dpg15 v.2007/05/23 Prn:4/06/2007; 13:56 aid: 15075 pii: S0166-2635(07)15075-1 docsubty: REV F:dpg15035.tex; VTEX/JOL p. 1 Precambrian Ophiolites and Related Rocks Edited by Martin J. van Kranendonk, R. Hugh Smithies and Vickie C. Bennett Developments in Precambrian Geology, Vol. 15 (K.C. Condie, Series Editor) © 2007 Elsevier B.V. All rights reserved. DOI: 10.1016/S0166-2635(07)15075-1 1 1 Chapter 7.5 1 2 2 3 3 4 5 6 7 8 9 SULPHUR ON THE EARLY EARTH 4 STEPHEN J. MOJZSIS 6 Department of Geological Sciences, Center for Astrobiology, University of Colorado, 2200 Colorado Avenue, Boulder, CO 80309-0399, USA 8 5 7 9 10 10 11 11 12 13 12 7.5-1. INTRODUCTION 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 13 14 On the young Earth, the surface zone of the planet was shaped by physical and chemical interactions between the crust, hydrosphere, atmosphere and the emergent biosphere, on the geochemical cycles of the biologically important elements (H, C, N, O, P, S, Fe and others). An explicit record of the early co-evolution of the atmosphere and biosphere with the geosphere has been notoriously difficult to investigate. By its very nature the atmosphere is ephemeral, and the result has been that a direct record of its chemical evolution remained frustratingly out of reach. It is now reasonably well understood that the geochemical behaviour of the multiple sulphur isotopes are the best tool for investigations of the long term evolution of the surface system, and that they provide a uniquely powerful proxy for long-term changes in atmospheric chemistry and other key processes (Thiemens, 1999, 2006). The geochemistry of sulphur is complex. There is a long history of study on the topic so that a single review on the generalities of sulphur biogeochemistry on the early Earth cannot hope to cover all progress in this rapidly changing field (please see Ohmoto and Goldhaber (1997), Canfield and Raiswell (1999), Canfield (2001), Farquhar and Wing (2003) and Seal (2006) for comprehensive reviews). Instead, the goal here will be to outline several key aspects of sulphur that are of particular interest to studies of Earth’s oldest rocks (limited to before ca. 3.5 Ga), and to make the case that a comprehensive program of retrospective multiple sulphur isotope analyses is required on samples for which prior 34 S/32 S data have been compiled (Strauss, 2003). When one attempts to review processes operative on the early Earth, global environmental aspects unique to the young planet need to be acknowledged. In the first billion years, higher crustal heat flow and enhanced mantle outgassing, widespread (and rapid?) crustal recycling and considerable changes in continental volume, and the emergence of life and its subsequent take-over of several important aspects of chemistry of the surface zone, were all likely governing factors that influenced the various sub-cycles of the global sulphur cycle schematically represented in Fig. 7.5-1. Furthermore, exogenous processes unique to the young planet were also important, even if they are more difficult to account for in physical models. These processes included a higher frequency of asteroid and comet 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 dpg15 v.2007/05/23 Prn:4/06/2007; 13:56 aid: 15075 pii: S0166-2635(07)15075-1 docsubty: REV 2 F:dpg15035.tex; VTEX/JOL p. 2 Chapter 7.5: Sulphur on the Early Earth 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 10 10 11 11 12 12 13 13 14 14 15 15 16 16 17 17 18 18 19 19 20 20 21 21 22 22 23 23 24 24 25 25 26 26 27 27 28 28 29 29 30 30 31 31 32 32 33 33 34 34 35 36 37 38 39 40 41 42 43 Fig. 7.5-1. Schematic representation of global geochemical cycles of sulphur and the average sulphur isotope compositions of important reservoirs in the Earth system. The interface between the geosphere and hydrosphere is dominated by exchange of sulphur between seawater and rocks by fluids, weathering, dissolution and re-precipitation. Sulphide will precipitate with an adequate supply of dissolved iron (and other metals) and can be abiogenic or biogenic. Sulphur may also be sequestered in evaporates, brine pools or crustal fluids as sulphate, sulphide or elemental sulphur. Chemical weathering is the principal mechanism that returns sulphur from rocks and sediments on land to the hydrosphere. Hydrothermal activity and subduction transports sulphur back to the geosphere. Submarine dissolution of basalt and other rocks also returns S to the hydrosphere. 35 36 37 38 39 40 41 42 43 dpg15 v.2007/05/23 Prn:4/06/2007; 13:56 aid: 15075 pii: S0166-2635(07)15075-1 docsubty: REV 7.5-1. Introduction 1 2 3 4 F:dpg15035.tex; VTEX/JOL p. 3 3 Fig. 7.5-1. (Continued.) Volcanism injects sulphur gases to the hydrosphere and atmosphere. Volcanic gases in the atmosphere can become transformed by light-driven reactions and returned to sediments from aerosol deposition. Subduction will bring all components back to the mantle. Extraterrestrial input is minimal, but could be important in a few cases of large impacts. 1 2 3 4 5 5 6 6 7 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 8 impacts, an enhanced rate of extraterrestrial dust delivery compared to present, as well as reduced solar luminosity (but higher ultraviolet flux) from the young Sun. However, there exists a further and yet more fundamental limitation to what can be known about the earliest Earth. A geologic record of the interactions outlined in Fig. 7.5-1 has apparently been lost for the first ca. 750 My due to the effective recycling of all crust except for remnant ca. 4.4–3.8 Ga zircons contained in younger sediments (see Cavosie et al., this volume). Sedimentary rocks 3.7 Ga in age, which could potentially preserve a direct sample of the ancient sulphur cycle, occur only as rare and deformed enclaves in high-grade Archaean metamorphic granitoid-gneiss terranes. Nevertheless, given recent advances in instrumental techniques, experimental and observational geomicrobiology and molecular biochemistry, chemical oceanography, and access to an increasingly large sample base of ancient rocks, our knowledge of early Earth environments has accumulated to the point where it is now perhaps worthwhile to revisit what we know of the interactions between the geochemical cycles of sulphur at that time. Specifically: (1) Sulphur comes in four stable isotopes of well-defined relative abundance. What is the origin of sulphur to the Earth? How do changes occur to the abundance ratios of the sulphur isotopes? What is the significance of mass-independent isotope fractionation as opposed to ‘normal’ mass-dependent effects in the early Earth record? (2) The infall of meteoritic and cometary debris to the planets was greater in the first billion years than at present. What contributions could extraterrestrial sources have made to the global geochemical sulphur cycle in the first billion years? Could a trace of this extraterrestrial material remain in the oldest sedimentary rocks? (3) Subsequent to primary outgassing, the atmosphere underwent chemical changes. What clues can sulphur provide to the composition and chemical evolution of the atmosphere prior to about 3.5 Ga? (4) Sulphur compounds are central to many fundamental biochemical processes. What role could sulphur have played in the establishment of the biosphere? Could sulphur isotope fractionations serve as a robust isotopic biomarker in highly metamorphosed rocks? (5) All rocks older than about 3.5 Ga have been strongly transformed by metamorphism. How well is the sulphur isotope record preserved in the oldest rocks? (6) Banded iron-formations (BIFs) are the most common sedimentary rock preserved from the early Archaean, but their derivation remains enigmatic. What can sulphur isotopes inform us of the origins of the BIFs? 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 dpg15 v.2007/05/23 Prn:4/06/2007; 13:56 aid: 15075 pii: S0166-2635(07)15075-1 docsubty: REV 4 1 F:dpg15035.tex; VTEX/JOL p. 4 Chapter 7.5: Sulphur on the Early Earth 7.5-2. ORIGIN OF SULPHUR TO THE EARTH 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 2 The elemental inventory of the planets was determined by the composition of the nebular gas and dust from which the solar system formed. In stars greater than 8 times solar mass, and at temperatures near 1.5 × 109 K, oxygen fusion begins as a result of the slow (s-process) fusion of neutrons (n), protons (p) and 4 He nuclei (α) to a variety of seed nuclei (Cameron, 1979; Woosley and Weaver, 1986). In this scenario, the various sulphur isotopes can be produced from the following important oxygen-burning nuclear reactions: 16 4 16 O O, γ → 32 S; 32 S He, γ → 36 S; 32 S(n, γ ) → 33 S; 33 S(n, γ ) → 34 S 3 Here, it can be seen how the major oxygen-oxygen reaction 16 O(16 O, γ ) → 32 S yields the abundant 32 S isotope and energy. Neutrons evolved from side reactions such as 16 O(16 O, n) → 31 S can result in further s-processes and the formation of the minor isotopes (Seeger et al., 1965). As a result of these processes, there are four stable isotopes of sulphur which have the following relative abundances as defined by the meteorite sulphur standard Cañon Diablo troilite (Hultson and Thode, 1965; see Ding et al., 2001 and Beaudoin et al., 1994): 11 32 S = 95.02%; 33 S = 0.75%; 34 S = 4.21%; 36 S = 0.02% The high relative abundance of 32 S can therefore be understood from the fact that it is directly synthesized from O-burning reactions. Sulphur is an exceptionally stable element. It has an even atomic number (Z = 16) and the nuclide 32 S has both a mass number (A) and a neutron number (N ) that are multiples of 4 (the mass of the He nucleus), so that A = Z + N = 16 + 16 + 32. Since the minor S isotopes are more closely tied to rates and types of various s-process reactions which also include synthesis from 4 He-fusion with the stable isotopes of Si (28 Si, 29 Si and 30 Si), the relative abundances of 33 S, 34 S and 36 S are much lower. This inventory of the different sulphur isotopes was imparted to the solar nebula at some time prior to the accretion of the planets. 