3 years in a nutshell: Development and application of polyspectra to modern Cosmology Antonino Troja Università degli Studi di Milano Facoltà di Scienze e Tecnologie October 26, 2016 PhD Goals CMB LSS I Needlet Trispectrum Estimator; I Angular Bispectrum Prediction; I gNL estimation. I Estimator. Cosmological Observables Polyspectra: Why CMB Temeprature Anisotropy LSS Galaxy Posistion The best way to analize a distribution is to study its polyspectra. Polyspectra: Definition Given a random field Φ(x), we define the n-point correlation function: hΦ(x1 ) · · · Φ(xn )i is defined as the excess probability, compared to a random distribution, of finding n points in a certain configuration. Polyspectra: Definition Given a random field Φ(x), we define the n-point correlation function: hΦ(x1 ) · · · Φ(xn )i is defined as the excess probability, compared to a random distribution, of finding n points in a certain configuration. The Angular polyspectrum of order n-1 is the Fourier counterpart of the n-point correlation function. Power Spectrum Given a spherical field Φ(x) and its Fourier transform Z Φ(k) = d 3 xΦ(x)e ik·x Power Spectrum: hΦ(k1 )Φ(k2 )i = (2π)3 δ (3) (k1 + k2 )PΦ (k1 ) k2 k1 Bispectrum Bispectrum: hΦ(k1 )Φ(k2 )Φ(k3 )i = (2π)3 δ (3) (k1 + k2 + k3 )BΦ (k1 , k2 , k3 ) k3 k2 k1 Trispectrum Trispectrum: hΦ(k1 )Φ(k2 )Φ(k3 )Φ(k4 )i = (2π)3 δ (3) (k1 +k2 +k3 +k4 )TΦ (k1 , k2 , k3 , k4 ) k3 k2 k4 k1 Polyspectra: Statistical definition In statistics, the polyspectra are defined as the higher order momentum of a distribution. P(k) −→ variance B(k1 , k2 , k3 ) −→ skewness T (k1 , k2 , k3 ) −→ kurtosis fNL : Skewness Skewness: asymmetry of the distribution. 1.8 1.6 fNL < 0 1.4 1.2 Right side of MB 1 Left side of MB 0.8 0.6 0.4 0.2 0 0 0.2 0.4 0.6 0.8 1 1.2 1.4 gNL : Kurtosis Kurtosis: height of the tails of the distribution. 0.6 0.5 Right side of MB, gNL < 0 0.4 0.3 Gaussian distribution 0.2 0.1 0 Left side of MB, gNL > 0 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 Gaussian distribution The Gaussian distribution is fully described by the lowest moments: mean (µ) and variance (σ): G (x) = √1 e 2πσ −(x−µ)2 2σ 2 Polyspectra help in discern Gaussian from non-Gaussian distribution. Polyspectra on the Sphere If the field is defined on the sphere, the Fourier transform is performed using the Spherical Harmonics, i.e. the basis for the functions defined on S 2 . Z Φ(x) = d 3 xΦ(k)e −ik·x −→ ∞ X l X l=0 m=−l Φ(k) −→ alm P(k) −→ Cl B(k1 , k2 , k3 ) −→ Bl1 l2 l3 T (k1 , k2 , k3 , k4 ) −→ Tl1 l2 l3 l4 alm Ylm (x) Cosmic Microwave Background: Needlet Trispectrum CMB Non-Gaussianity There is NOT only one Inflation model. Single-Field Multi-Fields I Standard Scenario I Curvaton Scenario I k-inflation I Ghost inflation I ... I ... Each model provides a differrent NG track in the CMB anisotropies distribution. CMB Non-Gaussianity There is NOT only one Inflation model. Single-Field Multi-Fields I Standard Scenario I Curvaton Scenario I k-inflation I Ghost inflation I ... I ... Each model provides a differrent NG track in the CMB anisotropies distribution. Evaluate NG in the CMB allows to constrain the inflationary models. State of the Art: Planck 2015 fNL = 2.5 ± 5.7 (1σ) gNL = (−9.0 ± 7.7) × 104 (1σ) State of the Art: Planck 2015 fNL = 2.5 ± 5.7 (1σ) gNL = (−9.0 ± 7.7) × 104 (1σ) Single-field models are preferred. gNL has a very low statistical significance! Spherical Needlet System I proposed an optimal estimator using the Spherical Needlets system: X l p X l Ylm (ξjk )Y lm (x) ψjk (x) := λjk b Bj l m=−l Localization property in real space means raise of the statistical significance in presence of incomplete sky coverage (i.e. ALWAYS). Needlet Coefficients Reconstruction Formula: