2p)
3s – (-12p) + (-5p) – (-6s)
4a – (-2b) + (-5b) – (-2a)
5m – (-2n) + 5m – (-3n)
–3p + (-2q) – (-3p) + 7q
–3j – 2i + (-3i) + (-2j)
7z – (-2y) + 5z – (-3y)
12k – (-2n) + (-3m) + 45k
17.
19.
21.
23.
25.
Page 1
10x + (-9x)
16p – (-12p)
-16r + (-12r)
-17x + (-9x)
-2p – (-3p)
-9s – (-3s) + 12r
7a – (+5b) –3a
8z – (-2y) + (-3y)
-12x + (-3y) + (-4y)
3p + (-12q) – (-3q)
a.
b.
c.
An electricity supplier charges its customers a Standing
Charge of £12.50 plus 6p for each unit of electricity
used.
Find a formula for calculating c, the total cost in £’s, if
you know n, the number of units used.
Use your formula to calculate c if :
i)
n = 500
ii)
n = 625
iii) n = 700
iv)
n = 1525
Use your formula to calculate n if :
i)
c = £60.50
ii)
c = £39.50
iii) c = £33.26
iv)
c = £61.82
10.
a.
Copy and complete :
No. of Rectangles (r)
No. of Matches (m)
1
2
3
4
5
12
17
b.
Find a formula for calculating m if you know r.
c.
Use the formula to find m if :
i)
r = 20
ii)
r=7
iii)
r = 50
Use the formula to find r if :
i)
m = 80
ii)
m = 164
iii)
m = 59
d.
Page 18
7.
A car repair firm calculates its bills as follows.
Cost of parts plus £18 per hour
labour charges
a.
Calculate the cost of repairing a car that required £196
worth of parts and 5 hours of labour.
b.
If p = cost of parts in £’s, w = number of hours labour
and c = total cost of the car repair in £’s, find a formula
for calculating c if you know p and w.
c.
Use your formula to calculate c if :
i)
p = 36, w = 2
ii)
Use your formula to calculate p if :
i)
c = 49, w = 1.5
ii)
Use your formula to calculate w if :
i)
c = 110, p = 56
ii)
d.
e.
p = 70, w = 2.5
c = 102, w = 3
c = 405, p = 324
8.
A father is taking his 3 children to the cinema. The cost
of a Child Ticket is £3 less than the cost of an Adult
Ticket.
a.
If a stands for the cost of an Adult Ticket, find an
expression in a for the cost of a Child Ticket.
b.
If the total cost of the 4 tickets is £27, form an equation
in a and use it to find the cost of an Adult and a Child
Ticket.
Page 17
Exercise 2
Multiply out the brackets.
1.
3.
5.
7.
9.
11.
13.
15.
17.
19.
-2 (r + 3)
-5 (g + 2)
-2 (2j + 3)
-8 (3t – 5)
3 (-2y – 4)
2 (-6p + 8)
-2 (-p + y)
-8 (-6g – 3r)
10 (-3w + 2x)
-3 (-4h + 3c – 2b)
2.
4.
6.
8.
10.
12.
14.
16.
18.
20.
-8 (-a – 3)
6 (-c – 10)
3 (-p – 5)
-10 (3y + 4)
4 (-12t – 4)
5 (-3r – 1)
7 (-2w + 3f)
-6 (3t – 4g)
-2 (e + 2f + 3g)
-7 (4 – 2d + 5f)
Exercise 3
Multiply out the brackets and then simplify.
1.
3.
5.
7.
9.
11.
13.
15.
17.
19.
3 - 2 (k + 10)
10 - 5 (h + 2)