30 31 34 35 36 37 38 39 40 41 42 43 5 6 7 8 9 10 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 7.5-2.1. Primordial Sulphur 32 33 4 31 32 The formation time of Earth and other planets, and the elemental inventory of Earth, has been deduced in part on the basis of comparison with primitive meteorites (type 1 carbonaceous chondrites; CI) and the solar photosphere. The average compositions of CI meteorites and the Sun have been compiled by numerous workers (e.g., Anders and Grevesse, 1989), who showed that CI:solar photosphere displays a nearly 1:1 correspondence in sulphur content normalized to Si, so that bulk meteoritic sulphur is probably a reasonably good approximation for bulk planetary sulphur isotopic compositions. Primitive carbonaceous chondrites contain approximately 5.4 wt% sulphur (Dreibus et al., 1995) and S is the tenth most abundant element in the solar system (Anders and Ebihara, 1982). Sulphur ranks as eighth in abundance for the whole Earth (silicates + core; Morgan and Anders, 1980) and the Bulk Silicate Earth concentration is about 250 ppm (McDonough and Sun, 1995). 33 34 35 36 37 38 39 40 41 42 43 dpg15 v.2007/05/23 Prn:4/06/2007; 13:56 aid: 15075 pii: S0166-2635(07)15075-1 docsubty: REV F:dpg15035.tex; VTEX/JOL p. 5 7.5-2. Origin of Sulphur to the Earth 1 2 3 4 5 5 A summary of the various concentrations of sulphur and sulphur-containing compounds in the terrestrial reservoirs in the atmosphere, hydrosphere, biosphere and geosphere is provided in Table 7.5-1. The sulphur isotopic composition of the bulk Earth is assumed to be close to that of the major S-phases of iron meteorites. Because the record of sulphur is geochemical, a brief review of the stable isotope geochemistry of sulphur is warranted. 6 7 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 2 3 4 5 6 7.5-2.2. Sulphur Isotope Fractionations 7 8 9 1 8 For low atomic number elements like sulphur, the mass differences between the various isotopes are large enough for many physical, chemical, and biological processes or reactions to change the relative proportions of the isotopes (reviewed in Hoefs (1997)). In normal physical-chemical interactions on Earth, two isotope effects – equilibrium and kinetics – result in isotope fractionation. Due to these fractionation processes, products often develop unique isotopic compositions (normally expressed as ratios of heavy to light isotopes) that may be indicative of their source, or of the processes that formed them (Faure, 1986, and references therein). Reaction rates depend on the ratios of the masses of the isotopes and their zero-point energies. As a general rule, bonds between the lighter isotopes are several calories less than bonds between heavy isotopes. The lighter isotopes tend to react more readily and become concentrated in the products, and the residual reactants tend to become enriched in the heavy isotopes. The magnitude of the fractionation strongly depends on the reaction pathway utilized and the relative energies of the bonds broken and formed by the reaction. Slower reactions (for instance those proceeding at lower temperatures) tend to show larger isotopic fractionation effects than faster ones. Equilibrium isotope-exchange reactions involve the redistribution of isotopes among various chemical species or compounds. During equilibrium reactions, the heavier isotopes preferentially accumulate in the compound with the higher energy state. Kinetic isotope fractionations occur when systems are out of isotopic equilibrium, such that forward and back reaction rates are not identical. When reactions are unidirectional, reaction products become physically isolated from the reactants. Biological processes are kinetic isotope reactions that tend to be unidirectional. Both diffusion and metabolic discrimination against the heavier isotopic species occurs because of the differences in zero-point energies of the different isotopes. This can result in significant fractionations between the substrate (isotopically heavier) and the biologically mediated product (isotopically lighter). Many reactions can take place either under purely equilibrium conditions or be affected by an additional kinetic isotope fractionation, and metabolic (oxido-reduction) reactions will preferentially select molecules with lighter isotopes (Schidlowski et al., 1983). To follow the various isotopic fractionation pathways, partitioning of stable isotopes between two substances A and B is expressed by use of the isotopic fractionation factor (α): 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 α(A − B) = RA /RB 40 34 S/32 S 33 S/32 S). where R is the ratio of the heavy to light isotope (e.g., or Values for α tend to be close to 1.00 so that differences in