X X T (x) = βjk ψjk (x) ≡ alm Ylm (x) j,k l,m Needlet Trispectrum Spherical Needlet Optimal Estimator: s 4π X βj1 k4 βj2 k4 βj3 k4 βj4 k4 Jjj31jj42 = + C (βj1 k4 , βj2 k4 , βj3 k4 , βj4 k4 ) Nj4 σj1 σj2 σj3 σj4 k4 j1 ≤ j2 ≤ j3 ≤ j4 Consistency Checks I tested the estimator using simulation at WMAP (Nside = 512) and PLANCK (Nside = 2048) resolution. I used Gaussian simulation and non-Gaussian simulation input (Elsner&Wandelt (2009)) with gNL = 3.0 · 105 . Resolution 512 512 512 2048 2048 2048 nj 12 14 18 12 16 20 Gaussian sim. 0.0 ± 3.6 0.0 ± 3.6 0.0 ± 3.6 0.1 ± 1.3 0.0 ± 1.4 0.0 ± 1.6 Non-Gaussian sim. 3.0 ± 4.1 3.0 ± 4.0 2.9 ± 4.2 3.2 ± 2.3 3.2 ± 2.5 3.1 ± 2.5 Fisher 2.2 2.2 2.2 0.7 0.7 0.7 Consistency Checks I tested the estimator using simulation at WMAP (Nside = 512) and PLANCK (Nside = 2048) resolution. I used Gaussian simulation and non-Gaussian simulation input (Elsner&Wandelt (2009)) with gNL = 3.0 · 105 . Resolution 512 512 512 2048 2048 2048 nj 12 14 18 12 16 20 Gaussian sim. Non-Gaussian sim. 0.0 ± 3.6 3.0 ± 4.1 0.0 ± 3.6 3.0 ± 4.0 0.0 ± 3.6 2.9 ± 4.2 0.1 ± 1.3 3.2 ± 2.3 0.0 ± 1.4 3.2 ± 2.5 0.0 ± 1.6 3.1 ± 2.5 FAILED! Fisher 2.2 2.2 2.2 0.7 0.7 0.7 Large Scale Structure: Angular Bispectrum LSS Galaxy Bias We measure the posistion of the galaxy in space. We don’t know anything about the distribution of dark matter. We assume that galaxies trace the matter distribution writing: 1 δg (x) ' b1 δ(x) + b2 δ 2 (x) 2 where: I δg (x) is the galaxy density field; I δ(x) is the matter density field; I b1 is the linear bias parameter; I b2 is the non-linear bias parameter. Constrain b1 and b2 is one of the main goal of modern Cosmology. 3D Matter Bispectrum Since the number of configuration in 3D space is greater that than in 2D space, the bias parameter b1 and b2 have been constrained using the 3D bispectrum so far. Angular Bispectrum My goal is to understand if the Angular Bispectrum can add any information to the 3D bispectrum. What I do is to integrate the galaxy distribution along the line of sight, convoluting with a window function, in order to consider a slice of sky in the redshift axis. Angular Bispectrum: Predictions bl1 l2 l3 3 Z 2 dz1 dz2 dz3 φ(z1 )φ(z2 )φ(z3 ) = π Z × dk1 dk2 dk3 k12 k22 k32 B(k1 , k2 .k3 , z1 , z2 , z3 ) × jl1 (k1 r (z1 ))jl2 (k2 r (z2 ))jl3 (k3 r (z3 )) Z × dxx 2 jl1 (k1 x)jl2 (k2 x)jl3 (k3 x) Angular Bispectrum: Predictions Z bl1 l2 l3 = 1 B dzφ(z)3 4 r (z1 ) |r (z)0 |2 l1 + 12 l2 + 12 l3 + 12 , , ,z r (z1 ) r (z2 ) r (z3 ) ! Angular Bispectrum: Measurements Measurements performed on 125 LSS mocks covering 1/8 of sky (MICE catalogue). The estimator used is the “classic” one: b̂l1 l2 l3 = 1 X hl1 l2 l3 m1 m2 m3 al1 m1 al2 m2 al3 m3 l1 l2 l3 m1 m2 m3 hl1 l2 l3 = p Ntrip (l1 , l2 , l3 Angular Bispectrum: All configurations All-Shapes Bispectrum ∆` = 24 0.007 Limber Linear Prediction Limber Scoccimarro-Couchman Prediction Limber Gil-Marin Prediction Measurements 0.006 0.005 `31 b`1 `2 `3 0.004 0.003 0.002 0.001 0.000 3.0 0 50 100 0 50 100 150 200 250 150 200 250 b`1 `2 `3 /bth `1 `2 `3 2.5 2.0 1.5 1.0 0.5 0.0 `1 Angular Bispectrum: Equilateral configurations Equilateral Bispectrum ∆` = 24 0.0007 Limber Linear Prediction Limber Scoccimarro-Couchman Prediction Limber Gil-Marin Prediction Measurements 0.0006 0.0005 `3 b``` 0.0004 0.0003 0.0002 0.0001 0.0000 0 50 100 0 50 100 150 200 250 150 200 250 b``` /bth ``` 2.5 2.0 1.5 1.0 0.5 0.0 ` Conclusion and Goals CMB I Introduce a new selection alghoritm for the Trispectrum estimator; I Solve the NG issue by testing more deeply the NG simulations; LSS I Costrain bias parameters b1 and b2 using Angular Bispectrum; I Introduce non-local bias; Thanks for your Attention!
© Copyright 2026 Paperzz