3w - 6 (2w + 8)
2g + 3 - 8 (3g – 1)
4x - 7 (x – 3)
3h + 2 (6h + 7)
10 - 2 (x + y)
12 - 8 (4g – 3r)
10 + 10 (3w + 2q)
5r - 3 (4r + 3x – 2z)
2.
4.
6.
8.
10.
12.
14.
16.
18.
20.
Page 2
2 - 5(z – 10)
10 + 6 (y – 1)
3p + 3 (9p – 3)
2d - 10 (3d + 1)
12 - 4 (5r – 2)
13 + 5 (3t – 4)
2c + 3d - 7 (2c + 5d)
12 - 6 (3t – 4d)
5a - 2 (e + 2f + 3g)
20 - 7 (4 – 2d + 5f)
Exercise 4
Multiply out the brackets then simplify.
1.
-2 (y - 3) + 4y + 21
2.
-3(p – 2) + 4p – 4
3.
-2 (c + 2) – 7c +2
4.
-4(2x – 4) + 5x
5.
-2 (-5w + 2) – 15w –9 6.
10 - 8(p – 3) – 12p
7.
-3 (-5r – 2) – 18r + 7
8.
-3(2w + 1) + 5 – 7w
9.
-4 (-2z + 3) – 15z – 12 10. -4(3m – 3) + 7
11. 5 (-5h – 7) + 20 – 30h 12. -2(-2g – 1) – 8g +1
13. -4 (a + b) – 2a – 5b
14. -7(5f – 3g) + 15g
15. -7 (2k – 3m) + 18m
16. 5(-h – 4k) – 7h + 5k
17. -3 (-6t – 5y) + 20y
18. -2r -2(e – 2r) – 5e + 9r
19. 3 (-5t - 2w) – (+10w)
20. -7(3y – 2x) – (-10x)
21. 3 - 2 (4w + 1) – (-2w)
22. 5 + 5(2w – 3y) – (+3y)
23. -10 - 3 (d – 2e) – (+3e) 24. 7a - 2(a + 2b) – (+7b)
25. 5 - 4 (3x – 2) – (-12)
26. -9d - 5(2d + 1) – (-3)
27. -4e + 3 (4e –2f) – (-5f) 28. 2p - 3(3p – 2) – (-7p)
29. -2a + 7(-3a – 2b) + (-9b) 30. -6t - 5(3r – 2t) – (-20r)
Exercise 5
Multyiply out the brackets.
1.
-a (a + 3)
2.
-8a (-a – 3)
3.
-3c (c + 2)
4.
-2c (-c – 10)
5.
-j (2j + 1)
6.
3p (-p – 4)
7.
-3d (2d – 3)
8.
-2y (3y + 4)
9.
x² (-2x + 5)
10. 3s (-12ts – 4s²)
11. p (-3p³ - 2)
12. -8p (-3r – 1)
13. -2y (-5y² + y)
14. -3w (-5w – 3a)
15. -pq³ (-6q² – 3p)
16. -gt²(3t – 4g)
17. 4w² (-3w + 2y)
18. -ef (e + 2f + 3g)
19. -2c³ (-4h + 3c – 2a)
20. -d³ (4 – 2d² + 5f)
Page 3
5.
The cost of hiring a van from a rental firm is calculated
as follows :
Basic Charge
£25
Cost per Mile
5p
a.
Calculate the cost of hiring a van if you travel :
i)
10 miles
ii)
100 miles iii) 250 miles
b.
Find a formula for calculating c, the cost of hiring a van
in £’s, if you know m, the number of miles travelled.
(Hint : costs in table above are in pounds and pence.)
c.
Use your formula to calculate c if :
i)
m = 20
ii)
m = 75
iv)
m = 300
v)
m = 175
d.
iii)
vi)
Use your formula to calculate m if :
i)
c = £26.50 ii)
c = £29
iii)
iv)
c = £47.50 v)
c = £27.60 vi)
m = 450
m = 1000
c = £36
c = £58.75
6.
Tim, Peter and Simon are brothers. Peter is 3 years
older than Tim and Simon is 5 years younger than Tim.
a.
If t stands for Tim’s age, find an expression in t for
Peter’s age and Simon’s age.
b.
The combined total of their ages is 34 years. Form an
equation in t and use it to find their ages.
