Distance Formula.notebook November 03, 2013 Distance Formula y 6 What is the distance from A 5 4 to B? A B 3 2 1 6 units 5 4 3 2 1 0 1 x 1 2 3 4 5 6 2 3 4 5 6 1 Distance Formula.notebook November 03, 2013 y 6 Example: 5 4 3 2 1 6 5 4 3 2 1 0 1 x 1 2 3 4 5 6 2 3 C 4 D 5 6 To calculate the horizonal distance between two points, subtract the x co-ordinates: 2 Distance Formula.notebook November 03, 2013 What is the distance between points and ? Points that are in line horizontally have the same y coordinates. 3 Distance Formula.notebook November 03, 2013 What is the distance from M to N? y units 8 7 6 5 4 3 2 1 M N x 8 7 6 5 4 3 2 1 10 1 2 3 4 5 6 7 8 2 3 4 5 6 7 8 4 Distance Formula.notebook November 03, 2013 y 10 9 8 7 6 5 4 3 2 1 units 10 8 6 4 2 0 2 3 4 5 6 7 8 9 10 M x 2 4 6 8 10 N To find the vertical distance between two points, subtract the y co-ordinates: 5 Distance Formula.notebook What is the distance between points November 03, 2013 and ? Points that are in line vertically have the same x coordinates. 6 Distance Formula.notebook November 03, 2013 For oblique (slanted) lines: y 10 9 8 7 6 5 4 3 2 1 Find the distance from J to K. 10 8 6 4 2 0 J x 2 4 6 8 10 2 3 4 K 5 6 7 8 9 10 Hint: Think of Pythagoras' Theorem 7 Distance Formula.notebook November 03, 2013 On the Cartesian plane, we y 10 9 8 7 6 5 4 3 2 1 can make a right triangle whose hypotenuse is the segment JK. By calculating the vertical 10 8 6 4 2 0 2 2 (1 , 3 3) 4 K 5 6 7 8 9 10 (8 , 6) J x 4 6 8 10 and horizontal distances (the lengths of the legs of the triangle) we can use Pythagoras' theorem to find d(J, K ). 8 Distance Formula.notebook November 03, 2013 Pythagoras' Theorem y 10 9 8 7 6 5 4 3 2 1 10 8 6 4 2 0 2 2 (1 , 3 3) 4 K 5 6 7 8 9 10 (8 , 6) J c 4 b 6 8 x 10 a d(J, K) = 11.4 units 9 Distance Formula.notebook November 03, 2013 y 10 9 8 7 6 5 4 3 2 1 Calculate d(P, Q) P 10 8 6 4 2 10 2 3 4 5 6 7 8 9 10 Q x 2 4 6 8 10 10 Distance Formula.notebook November 03, 2013 Calculate d(G, H) y 10 9 8 7 6 5 4 3 2 1 1. Find the horizontal distance . 10 2. Find the vertical distance . 8 6 4 2 0 G x 2 4 6 2 3 4 5 6 7 8 9 10 8 10 H 3. Calculate the distance between the points using Pythagoras' theorem. 11 Distance Formula.notebook November 03, 2013 1. y 10 9 8 7 6 5 4 3 2 1 2. 3. 10 8 6 4 2 0 2 3 4 5 6 7 8 9 10 G(1 , x 1) 2 4 6 8 10 (9 , 5) H d(G,H) = 10 units 12 Distance Formula.notebook November 03, 2013 These steps can be condensed into a single formula called the ... Distance Formula. 13 Distance Formula.notebook November 03, 2013 Example: Calculate . y Note: A 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 14 12 10 8 6 4 2 10 2 3 4 5 B x 2 4 6 8 10 12 14 14 Distance Formula.notebook November 03, 2013 Example: Calculate . y 10 9 8 7 6 5 4 3 2 1 10 8 6 4 2 10 2 3 4 5 6 7 8 9 10 F x 2 4 6 8 10 L 15
© Copyright 2025 Paperzz