Algebraic Limits • lim f (x) = L if for every ε > 0 there exists δ > 0 so • a2 − b2 = (a − b)(a + b) x→a that |f (x) − L| < ε when |x − a| < δ. • a3 − b3 = (a − b)(a2 + ab + b2 ) √ −b ± b2 − 4ac • Quadratic Formula: 2a • lim f (x) exists if and only if x→a lim f (x) = lim f (x) x→a− x→a+ sin θ =1 θ 1 − cos θ • lim =0 θ→0 θ • lim Geometric θ→0 • Area of Circle: πr2 • Circumference of Circle: 2πr Derivatives • Circle with center (h, k) and radius r: f (x + h) − f (x) h • (f g)0 = f g + f g 0 0 f 0 g − f g0 f = • g g2 0 • (f (g(x))) = f 0 (g(x)) · g 0 (x) • f 0 (x) = lim (x − h)2 + (y − k)2 = r2 h→0 0 • Distance from (x1 , y1 ) to (x2 , y2 ): p (x1 − x2 )2 + (y1 − y2 )2 • Area of Triangle: • (sin x)0 = cos x 1 2 bh • (cos x)0 = − sin x opposite leg hypotenuse adjacent leg • cos θ = hypotenuse opposite leg • tan θ = adjacent leg • If 4ABC is similar to 4DEF then • sin θ = • (tan x)0 = sec2 x • (sec x)0 = sec x · tan x Theorems • (IVT) If f is continuous on [a, b], f (a) 6= f (b), and N is between f (a) and f (b) then there exists c ∈ (a, b) that satisfies f (c) = N . AB BC AC = = DE EF DF • Volume of Sphere: 4 3 3 πr • Surface Area of Sphere: 4πr2 • Volume of Cylinder/Prism: (height)(area of base) • Volume of Cone/Pyramid: 1 3 (height)(area • (MVT) If f is continuous on [a, b] and differentiable on (a, b) then there exists c ∈ (a, b) that satisfies f (b) − f (a) f 0 (c) = . b−a Z x • (FToC P1) If F (x) = f (t) dt of base) then F 0 (x) = f (x). Other Formulas Trigonometric • sin2 θ + cos2 θ = 1 • sin(2θ) = 2 sin θ cos θ • cos(2θ) = cos2 θ − sin2 θ = 1 − 2 sin2 θ = 2 cos2 θ − 1 a f (xn ) f 0 (xn ) • Linearization of f at a: L(x) = f (a) + f 0 (a)(x − a) n X • c = cn • Newton’s Method: xn+1 = xn − i=1 • n X i=1 • n X i=1 i= n(n + 1) 2 i2 = n(n + 1)(2n + 1) 6
© Copyright 2026 Paperzz