Page 16
b.
The combined total of their three ages is 51 years.
Form an equation in b, and use it to find their ages.
Exercise 6
Multiply out the brackets and simplify.
Draw the next two patterns in the sequence.
Copy and complete the table.
1.
3.
5.
7.
9.
11.
13.
15.
17.
19.
4.
a.
b.
No. of Black Tiles (b)
1
2
No. of White Tiles (w)
3
4
5
12
8
c.
Find a formula for finding w, the number of white tiles
if you know b, the number of black tiles.
d.
Find the number of white tiles w, if :
i)
b = 10
ii)
b = 20
iii)
iv)
b = 15
v)
b = 100
vi)
b = 13
b = 500
Find the number of black tiles b, if :
i)
w = 34
ii)
w = 52
iv)
w = 72
v)
w = 86
w = 152
w = 602
e.
iii)
vi)
-a (ab - 1) + (-5a)
-y (y + x) + (-3y²)
a² (-2a - 3b) – (-5a²b)
-k (2k² – 5) – (-4k³)
-3q² (-2q² + 3) + (-6q²)
-2x (-6xy + 5y) + (-x²y)
-2ab (-a + b) – (+5a²b)
2t² (-2t – 3r) + (-4t²r)
-k (2k² – 5) – (-4k³)
-3q² (-2q² + 3) + (-6q²)
2.
4.
6.
8.
10.
12.
14.
16.
18.
20.
Exercise 7
Multiply out the brackets and simplify.
1.
-2p -p(pq - 2) + (-3p)
2.
2ab -b(b +3a) + (-2b²)
3.
x³ - x²(-2x – 3y) – (-5x²y)
4.
12a -6a(4a – 1) – (-10a)
5.
3m³- 2m(2m² – 1) – (-2m³)
6.
5d³ +3d² -2d²(-3d + 1) + (-6d²)
7.
12ab² -5b(-3ab + 7b) + (-2a²b)
8.
12gh² -gh(-4g + 3h) – (-2g²h)
9.
-3e³ - 2e²(-2f – 3e) + (-4e²f)
10. -6b³ - 2b(7b² – 1) – (-3b³)
11. 3p³ -2p(-2p + 3p²) – (-4p²)
12. -3w³ + (-5w²) -2w²(-3w + 1) + (-5w²)
Page 4
Page 15
-x (3x + 5) – (-8x)
x (-x² - 4) + (-7x)
-6a (4a – 1) – (-10a)
-2p (-5p + p²) + (-4p²)
-ab (-b – b²) – (+2ab²)
5f (-3ef – 2f) + (+3f²)
-2xy (-3x + 3) – (-10xy)
-10w (4w – 5) – (-3w)
-2a (-2a + a²) - (-3a²)
-xy (-y – 2y²) – (+2xy²)
2.
Substitution
Exercise 1
If a = 2, b = -3, c = -1, x = -2 and y = -4 calculate :
1.
4.
7.
10.
13.
a+c
a+b
b+c-a
b+y -c
y–b+a
2.
5.
8.
11.
14.
x-y
c-x
x-b-c
x-y-b
x-c+y
3.
6.
9.
12.
15.
b+c
a–x-y
y+b-a
x-c+y
a-b-c+x
a.
b.
No. of Black Tiles (b)
No. of White Tiles (w)
Exercise 2
If p = -2, q = 3, r = -3, s = -5 and t = -4 calculate :
1.
4.
7.
10.
13.
-s
-p
-2p
4q
-7s
2.
5.
8.
11.
14.
-q
-r
3q
-5r
7t
3.
6.
9.
12.
15.
-t
2r
-4t
3s
-3r
Exercise 3
If f = -2, g = 3, h = -2, j = -1 and k = -3 calculate :
1.
4.
7.
10.
13.
f – 2k
-g + 2k
-k + 5f
-g + 2j
j + 4h
2.
5.
8.
11.
14.
j + 4f
-f – 2j
2j + h
j – 3g
2j - g
Page 5
3.
6.
9.
12.
15.
g – 3h
k - 3j
-3f + k
-h + 3g
6f – k
Draw the next two patterns in the sequence.
Copy and complete the table.
1
2
3
4
5
12
10
c.
Find a formula for finding w, the number of white tiles
if you know b, the number of black tiles.
d.
