ECE-2025 Spring-2011 Info: Lab & HW Quiz #3 Resolve grades by 11-Apr (Today) Lab L b #10 #10: C Cochlear hl Filt Filterbank b k iis FORMAL L Lab: b Lecture 20 Fourier Transform: f Frequency Response of Continuous-Time Systems 11-Apr-2011 p 0 Demo your working system when you turn in the report Open Lab tomorrow: 12 12-4:30+ 4:30+ HW #9 due this week Quiz #4 will be 24-Apr (Friday) Covers C HW #9 and d #10 (Ch (Chaps 9 9, 10 and d 11) 4/11/2011 Stability & Causality for LTI Systems ECE-2025 Spr-2011 jMc 2 Convolution GUI: Sinusoid A system is stable if every bounded input produces a bounded output. A continuous-time LTI system is stable if and only if ∞ ∫ h(t) dt < ∞ −∞ ∞ A system is causal if and only if y(t0) depends only on x(τ) for τ< t0 An LTI system is causal if and only if h(t ) = 0 for t < 0 4/11/2011 ECE-2025 Spr-2011 jMc Lecture 3 Lecture 4/11/2011 ECE-2025 Spr-2011 jMc 4 READING ASSIGNMENTS LECTURE OBJECTIVES This Lecture: Review of convolution THE operation for LTI Systems Chapter 10, all Chapter 11: 11-1 to 11-5 Complex C l exponential ti l iinputt signals i l Frequency Response Cosine C i signals i l Other Reading: Real part of complex exponential Fourier Transform H(jω) Recitation: Chapter 11 Next Lecture: the rest of Chapter 11 4/11/2011 © 2003, JH McClellan & RW Schafer Same as Frequency Response 5 LTI Systems 4/11/2011 6 © 2003, JH McClellan & RW Schafer Complex Exponential Input x(t ) = A Ae jϕ e jω t 6 y (t ) = H ( jω ) Ae A jϕ e j ω t ∞ y (t ) = ∫ h(τ ) Ae A jϕ e jω ( t −τ ) dτ −∞ Convolution defines an LTI system ⎛∞ ⎞ y (t ) = ⎜⎜ ∫ h(τ )e − jωτ dτ ⎟⎟ Ae jϕ e jω t ⎝ −∞ ⎠ ∞ y (t ) = ∫ x(τ )h(t − τ )dτ = x(t ) ∗ h(t ) −∞ ∞ Response p to a complex p exponential p g gives frequency response H(jω) 4/11/2011 © 2003, JH McClellan & RW Schafer H ( jω ) = ∫ h(τ )e − jωτ dτ 7 4/11/2011 −∞ © 2003, JH McClellan & RW Schafer Frequency q y Response 8 h(t ) = e − at u (t ) ⇔ H ( jω ) = When does H(jω) Exist? When Wh is i Suppose that h(t) is: H ( jω ) < ∞ ? H ( jω ) = ∞ ∫ h(τ )e − jωτ dτ ≤ −∞ a =1 ∞ ∫ h(τ ) −∞ ∞ H ( jω ) ≤ ∫ | h(τ ) | dτ < ∞ −∞ Thus the frequency response exists if the LTI system is a stable system. system a>0 H ( jω ) = ∫ e u (t )e − at − jω t −∞ ∞ dt = ∫ e −( a + jω ) t dt 0 ∞ 9 © 2003, JH McClellan & RW Schafer e − ( a + jω ) t e − ( a + jω ) ∞ − 1 1 = = H ( jω ) = − ( a + jω ) 0 − ( a + jω ) a + jω 4/11/2011 © 2003, JH McClellan & RW Schafer 10 Cosine Input x(t ) = A cos(ω1t + ϕ ) Magnitude and Phase Plots 1 H ( jω ) = 1 + jω h(t ) = e − t u (t ) e − jωτ dτ ∞ 4/11/2011 1 a + jω 1 1 = a + jω a2 + ω 2 x(t ) = A cos(ω1t + ϕ ) = 12 A Ae jϕ e jω1 t + 12 A Ae − jϕ e − jω1 t y (t ) = H ( jω1 ) 12 Ae jϕ e jω1 t + H (− jω1 ) 12 Ae − jϕ e − jω1 t y (t ) = 12 | H | e j∠H Ae jϕ e jω1 t + 12 | H | e − j∠H Ae − jϕ e − jω1 t ∠H ( jω ) = − tan −1 (ω ) H ( − jω ) = H ( jω ) y (t ) = A H ( jω1 ) cos(ω1t + ϕ + ∠H ( jω1 )) ∗ 4/11/2011 © 2003, JH McClellan & RW Schafer Si Since H ( − jω ) = H ∗ ( jω ) 11 4/11/2011 © 2003, JH McClellan & RW Schafer 12 Sinusoid in Gives Sinusoid out Fourier Transform ∞ Frequency Response H ( jω ) = ∫ h(τ )e − jωτ dτ −∞ TRANSFORMATION The impulse response h(t) could be any signal H(jω) is the frequency content INVERSE TRANSFORM Given , H(j (jω) recover h(t) () 4/11/2011 13 © 2003, JH McClellan & RW Schafer 4/11/2011 For F non-periodic i di signals i l x(t ) = 1 2π jω t X ( j ω ) e dω ∫ x(t ) = δ (t − t d ) Fourier Synthesis ∞ X ( jω ) = ∫ δ (τ − t d )e − jωτ dτ = e − jωτ δ −∞ X ( jω ) = 14 Example p 1: Delayed y Impulse p Fourier Transform Defined ∞ © 2003, JH McClellan & RW Schafer −∞ Fourier Analysis ∞ X ( jω ) = e − jω t x ( t ) e dt ∫ − jω t d −∞ 4/11/2011 © 2003, JH McClellan & RW Schafer 15 4/11/2011 © 2003, JH McClellan & RW Schafer 16 x(t ) = Aδ (t ) ⇔ X ( jω ) = A Example 2: X ( jω ) = 2πδ (ω − ω0 ) 1 x(t ) = 2π ∞ ∫ 2πδ (ω − ω )e jω t 0 dω = e jω0 t −∞ x(t ) = e jω0t ⇔ X ( jω ) = 2πδ (ω − ω0 ) x(t ) = 1 ⇔ X ( jω ) = 2πδ (ω ) x(t ) = cos(ω0t ) ⇔ X ( jω ) = πδ (ω − ω0 ) + πδ (ω + ω0 ) 4/11/2011 © 2003, JH McClellan & RW Schafer 17 x(t ) = cos(ω0t ) ⇔ 4/11/2011 ⎧1 x(t ) = ⎨ ⎩0 Example 3: X ( jω ) = πδ (ω − ω0 ) + πδ (ω + ω0 ) X ( jω ) = T /2 ∫ (1)e − jω t −T / 2 e − jω t X ( jω ) = − jω © 2003, JH McClellan & RW Schafer 19 4/11/2011 t <T /2 t >T /2 T /2 dt = − jω t e ∫ dt −T / 2 T /2 −T / 2 X ( jω ) = 4/11/2011 18 © 2003, JH McClellan & RW Schafer e − j ω T / 2 − e + jω T / 2 = − jω sin(ωT / 2) ω/2 © 2003, JH McClellan & RW Schafer 20 ⎧1 x(t ) = ⎨ ⎩0 t <T /2 sin(ωT / 2) ⇔ X ( jω ) = t >T /2 ω/2 Example 4: ∞ 1 x(t ) = 2π ∫ X ( jω ) e −∞ 1 e jω t x(t ) = 2π jt j ωb −ωb x(t ) = 21 © 2003, JH McClellan & RW Schafer sin(ωbt ) πt ⇔ ⎧1 X ( jω ) = ⎨ ⎩0 ω < ωb ω > ωb 4/11/2011 jω t 1 dω = 2π ωb jω t 1 e ∫ dω −ωb 1 e jω b t − e − jω b t = 2π jjt x(t ) = 4/11/2011 ω < ωb ω > ωb ⎧1 X ( jω ) = ⎨ ⎩0 sin(ωbt ) πt 22 © 2003, JH McClellan & RW Schafer Table of Fourier Transforms x(t ) = e − a t u (t ) ⇔ X ( jω ) = ⎧1 x(t ) = ⎨ ⎩0 x(t ) = t <T /2 t >T /2 1 a + jω ⇔ X ( jω ) = ⎧1 sin(ωbt ) ⇔ X ( jω ) = ⎨ πt ⎩0 sin((ωT / 2) ω/2 ω < ωb ω > ωb x(t ) = δ (t − t0 ) ⇔ X ( jω ) = e − jω t0 4/11/2011 © 2003, JH McClellan & RW Schafer 23 x(t ) = e jω0t ⇔ X ( jω ) = 2πδ (ω − ω0 ) 4/11/2011 © 2003, JH McClellan & RW Schafer 24
© Copyright 2026 Paperzz