AMS 210 Homework Solutions for Section 4.4 10a: When -1 is subtracted from the main diagonal entries, elimination on A-I, where A is a tridiagonal Markov chain matrix, always involves adding the current column to the next column. The last column is 0’ed out in this process because the column sums are all 0 in A-I. p6 is a free variable. For 10a, 2p6 = p5 = p4 = p3 = p2 = 2p1. Setting the sum of the pi‘s = 1, yields p6 = .1. 11a) Repeating 10a with n states, yields a similar situation as in 10a) with pn a free variable, the middle pi‘s all equal to 2pn and p1 = pn. Setting the sum of the pi‘s = 1, yields p6 = 1/(2n-2). 12a) det(A- λI) = λ2 – (5/4)λ + 1/4: λ1=1, λ 1 = [2/3,1/3], λ2=1/4, u2 = [1,-1]. 16. Letting the states be I, E, S, M in that order, é 1/ 2 1/ 4 0 ê 1/ 2 1/ 2 1/ 4 a) the transition matrix is A = ê ê 0 1/ 4 1/ 2 ê 0 0 1/ 4 ë 0 0 0 1 ù ú ú; ú ú û é 6 4 2 ù ê ú b) the fundamental matrix is N = ê 8 8 4 ú êë 4 4 4 úû c) 18 rounds from I to M. é 0 ê .4 17. A = ê ê .4 ê 0 ë a) 10/7, b) 5. .4 .4 2 ù ú 0 .4 .2 ú and the fundamental matrix is N = .4 0 .2 ú 0 0 1 úû é 15 / 7 10 / 7 10 / 7 ù ê ú ê 10 / 7 15 / 7 10 / 7 ú êë 10 / 7 10 / 7 15 / 7 úû
© Copyright 2026 Paperzz