isotopic compositions are usually expressed in parts-per-thousand, or ‘per mil’ (h). Kinetic fractionation factors are typically described 41 42 43 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 Reservoir Reduced S H2 S Atmospherea Biosphere Hydrosphere Riversd Oceans Shale Granite Mafic rocks and Ultramafics Volcanic gasesj Other OCS Total S 2–9 × 10−5b – Sulphate SO4 2− – – 5 × 10−4 – <1 × 10−3 1000c – – – – – – – – – – 11.5 2784e – – – – – – – – – ∼2800f 2400g 260h ∼1000–4000i 3 × 10−4 –1.89 0.006–47.7 [0.03–0.06] – 2 × 10−5 –0.08 3–10 × 10−5 – Elemental S S2 (S0 , S8 ) ∼1.5 × 10−5 – – – – – – 0.057–3.21 Oxidized S SO2 [SO] a present troposphere (Warneck et al., 1988); b as CS ; c dry weight of tissue (Berner and Berner, 1996 – citing Zinke, 1977); Schlesinger, 1997); d Stumm and 2 Morgan (1996); e Millero and Sohn (1992); f Li (1991); g Turekian and Wedepohl (1961); h Mason and Moore (1982); i Wedepohl and Muramatsu (1979); j Symonds et al. (1994) values expressed in mol%; k Kissel et al. (1986); l Schramm et al. (1988). F:dpg15035.tex; VTEX/JOL p. 6 Notes: Chapter 7.5: Sulphur on the Early Earth 95480k 41664l Comet particles IDPs dpg15 v.2007/05/23 Prn:4/06/2007; 13:56 aid: 15075 pii: S0166-2635(07)15075-1 docsubty: REV 6 Table 7.5-1. Average concentration of sulphur in various reservoirs on Earth (values are in 10−6 g/g unless otherwise indicated) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 dpg15 v.2007/05/23 Prn:4/06/2007; 13:56 aid: 15075 pii: S0166-2635(07)15075-1 docsubty: REV F:dpg15035.tex; VTEX/JOL p. 7 7.5-2. Origin of Sulphur to the Earth 1 2 7 in terms of various enrichment or discrimination factors and these are defined in various ways by different researchers (see O’Neil, 1986). 3 4 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 2 3 7.5-2.3. Mass-Dependent Fractionation of Sulphur Isotopes 4 5 6 1 5 The numerous paths of sulphur between the different reservoirs shown in Fig. 7.5-1 often involve changes in oxidation states that are modulated through both abiotic and biotic equilibrium and kinetic reaction processes, and the different degrees of S-isotope fractionations depend on these modes of isotopic exchange. In order to track these fractionations in nature, sulphur isotope compositions of substances are expressed with the conventional δ notation as: 34 34 δ 34 SCDT (h) = Rsample /RCDT − 1 × 1000 33 33 /RCDT − 1 × 1000, δ 33 SCDT (h) = Rsample where R 34 = 34 S/32 S, R 33 = 33 S/32 S and the reference standard is the pyrrhotite endmember phase troilite (FeS) from the Cañon Diablo meteorite (CDT; see Beaudoin et al., 1994). Similarly, this expression holds for δ 36 S, however the value has not usually been reported because the trace abundance of 36 S makes the measurement difficult with normal mass-spectrometric techniques (e.g., Hulston and Thode, 1965; Hoering, 1989; Gao and Thiemens, 1989). As reviewed elsewhere (Mojzsis et al., 2003; Farquhar and Wing, 2003), most conventional sulphur isotope studies omitted the minor isotope 33 S with the view that there would be no new information conveyed by the measurement of 33 S/32 S (cf. Hoering, 1989; Lundberg et al., 1994). This is because normal physical, chemical, or biological processes fractionate isotopes with predictable mass-dependent behaviour (Urey, 1947; Bigeleisen and Mayer, 1947). In other words, on sulphur three-isotope plots of [(33 S/32 S)/(34 S/32 S)] or [(36 S/32 S)/(34 S/32 S)], the relative mass differences of the isotopomers are such that variations in δ 33 S and δ 33 S ought to be correlated with those in δ 34 S. Mass-dependent fractionation laws arise from the kinetic and equilibrium reactions that fractionate sulphur in approximate proportion to their relative mass difference. Because the mass difference between 33 S and 32 S is about half of that between 34 S and 32 S, any mass-dependent isotope effects in δ 33 S would be about half those in δ 34 S. Mass-dependent fractionation (MDF) processes lead to isotopic compositions that can be described by the equation: λ 34 32 34 32 33 32 33 32 S/ S S/ S CDT = S/ S S/ S CDT . In this treatment, linear regression in (x, y) with y = and x = (34 S/32 S)CDT ] has slope λ. Theoretical analyses of equilibrium MDF laws define slopes of λ ≈ 0.515 (Bigeleisen and Mayer, 1947; Hulston and Thode, 1965). York regressions through large datasets from sulphur standards measurements yield values λ = 0.515 ± 0.005 (Farquhar et al., 2000a, 2000b, 2000c; Mojzsis et al., 2003; Farquhar and Wing, 2003; Ono et al., 2003; Hu et al., 2003; Papineau et al., 2005, 2006; Papineau and Mojzsis, 2006; Cates and Mojzsis, 2006; Whitehouse et al., 2005; Ono et al., 2006, 2007; Papineau ln(33 S/32 S) ln[(34 S/32 S)/ 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 dpg15 v.2007/05/23 Prn:4/06/2007; 13:56 aid: 15075 pii: S0166-2635(07)15075-1 docsubty: REV 8 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 F:dpg15035.tex; VTEX/JOL p. 8 Chapter 