Resting-state fMRI and DTI David C. Zhu, Ph.D. Associate Professor of Radiology and Psychology Cognitive Imaging Research Center Michigan State University, East Lansing, Michigan, USA Facts • The brain is only about 2% of total body mass. • But it consumes about 20% of the body’s total energy at “rest”. • Engaging in active tasks increases neuronal metabolism less than 5%. What is this energy at “rest” consumed by? The on-going spontaneous neuronal activity Huettel SA, Song AW, McCarthy G. Functional Magnetic Resonance Imaging. Oxygenated and deoxygenated hemoglobin ( ) (Hb) Two Main Paths of BOLD (Blood Oxygen LevelLevel-Dependent) fMRI First 1-2 seconds Later seconds Stimulation Neuronal Activity CMRglucose CMRO2 Blood Oxygen Level Deoxygenated hemoglobin: paramagnetic Blood Magnetic g Susceptibility Effects Cerebral Blood Flow (CBF) Blood Oxygen Level Oxygenated hemoglobin: diamagnetic Blood Magnetic g Susceptibility Effects T2* decay T2* decay fMRI Image Signal Intensity fMRI Image Signal Intensity Resting-state fMRI based functional connectivity analyses Assumptions Strong BOLD fMRI temporal correlation Strong neuronal synchronous activity Strong functional connectivity Same/intact network B A D C E Two popular methods of processing for resting-state fMRI 1 Correlation 1. C l i analysis l i p component p analysis y (ICA) ( ) 2. Independent Seed-based Seedcorrelation analysis seed EPI Smeasure = Sintrinsic + Srandom Time courses of correlated and uncorrelated regions Seed pC/rsp Left et MeFG Right MTG Left IPL R ti Resting-state t t fMRI pre-processing i steps t 1. 2. 3 3. 4. Slice-timing and motion correction. Remove baseline, linear and quadratic system trends. Spatial blurring blurring. Remove “Nuisance” signals of (a) Global mean (b) CSF (c) White matter 5. Band-pass p filtering: g 0.009 Hz – 0.08 Hz Seed Region #1: pC/rsp (posterior cingulate/retrosplenial cortex) Group Integration (17 ssubjects): bjects): pC/rsp Whole-brain corrected P < 0.0325. Mean structural M t t l normalized connectivity distribution > 10-4. MeFC/ACC (Medial Frontal Cortex/ Anterior Cingulate Cortex) Zhu DC, Majumdar S. Integration of resting-state fMRI and diffusion-weighted MRI connectivity analyses of the human brain: limitations and improvement. J Neuroimaging. 2014 Mar-Apr;24(2):176-86. Seed Region eg o #2 # : Right g SPL S (supe (superior o parietal pa e a lobule) obu e) Gro p Integration Group (17 subjects): Whole-brain corrected t d P < 0.0325. 0 0325 Mean structural normalized connectivity distribution > 10-4. Right SPL Left SPL Seed Region #3: Left Cuneus Group p Integration g (17 subjects): Whole-brain corrected P < 0.0325. Mean structural normalized connectivity distribution > 10-4. Left cuneus Right cuneus Independent Component Analysis http://www.fmrib.ox.ac.uk/fsl/melodic/index.html http://www.fmrib.ox.ac.uk/fsl/melodic/index.html ICA example results with MELODIC in FSL IC 1: Default Mode Network IC 25: Visual Network Default--Mode Network Default Medial temporal lobe (MeTL) Medial prefrontal cortex (MePFC) (hippocampus, parahippocampal gyrus, entorhinal gyrus) ((memory y pprocessing) g) (Medial frontal cortex, anterior cingulate cortex, superior frontal cortex) ((facilitation)) Structural connectivity (diffusion MRI fiber tracking) Posterior cingulate cortex/retrosplenial cortex (PCC/RSC) (Integration) temporoparietal junction cortices (TPJC): (angular gyrus, superior/middle temporal gyrus, parietal lobule, lobule supramarginal gyrus) Buckner RL, Andrews-Hanna JR, Schacter DL (2008) The brain's default network: anatomy, function, and relevance to disease. Ann N Y Acad Sci 1124, 1-38. Alzheimer’s disease and amnestic mild cognitive impairment weaken connections within the default-mode network Zhu DC, Majumdar S, Korolev IO, Berger KL, Bozoki AC. Alzheimer’s di disease andd amnestic i mild ild cognitive i i impairment i i weaken k connections i within the default-mode network: a multi-modal imaging study. J Alzheimer's Dis. 2013;34(4):969-84. 7 minute resting-state fMRI EPI scan (relax and eyes open in dim-light dim light condition): 38 contiguous 3-mm axial slices, 22 cm × 22 cm FOV, 64 × 64 matrix size size, 27.7 ms TE, 2500 ms TR, 80° flip angle, 164 time points. Seed location GM seed Amnestic mild cognitive impairment Normal R cingulum L TPJC Alzheimer’s disease R MeFG (a) WM seed R TPJC R isthmus of cingulate R TPJC L cingulum L MeFG GM seed (b) WM seed L TPJC L isthmus i th off cingulate i l t Thresholds: whole-brain corrected p ≤ 0.033 for functional connectivity and mean connectivity distribution of > 1000 for structural connectivity. Green: functional connection only. Orange: structural connection only. Red: coexistence of both connections. GM: gray matter. WM: white matter. R = right. L = left. MeFG = medial frontal gyrus. TPJC = temporoparietal junction cortices. Functional connectivity with seed region at the right isthmus of cingulate cortex (Normal > AD) R STG/MTG R precuneus PET L precuneus L AG L MTG L CG R AG/IPL (a) R TPJC (b) PCC/RSC (c) L TPJC (d) PET: NC > AD Structural connectivity with the seed region in the associated white matter of the right isthmus of cingulate cortex NC > AD NC > aMCI A potential biomarker in sportssports-related concussion: brain functional connectivity alteration of the defaultdefault-mode network measured with longitudinal resting resting--state fMRI over 30 days. days Zhu DC, Covassin T, Nogle S, Doyle S, Russell D, Pearson RL, Monroe J, Liszewski CM, DeMarco JK, Kaufman DI. J Neurotrauma. 2015 Mar 1;32(5):327-41. The DMN Network R IPL/AG L PCC R PCC L IPL/AG L SFG R SFG L Hippo R ACC/MeFC L ACC/MeFC Ovverall DMN Connnectivitty (R) Mean default default--mode network connectivity (7 concussed, 11 control) 0.5 0.45 0.4 0.35 0.3 0.25 02 0.2 0.15 01 0.1 0.05 0 Concussed Control Day 1 Day 7 Day 30 DMN after concussion (n = 7) (Node # 1 = left PCC, 2 = left ACC/MeFC, 3 = left SFG, 4 = left IPL/AG, 5 = left hippocampus, 6 = right PCC, 7 = right ACC/MeFC, 8 = right SFG, 9 = right IPL/AG, 10 = right hippocampus) 3 4 5 6 7 8 9 10 Node 1 2 3 4 5 6 7 8 9 10 Node 1 2 3 4 5 6 