Find the number of white tiles w, if :
i)
b = 10
ii)
b = 14
iii)
iv)
b = 52
v)
b = 300
vi)
b = 20
b = 99
Find the number of black tiles b, if :
i)
w = 30
ii)
w = 50
iv)
w = 506
v)
w = 48
w = 206
w = 36
e.
iii)
vi)
3.
Bens' mother is three times his age. His sister is four
years younger than him. Let b stand for Ben’s age.
a)
Find an expression in b for the age of :
i)
Bens’ mother
ii)
Bens’ sister
Page 14
Finding and Using Formulae
1.
A fence is constructed using posts and chains as shown
below.
2 posts
3 chains
a.
b.
Exercise 4
If d = -2, e = -3, f = 2, k = 5 and m = -4 calculate :
3 posts
6 chains
4 posts
9 chains
2
3
Number of Chains (c)
c.
d.
e.
4
5
12
9
Find a formula for finding c, the number of chains if
you know p, the number of posts.
Find the number of chains c, if :
i)
p=7
ii)
p = 10
iv)
p = 25
v)
p = 100
iii)
vi)
p=8
p = 250
Find the number of posts p, if :
i)
c = 30
ii)
c = 57
iv)
c = 51
v)
c = 81
iii)
vi)
c = 153
c = 1497
Page 13
-3d - 2k
-4m – 2e
2e - 3f
6e + 6m
-2f + 2e
2.
5.
8.
11.
14.
2e – 3m
3k - 2m
4m – 5e
-2d + 3f
3d + 4m
3.
6.
9.
12.
15.
2k + 2e – 2d
2d + 2k – 4m
-3m – 2d + 3k
3k – 2e + 3m
-4m – 2d – 3e
3.
6.
9.
12.
15.
-z + y
-3y - x
-5x + 2z
-3y + 3x
-5z + 10x
Exercise 5
If x = -2, y = -3 and z = 4 calculate :
Draw the next two patterns in the sequence.
Copy and complete the table.
Number of Posts (p)
1.
4.
7.
10.
13.
1.
4.
7.
10.
13.
-z - x
-2x + y
-4z + 3y
-2y – 2x
-9x – 5y
2.
5.
8.
11.
14.
y-x
2z + x
3y – 2z
-5z – 8x
7z – 8y
Exercise 6
If r = -4, g = -3, h = -2 and m = 3 calculate :
1.
4.
7.
10.
13.
16.
19.
-g - h
m-h
-3h - 2r
-5r – m
4r + 2g
4r - 2g - m
3g + 8r - m
2.
5.
8.
11.
14.
17.
20.
-r - h
g+r
3g - 2m
-5g + 2r
3h - m
5m - r + 4g
-8h - g + 2r
Page 6
3.
6.
9.
12.
15.
18.
21.
-m - g
-2m + r
-4m - 3g
-7h - m
-2m - 5h
-3g + 5h - 2r
-2m + 5r – 6h
Exercise 7
If a = -1, f = -2, r = 2, h = 3 and p = -3 calculate :
1.
3.
5.
7.
9.
11.
13.
15.
17.
19.
21.
23.
25.
27.
29.
3af
arh
2ap + 3fr
12p – rh
2
5p
2
2
2p + a
2
8fr – 2a
2
5a – 3f
6ah – afp
2
2f + ap
2
2p
4
2
h –p
3
7a – 5frh
3
7p – 5frh
4a³ - r²
2.
4.
6.
8.
10.
12.
14.
16.
18.
20.
22.
24.
26.
28.
30.
Exercise 7
Solve these equations using cross multiplication.
4ahp
af + h
2fh – r
4hp – 5ar
3
3h
3
2
h +a
2
p – rh
9ap – 2hf
2
2afr – h
3
2
4h – p
4
2
3a – 2f
5afrh – 4ap
3
6f
3a + p²h
2h³ + f²r
Exercise 8
If x = -2, y = 3 and z = -4 calculate :
1.
4.
7.
2
( 4x )
2
( 6xy )
2
( 2xz )
2.
5.
8.
3
( 2y )
2
( 6x² )
4
( 3y )
3.
6.
9.
4
( 4x)
2
( 2z² )
3
( 5x²y)
1.
x3
7
2
2.
2x  1
3
5
5.
3x  9 6