7.5: Sulphur on the Early Earth et al., 2007). Empirical determinations of 33 S/32 S are obtained by fixing λ at 0.515 with (34 S/32 S)V-CDT = (22.6436)−1 (Ding et al., 2001), so that regressions through standards data with fixed λ result in intercepts that equal ln[(33 S/32 S)V-CDT ]. This yields (33 S/32 S)CDT values = (126.3434)−1 , and with the thousands of standards measurements reported thus far, mass-dependent values have been narrowly defined about [(34 S/32 S)/(33 S/32 S)]CDT = 0 ± 0.1h(2σ ). Different modes of mass-dependent fractionations can arise from different kinetic and equilibrium effects (Bigeleisen and Wolfsberg, 1958). What is little-discussed but germane to sulphur isotope geochemistry is that the scatter often seen in [(34 S/32 S)/(33 S/32 S)] data can deviate slightly from orthodox mass-dependency because different slopes in λ may result from these different mass-dependent modes (e.g., Young et al., 2002) captured in the compositions of natural standards. In light of this observation, Papineau et al. (2005) argued that MDF trajectories on a three-isotope plot should be projected as a band that encompasses the different mass-dependent laws, rather than as a simple ‘terrestrial (mass-) fractionation line’. Based on this analysis, the width of the York-MDF band is defined as the standard deviations in y about the fixed-slope York regression through all standards in (x, y)-space with a slope λ = 0.515 ± 0.005 when transformed to δ 34 SCDT vs δ 33 SCDT space. This scrutiny of the various modes of mass-dependent sulphur isotope fractionations in the three-isotope system yields external errors in the range of ±0.20h. Other, more detailed studies that explore the quadruple sulphur isotope system at high resolution with laser fluorination methods is reviewed in Ono et al. (2003, 2006, 2007). Admittedly, there remains considerable room for improvement in these measurements and it is expected that when synthetic sulphur standards become available, the external errors will decrease and finer details of sulphur isotope fractionations will be revealed. Theoretical treatments of the MDF boundaries within the range of possible MDF types show that they plot as shallow curves, and the York MDF-bandwidth (approximately ±0.1h, 2σ in the theoretically best possible case) increases slightly with absolute values of (δ 33 S/δ 34 S)CDT (Fig. 7.5-2). However, some unusual photolytic atmospheric reactions that occur in the gas-phase, and some nuclear effects in space, produce sulphur that significantly deviates from mass-dependent fractionation laws in what has come to be known as ‘mass-independent fractionation’. 32 33 36 37 38 39 40 41 42 43 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 7.5-2.4. Mass-Independent Fractionation of Sulphur Isotopes 34 35 1 33 34 In order to better grasp the significance of mass-independent sulphur isotope effects captured in the geologic record of the early Earth, it is worthwhile to briefly summarise the initial discovery of this phenomenon in the oxygen isotopes. Mass-independent fractionation (MIF) behaviour of stable isotopes was found in the oxygen isotopic compositions (16 O, 17 O, 18 O) of carbonaceous meteorites (Clayton et al., 1973). In extensive work since, Clayton and others have shown that on a three-isotope oxygen plot1 , anhydrous minerals in carbonaceous meteorites lie along a line of slope of +1 (Fig. 7.5-3) instead of a 1 (δ 17 O vs δ 18 O; where δ 1x O = ((1x O/16 O) 1x 16 sample /( O/ O)V-SMOW − 1) × 1000h, x is either 7 or 8 and V-SMOW is the Vienna standard mean ocean water). 35 36 37 38 39 40 41 42 43 dpg15 v.2007/05/23 Prn:4/06/2007; 13:56 aid: 15075 pii: S0166-2635(07)15075-1 docsubty: REV 7.5-2. Origin of Sulphur to the Earth F:dpg15035.tex; VTEX/JOL p. 9 9 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 10 10 11 11 12 12 13 13 14 14 15 15 16 16 17 17 18 19 20 21 18 Fig. 7.5-2. Three-isotope plot (δ 33 S vs δ 34 S) for various sulphide standards that are used to define the York-MDF bandwidth. For clarity, the error bars for the individual measurements have been omitted (from Papineau et al., 2005). 19 20 21 22 22 23 23 24 25 26 27 28 29 30 31 32 33 34 slope of approximately +0.5 expected to define normal mass-dependent isotope effects on Earth. The initial interpretation that nucleosynthetic processes produced mass-independent isotopic signatures was re-visited by Thiemens and Heidenreich (1983) who showed experimentally that the origin of MIF oxygen isotopes was likely photochemical (Fig. 7.5-4). Photolysis of diatomic oxygen under ultraviolet radiation produces MIF oxygen isotopes in the residual molecular oxygen (O2 ) and in the product ozone (O3 ). Fig. 7.5-4 defines a theoretical mass fractionation (band), which is the regime wherein all O-isotope MDF processes plot according to the equation: 17 18 λ δ O δ O 17 O = 1000 × +1 − +1 . 