7 8 9 10 R value 1 1 0.8 2 2 3 3 0.6 4 4 5 5 0.4 6 6 7 7 0.2 8 8 0 9 9 -0.2 10 10 Mean correlation R on Day 1 Mean correlation R on Day 7 Mean correlation R on Day 30 Node 1 2 1 2 3 4 5 6 7 8 9 10 3 4 5 6 7 8 9 10 Node 1 2 3 4 5 6 7 8 9 10 Node 1 2 3 4 5 6 7 8 9 10 p value 0.05 1 1 2 2 0.04 3 3 4 4 0.03 5 5 6 6 0.02 7 7 8 8 0.01 9 9 10 10 0 t test of Day 1 vs. Day 7 t test of Day 7 vs. Day 30 t test of Day 1 vs. Day 30 Node 1 2 1 2 3 4 5 6 7 8 9 10 DMN of control subjects (n=11) (Node # 1 = left PCC, 2 = left ACC/MeFC, 3 = left SFG, 4 = left IPL/AG, 5 = left hippocampus, 6 = right PCC, 7 = right ACC/MeFC, 8 = right SFG, 9 = right IPL/AG, 10 = right hippocampus) Node 1 2 1 2 3 4 5 6 7 8 9 10 3 4 5 6 7 8 9 10 Node 1 2 3 4 5 6 7 8 9 10 Node 1 2 3 4 5 6 7 8 9 10 R value 1 1 2 2 0.8 3 3 06 0.6 4 4 5 5 0.4 6 6 7 7 0.2 8 8 0 9 9 -0.2 10 10 Mean correlation R on Day 1 Mean correlation R on Day 7 Mean correlation R on Day 30 3 4 5 6 7 8 9 10 Node 1 2 3 4 5 6 7 8 9 10 Node 1 2 3 4 5 6 7 8 9 10 p value 0.05 1 1 2 2 0.04 3 3 4 4 0.03 5 5 6 6 0.02 7 7 8 8 0.01 9 9 10 10 0 t test of Day 1 vs. Day 7 t test of Day 7 vs. Day 30 t test of Day 1 vs. Day 30 Node 1 2 1 2 3 4 5 6 7 8 9 10 The mean functional connectivity to left isthmus of cingulate cortex (ICC) of the concussed group ((correlation R > 0.25,, n = 7)) Day 1 (b) ANOVA: Day 1 vs. Day 7 (n = 8) Day y7 Day 30 (c) ANOVA: Day 1 vs. Day 30 (n = 7) Case study The functional and structural connectivityy to left isthmus of cingulate cortex of a concussed subject over one month (correlation R > 0.4 and connectivity distribution > 1000). Seed regions Day 1 structural functional Green: functional seed Orange: structural seed Day 7 Day 30 Red: overlap regions. The above Th b functional f ti l connectivity ti it reduction d ti from f Day D 1 to t Day D 7 was seen in 8 of our 9 concussed cases. Resting-state fMRI based functional connectivity analyses Assumptions ? Strong BOLD fMRI temporal correlation Vascular confound St Strong neuronall synchronous h activity ti it Why? Strongg functional connectivityy The underlying cellular and molecular bases Same/intact network B A D C E Introduction to Diffusion Tensor Imaging (DTI) Fick’s Law describes particle movement Net flux (mole mm2/s): ΔC J = −D Δx Diffusion coefficient D is in mm2/sec ΔC = concentration gradient in mole/mm4 Δx High concentration J Low concentration Figure 5 5.20 20 Diffusion Stejskal-Tanner Diffusion-weighted Sequence G Isotropic Diffusion Signal attenuation due to diffusion coefficient D S = e −bD A= S0 Where b = commonly called “b factor”, which characterizes the gradient pulses (timing, amplitude, shape) = clinical practice, 1000 s/mm2 Stejskal-Tanner Diffusion-weighted Sequence G δ b = γ G δ (Δ − ) 3 2 2 2 Anisotropic Case (for example, axons) A=e ⎡bxx ⎢ b = ⎢b yx ⎢bzx ⎣ bxy b yy bzy bxz ⎤ ⎥ b yz ⎥ bzz ⎥⎦ A=e − bD ⎡ D xx ⎢ D = diffusion tensor = ⎢ D yx ⎢ D zx ⎣ D xy D yy D zy D xz ⎤ ⎥ D yz ⎥ D zz ⎥⎦ − ( bxx Dxx + b yy D yy + bzz Dzz + 2 bxy Dxy + 2 bxz Dxz + 2 b yz D yz ) Diagnolization DE = EΛ E = eigen