5
10
6.
5 x  30
4
 5 7.
2
2
5 x  12
9.
3x  1
2x  5 3
4x  7 7
5x  3 1
 4 10.

11.

12.

5
12
4
20
4
16
2
13.
5x  4
2x  4
2x  4 4
2 x  14 1
 4 14.
 3 15.

16.

9
8
9
3
40
5
3.
1
6
2x  1
4.
8.
7x 1 1

5
2
3
6

7x  9 4
Exercise 8
Solve these inequations.
1.
3.
5.
7.
9.
11.
13.
15.
17.
19.
2x - 8 > 6x + 4
5x + 1 < 6x - 3
5t + 3 > 8t + 12
3a - 5 < 5a - 9
6n +6 > 3n - 30
7b - 4 > 3b - 20
5r + 10 < 3r - 24
2h - 3 < 3h + 21
-6 – 10a > -20 + 4a
5 - 3g < 15 + 5g
2.
4.
6.
8.
10.
12.
14.
16.
18.
20.
Page 7
Page 12
5h + 10 < 3h + 24
5e - 3 > 7e + 9
4d – 3 > 8d + 5
2w + 5 < 6w + 17
5r + 9 > 2r - 24
2m - 10 > 8m - 16
5z + 5 > -27 - 3z
4e + 7 > -21 + 8e
3g + 2 < -14 – 5g
3n +2 > -10 – n
Exercise 5
Solve the following equations. Simplify fraction answers
where appropriate.
1.
3.
5.
7.
9.
11.
13.
15.
17.
19.
3x + 6 = 2(x – 9)
4x – 7 = 5(x – 2)
5(x – 3) = 7x + 5
3(2x + 1) = 3(3x + 7)
3(2x – 3) = 5(2x – 1)
5(2x – 3) = 8(x – 2)
4(2x + 5) = 5(3x + 4)
7(x – 1) = 7(3x + 4)
5(2x – 7) = 2(3x + 1)
7(3x – 4) = 5(4x + 1)
2.
4.
6.
8.
10.
12.
14.
16.
18.
20.
5x – 3 = 2(x + 4)
7(2 – x) = 3(x – 2)
2(x + 4) = 5x + 29
5(x + 1) = 2(2x – 7)
6(2x – 3) = 2(4x + 3)
7(2x + 3) = 4(3x – 1)
3(2x – 1) = 12(x + 1)
2(x – 1) = 2(-8 – x)
3(x + 4) = 4(2x – 1)
12(3x – 4) = 9(2x – 5)
x 6

2 4
5.
2 5

x 10
9.
15
3
5d
13.
7x
 21
2
2 2

x 3
3.
2x 2

5
5
4.
3x 3

4
2
5
1

2x 2
7.
7
1

6x 6
8.
24
4
3x
11.
6x 1

9
3
12.
2.
6.
10.
2x
4
5
14.
3x 1

4
2
15.
Page 11
3
3

4x 2
16.
2 (p + 5)
5 (p + r)
2 (2p + 3t)
8 (3t – 2r)
3 (2p³ – 2t)
2 (6p + r²)
2 (p² + p³)
8 (4pr – 3t)
10 (3prt + 2r²)
3 (4r + 3p – 2p²)
1.
3.
5.
7.
9.
11.
13.
15.
17.
19.
2.
4.
6.
8.
10.
12.
14.
16.
18.
20.
5 (r – 3)
6 (t – p)
3 (9p – 3r)
10 (3p + t²)
4 (5t – p²)
5 (r² – p³)
7 (2p + 5r²)
6 (3t² – 4p³)
2 (p + p² + p³)
7 (4t – 2p³ + 5r²)
Exercise 10
If e = -3, f = -2 and g = 6 calculate:
Exercise 6
Solve these equations using cross multiplication.
1.
Exercise 9
If p = -2, r = -3 and t = 2 calculate:
2x 4

9
3
1.
e f
2g
2.
e2
2f
5.
2g
e
6.
g2
ef
9.
(2e  3 f )
2g
10.
3.
7.
e2 f
g2
(2 g  3e)
2f
(ef ) 2
2g
11.
10 x 10