1000 1000 35 36 37 38 39 40 41 42 43 24 25 26 27 28 29 30 31 32 33 34 35 17 O is the permil deviation from mass-dependent fractionation and λ repreIn this case, sents the slope, which expresses the mass-dependent fractionation relationship between δ 17 O and δ 18 O (approximately δ 17 O = 0.52 × δ 18 O). Mass-dependent fractionation processes result in isotopic compositions that have a 17 O of 0h, while mass-independent processes that arise from ultraviolet photolysis will result in 17 O = 0h, or significant deviation from the mass-dependent fractionation band. In Fig. 7.5-4, product ozone (O3 ) from the photolysis of molecular oxygen (O2 ) has a positive 17 O, which means that it is significantly more enriched in 17 O than it would if the fractionation process was purely 36 37 38 39 40 41 42 43 dpg15 v.2007/05/23 Prn:4/06/2007; 13:56 aid: 15075 pii: S0166-2635(07)15075-1 docsubty: REV 10 F:dpg15035.tex; VTEX/JOL p. 10 Chapter 7.5: Sulphur on the Early Earth 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 10 10 11 11 12 12 13 13 14 14 15 15 16 16 17 17 18 18 19 19 20 20 21 21 22 22 23 23 24 25 26 27 24 Fig. 7.5-3. Three-isotope plot (δ 17 O vs δ 18 O) of anhydrous minerals in carbonaceous meteorites showing MIF oxygen isotopes (from Clayton et al., 1973). 28 31 32 33 34 35 36 37 38 39 40 41 42 43 26 27 28 29 30 25 29 mass-dependent. The isotopic composition of residual O2 also shows MIF in isotopic mass-balance and has a negative 17 O, which is a depletion of 17 O relative to isotopic compositions characteristic of mass-dependent processes. The slope of the data in Fig. 7.5-4 is close to +1, while the slope for MDF processes is about +0.5. These results convincingly demonstrated that UV photochemical reactions can lead to products and residual reactants that exhibit mass-independent fractionation. Note that the range of δ 18 O and δ 17 O in Fig. 7.5-4 for the photochemical experiments is different than that observed in carbonaceous meteorites (Fig. 7.5-3). This could mean that photochemical reactions are more efficient in a controlled experiment and/or that isotopic dilution occurred from mixing mass-independently fractionated components within dominantly mass-dependently fractionated oxygen reservoirs. Further progress in our understanding is hampered by the fact that the actual mechanism(s) for mass-independent fractionation have yet to be fully elucidated with quantum-chemical theory (Thiemens, 1999; Mauersberger et al., 1999; Gao and Marcus, 2001; Deines, 2003). 30 31 32 33 34 35 36 37 38 39 40 41 42 43 dpg15 v.2007/05/23 Prn:4/06/2007; 13:56 aid: 15075 pii: S0166-2635(07)15075-1 docsubty: REV F:dpg15035.tex; VTEX/JOL p. 11 7.5-2. Origin of Sulphur to the Earth 11 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 10 10 11 11 12 12 13 13 14 14 15 15 16 16 17 17 18 18 19 19 20 20 21 21 22 22 23 23 24 24 25 26 27 25 Fig. 7.5-4. Three-isotope plot (δ 17 O vs δ 18 O) for oxygen isotopes in product O3 and residual O2 after irradiation of O2 with ultraviolet light from electrical discharge (from Thiemens, 1999). 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 26 27 28 Sulphur is isoelectronic with oxygen2 and has also been found to display massindependent isotope fractionation. Multiple sulphur isotope data are reported using the conventional notation as: 33 34 λ δ S δ S 33 S = 1000 × +1 − +1 1000 1000 34 36 λ δ S δ S 36 S = 1000 × +1 − +1 , 1000 1000 where 33 S and 36 S are the permil deviations from mass-dependent isotopic fractionation processes, δ 3x S = ((3x S/32 S)sample /(3x S/32 S)CDT − 1) × 1000h where x = 3, 4 or 6, and λ represents the mass-dependent fractionation relationship between δ 33 S and δ 34 S (δ 33 S = 0.52 × δ 34 S) or between δ 36 S and δ 34 S (δ 36 S = 1.9 × δ 34 S). Like oxygen 2 Only mass-dependent fractionations have been reported for Selenium (Johnson and Bullen, 2004). Tellurium does not appear to display MIF, although searches have been conducted (Fehr et al., 2005). 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 dpg15 v.2007/05/23 Prn:4/06/2007; 13:56 aid: 15075 pii: S0166-2635(07)15075-1 docsubty: REV 12 F:dpg15035.tex; VTEX/JOL p. 12 Chapter 7.5: Sulphur on the Early Earth 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 10 10 11 11 12 12 13 13 14 14 15 15 16 16 17 17 18 18 19 19 20 20 21 21 22 23 24 Fig. 7.5-5. Three isotope plots (δ 33 S vs δ 34 S) showing (a) experimental results with an ArF excimer laser on SO2 gas and (b) Precambrian sedimentary sulphide and sulphate multiple sulphur isotope compositions (from Farquhar et al., 2001). 