vector (unit vector) ⎡λ1 0 ⎢0 λ 2 ⎢ ⎢⎣ 0 0 Λ = eigen value = 0⎤ 0 ⎥⎥ λ3 ⎥⎦ z x’ y’ y x Laboratory frame λ2 λ1 λ3 z’ Diffusion ellipsoid Mean diffusivity = λmean = (λ1+ λ2 +λ3 )/3 The level of tissue constraint F ti l Anisotropy Fractional A i t = FA = 3[(λ1 − λmean ) 2 + (λ2 − λmean ) 2 + (λ3 − λmean ) 2 ] 2(λ12 + λ22 + λ32 ) the directionalityy of diffusion Axon fiber integrity Mean diffusivity map FA map Pierpaoli C, Jezzard P, Basser PJ, Barnett A, Di Chiro G. Diffusion tensor MR imaging of the human brain. Radiology. 1996 Dec;201(3):637-48. Fiber Tracking Deterministic approach: pp Answer Yes/no. Software: (1) DTI Studio (2) MedINRIA Probabilistic P b bili i approach: h How probable two voxels/regions connected together g Software: FSL Probabilistic tracking at Right Fornix Data Acquisition GE 3T Signa® HDx MR scanner with an 88-channel channel head coil. coil 12 minute and 6 second DTI scan (full-brain coverage): Dual spin echo EPI sequence, 48 2.4-mm axial slices, 22 cm × 22 cm FOV, FOV 128 × 128, 128 2 NEX, NEX 75 ms TE, 13.7 s TR, parallel imaging acceleration factor = 2, b = 1000 s/mm2, 25 directions DTI Analysis with the Diffusion Toolbox (FDT v2.0) in FSL software package Eddy-current distortion and motion correction. Applied Bayesian Estimation of Diffusion Parameters Obtained using Sampling Techniques with the crossing fibers (n = 2) modeled d l d (BEDPOSTX). (BEDPOSTX) Applied probabilistic tractography (PROBTRACKX) to each seed region to calculate the corresponding connectivity distributions. The connectivity distributions were then normalized by the total number of generated tracts from the seed region. Behrens TE, Berg HJ, Jbabdi S, Rushworth MF, Woolrich MW. NeuroImage 2007, 34:144-155. Integration g • Resting-state fMRI allows the examination of brain function connectivity (1). (1) • Diffusion tensor imaging (DTI) fiber tracking ki allows ll the h evaluation l i off structurall connection between cortical regions (2). 11. Fox F MD MD, R Raichle i hl ME ME. N Natt R Rev N Neurosci. i 2007; 2007 8:700-711. 8 700 711 2. Le Bihan D, Mangin JF, Poupon C, Clark CA, Pappata S, Molko N, Chabriat H. J Magn Reson Imaging. 2001;13:534-546. Left PCC Left ACC Test both functional and structural connectivity. Case study The functional and structural connectivityy to left isthmus of cingulate cortex of a concussed subject over one month (correlation R > 0.4 and connectivity distribution > 1000). Seed regions Day 1 structural functional Green: functional seed Orange: structural seed Day 7 Day 30 Red: overlap regions. The above Th b functional f ti l connectivity ti it reduction d ti from f Day D 1 to t Day D 7 was seen in 8 of our 9 concussed cases. Volumetric Analysis and Segmentation with ith F FreeSurfer S f Left-Putamen Left-Pallidum Left Pallidum Time point 0 Time point 1 6708 4869 2090 1618 % change -27.4 -22.6 22.6 Region lh_postcentral_volume lh_precentral_volume lh_p precuneus_volume Time 0 (cc) Time 1 (cc) 10724 7408 14308 11312 12278 9660 % change -30.92 -20.94 -21.32
© Copyright 2026 Paperzz