7
21
Page 8
4.
8.
f2
8f
3e 2
7f
(2e  e 2 )
5g
12.
g2
2ef
Solving Equations and Inequations
Exercise 1
Solve the following equations :
1.
3x - 8 = 6x +1
3.
3x + 2 = x - 6
5.
4x + 20 = 2x + 12
7.
3c + 12 = 2c + 7
9.
8n +5 = 3n - 30
11. 9b - 4 = 5b - 20
13. 10d + 5 = 15d - 25
15. 5h + 6 = 2h - 21
17. 6 - 10g = 20 + 4g
19. 5 - 20g = 15 - 15g
2.
4.
6.
8.
10.
12.
14.
16.
18.
20.
4r – 10 = 9r + 25
5d + 5 = 12d - 9
2x – 3 = 4x + 5
5x +21 = 2x + 15
6x + 8 = 2x - 24
4x - 10 = 2x - 16
6z - 9 = -27 - 3z
-8n + 8 = -18 + 5n
-5t - 4 = -16 - 3t
14e +5 = -10 - e
Exercise 2
Solve the following equations :
1.
2x – 1 = 5 + 3x
3.
3x + 3 = -12 – 2x
5.
4x + 1 = -6 – 3x
7.
12 - 8c = 24 – 4c
9.
8n + 9 = 22 – 5n
11. -b + 15 = 3 – 4b
13. 4 - 15t = 10 -12t
15. 10 + 4d = 2d + 4
17. -7 + 4n = -13 – 2n
19. -20g – 3 = 12 - 5g
2.
4.
6.
8.
10.
12.
14.
16.
18.
20.
4r + 10 = 4 + 6r
-5d – 4 = 12 + 3d
5x + 10 = 4 + 3x
5x + 8 = -32 - 15x
6x – 12 = 3 + 3x
8 - 3p = 4 – 2p
2 - 7x = 2x + 20
-4 + 5g = 2g - 31
-2 + 8h = -12 - 2h
5m + 4 = 2m - 5
Page 9
Exercise 3
Solve the following equations :
1.
5 - 2(x – 3) = 13
3.
4 - 3(2x + 1) = 13
5.
12 - 5(3h –12) = 27
7.
5 + 2(3w –2) = -11
9.
5 - 5(3w + 2) = 25
11. 2 - 3(2d + 4) = 20
13. 8 + 5(3g – 10) = -27
15. 9 - 3(2a + 1) = 0
17. 7 + 2(2g – 3) = -7
19. 5 - 8(2x – 1) = -19
2.
4.
6.
8.
10.
12.
14.
16.
18.
20.
10 - 4(x + 2) = 14
3 - 5(3x – 4) = -7
3 + 4(2d + 2) = 3
7 + 2(3s – 3) = 25
1 - 2(5b + 2) = 27
5 + 2(6t – 3) = -13
5 - 6(2w – 8) = -7
5 - 6(3r + 2) = 29
-3 + 5(3k – 12) = -33
15 + 5(4d – 2) = 25
Exercise 4
Solve the following equations. Simplify fraction answers.
1.
-2x –3 = 10
2.
-12 = 4a + 6
3.
-5 = 6p – 20
4.
12 = 7 – 3z
5.
-3 = 6a + 7
6.
18 = 4p + 20
7.
7 = 6a - 2
8.
10a + 4 = -21
9.
9z = 3z – 15
10. 10q = - 18 – 2q
11. 11a = -35 – 3a
12. -9a = 5a - 21
13. 4p = 8p + 26
14. 7a + 21 = a
15. 5q + 15 = -q
16. 20q + 27 = 2q
17. 35z – 9 = 41z
18. 12 – 4q = -6
19. 30 – 12p = 40
20. 6 – 4x = 12
Page 10
Formulae and Graphs
1.
The relationship between the roasting time, t hours and
the weight w kg of a joint of pork can be expressed as :
t = ½(3w + 1)
a.
Draw the graph for 0 < w < 4.
b.
From the graph find the weight of a joint of pork which
needs 5.9 hours roasting time.
c.
From the graph, find the roasting time for a joint that
weighs 5.5 kg.
2.
The employees in a factory earn a basic pay of £220 per
week plus £8 for each hour of overtime.
a.
Find a formula for calculating p, the total pay in £’s, if
you know n, the number of hours of overtime worked.
b.
Draw the graph for 0 < n < 10.
(Hint: Begin the vertical axis (p) at 200.)
c.
From the graph, find the number of hours of overtime
worked if the total pay is £324.
Alva Academy
Maths Department
Algebra
Booklet Three
Content:
Page 1
Page 5
Page 9
Page 13
Page 19
Page 19
Simplifying
Substitution
Solving Equations and
Inequations
Finding and using
Formulae
Formulae and Graphs