22 23 24 25 25 26 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 17 O, sulphur 33 S and 36 S values ∼0h result from MDF processes such as kinetic, equilibrium and oxido-reduction reactions. Laboratory experiments have shown that massindependently fractionated sulphur isotopes can arise in gas-phase reactions with starting mixtures of SO2 , H2 S and CS2 (Zmolek et al., 1999; Farquhar et al., 2000a, 2000b, 2001). Results from photolysis experiments with an ArF excimer UV laser at 193 nm in a SO2 gas are shown in Fig. 7.5-5(a). These experiments documented MIF sulphur isotopes in product S0 , SO4 2− and residual SO2 . The 33 S values of these S-phases are positive for product elemental sulphur so that they plot above the mass-dependent fractionation band, and negative for product sulphate (i.e., they plot below the MDF band). The MIF behaviour of three sulphur isotopes (32 S, 33 S and 34 S) in photochemical experiments resembles multiple sulphur isotopes from Precambrian sedimentary sulphides and sulphates as seen in Figs. 7.5-5(b) and 7.5-6. Similar to the results for oxygen isotopes, the main difference between the plots is that the range of δ 33 S and δ 34 S values is larger in the photochemical experiments (tens of permil) and much smaller (a few permil) for natural samples that exhibit mass-independent behaviour such as found in pre-2.45 Ga sedimentary sulphides and sulphates. As for the oxygen case discussed above, this may 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 dpg15 v.2007/05/23 Prn:4/06/2007; 13:56 aid: 15075 pii: S0166-2635(07)15075-1 docsubty: REV 7.5-2. Origin of Sulphur to the Earth F:dpg15035.tex; VTEX/JOL p. 13 13 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 10 10 11 11 12 12 13 13 14 14 15 15 16 16 17 17 18 18 19 19 20 20 21 21 22 22 23 Fig. 7.5-5. (Continued.) 23 24 24 25 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 26 arise from more efficient photochemical reactions in controlled experiments and/or from isotopic dilution occurring in natural systems. Barring further detailed experimental verification from a wider range of UV wavelengths (Lyons, 2006), data from ancient sulphur are consistent with the view that short wavelength solar radiation (i.e., λ < 220 nm) penetrated deeply in the early terrestrial atmosphere in the absence of an effective ozone screen to lead to significant MIF in the geologic record (Farquhar et al., 2001). It is interesting to note that the higher extreme UV (EUV) output observed for young solar-type stars (Wood et al., 2002) requires that in the early Earth’s atmosphere the incident solar EUV flux fell from ∼30× to approximately 4× present between 4.4 to 3.5 Ga (Zahnle, 2006). The evolution in the incident UV flux has yet to be accounted for in our models for the generation of mass-independent fractionation of sulphur isotopes in the ancient atmosphere. Mass-independently fractionated signatures in early Precambrian sedimentary sulphides and sulphates could be coupled to results of experiments that explore the magnitude of MIF under specific atmospheric regimes and UV intensities at different wavelengths. These data could then be used to trace the chemical evolution of the atmosphere in relation to the long-term interaction of the surface zone with the evolving young Sun. 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 dpg15 v.2007/05/23 Prn:4/06/2007; 13:56 aid: 15075 pii: S0166-2635(07)15075-1 docsubty: REV 14 F:dpg15035.tex; VTEX/JOL p. 14 Chapter 7.5: Sulphur on the Early Earth 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 10 10 11 11 12 12 13 13 14 14 15 15 16 16 17 17 18 18 19 19 20 20 21 21 22 22 23 24 25 26 27 Fig. 7.5-6. Plot of 33 S vs δ 34 S for sulphides and sulphates from pre-2.45 Ga samples (triangles) with data from samples younger than ca. 2 Ga (from Farquhar and Wing, 2003). The field of isotope compositions for barite and hydrothermal sulphide (volcanogenic massive sulphide ‘VMS’ deposits) is shown. Data for pre-2.45 Ga samples tend to plot with an aspect ratio similar to the 193 nm photolysis array of SO2 and SO (discussed in Farquhar et al., 2001; Pavlov and Kasting, 2002). 28 31 32 33 24 25 26 27 28 29 30 23 29 It is thought that the early Earth experienced significant mass input from extraterrestrial sources from the sweep-up of remnant debris from solar system formation. Therefore, it makes sense to explore whether extraterrestrial sources of sulphur could have been important to the earliest sulphur cycle. 30 31 32 33 34 34 35 35 36 37 7.5-3. EXTRATERRESTRIAL INPUTS TO THE SULPHUR CYCLE ON THE EARLY EARTH 38 39 40 41 42 43 36 37 38 Dust delivery has always been important to planets, and interplanetary dust was likely a major contributor to the surface inventory of biogenic elements at the formation and early evolution of terrestrial planets (Maurette et al., 2000; Pavlov et al., 1999; Marty and Yokochi, 2006). Micrometeorites and interplanetary dust particles dominate the contemporary extraterrestrial matter flux to Earth on the order of 103 –104 tons/yr (Love and 39 40 41 42 43 dpg15 v.2007/05/23 Prn:4/06/2007; 13:56 aid: 15075 pii: S0166-2635(07)15075-1 docsubty: REV 7.5-3. Extraterrestrial Inputs to the Sulphur Cycle on the Early Earth 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 F:dpg15035.tex; VTEX/JOL p. 15 15 Brownlee, 1993), or about 2–3 orders of magnitude above the calculated present-day meteorite flux (Bland, 2005). In the last decade evidence has emerged that many (or most) stars are born with circumstellar disks with abundant dust and rocky debris (Habing et al., 2001; Carpenter et al., 2005). The solar system’s original disk became severely depleted by planetesimal accretion and by planet formation within about the first 100 My (Rieke et al., 2005) have shown that some debris disk systems observed around young (<1 Gyr old) stars by the Spitzer telescope look brighter than others of similar age and may represent dust generated from evaporation of comets and/or planetary-scale bombardment events (Kenyon and Bromley, 2005) well after the primary phase of planetary accretion should have ended (Beichman et al. 2005; Rieke et al., 2005; Meyer et al., 2006). If cometary dust production rates from comet Hale-Bopp (Bocklée-Morvan et al., 2004) are any measure of the composition of the early disk dust for our solar system, then the combined sulphur species measured for coma dust (OCS, CS2 , H2 CS) amounts to a mere ∼0.65% of the comet’s water content. At first glance, it appears that late implantation of extraterrestrial sulphur from dust would have been a relatively minor player in the chemistry of early planetary surfaces and atmospheres. Since some meteorite components show mass-independently fractionated sulphur isotopes, it is germane to explore whether these inputs were at all significant to the post-primary accretion sulphur budget of the early Earth. 20 21 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 7.5-3.1. Extraterrestrial Dust 22 23 1 21 22 Interplanetary dust particles compositionally resemble the CM type carbonaceous chondrites (Kurat et al., 1994). Murchison (CM) meteorite contains 3.3% S (Wasson and Kallemeyn, 1988), and has 34 S/32 S and 33 S/32 S values comparable to terrestrial crust and mantle (Gao and Thiemens, 1993a) with average 33 S = 0.013 ± 0.054h. These values are well within the terrestrial mass-dependent field of the sulphur isotopes. Other primitive meteorites such as Orgeuil (CI), considered by some to be a representative of Jupiter family comet compositions (Gounelle et al., 2006), contains upwards of 5% total sulphur. Orgeuil has 34 S/32 S and 33 S/32 S values slightly enriched in the heavier isotopes compared to Murchison, and preserves an average 33 S value of −0.005h (Gao and Thiemens, 1993a). The majority of meteoritic materials that have been analysed so far for the minor sulphur isotopes indicate that inhomogeneities in S isotope compositions possibly related to nucleosynthetic, spallation reactions on Fe, or gas-phase (ion-molecule) photolytic reactions in space, were mixed-in for the most part in the early solar system (Hulston and Thode, 1965; Gao and Thiemens, 1993a, 1993b). Values of 33 S not equal to 0h have been found in a class of igneous meteorites called the ureilites (Farquhar et al., 2000b), in organic residues from carbonaceous chondrites (Cooper et al., 1997), in the acid-resistant ‘phase Q’ of the Allende meteorite (Rees and Thode, 1977), in various phase separates of chondrite (Rai and Thiemens, 2007) as well as achondrite (Rai et al., 2005) meteorites. Greenwood et al., 2000a) raised the possibility that the increased rates of extraterrestrial matter input to the planets of the early solar system from later bombardments could have implanted heterogeneous distributions of the sulphur isotopes to the early surface. 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 dpg15 v.2007/05/23 Prn:4/06/2007; 13:56 aid: 15075 pii: S0166-2635(07)15075-1 docsubty: REV 16 1 F:dpg15035.tex; VTEX/JOL p. 16 Chapter 7.5: Sulphur on the Early Earth 7.5-3.2. Sulphur and the Late Heavy Bombardment 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 1 2 We have no direct measure of the influx of extraterrestrial dust to Earth before about 3.85 Ga during the so-called ‘late lunar cataclysm’ or ‘late heavy bombardment’ (Tera et al., 1974; Ryder, 1990). Hartmann et al. (2000) calculated that the total mass of impactors to the Moon at ca. 3.9 Ga was approximately 6 × 1021 g, and that the amount of mass accumulated by the Moon in the 4.4–4.0 Ga timeframe was roughly equivalent to the mass influx that formed the major lunar basins during the late heavy bombardment (4.1–3.85 Ga; reviewed in Mojzsis and Ryder (2001)). Therefore, the total amount of dust accumulated to the Moon during the Hadean could have been on the order of 1.2 × 1022 g. Several studies have attempted to acquire information on the rate of accumulation and intensity of impacts at the tail end of the bombardment epoch from the study of Earth rocks. Koeberl and Sharpton (1988) searched for shock features in quartz from ∼3.7–3.8 Ga rocks from Isua (West Greenland). Later, Koeberl et al. (1998, 2000) looked for impact shocked zircons from the same Isua rocks, and of the hundreds of crystals studied, none showed any evidence of optically resolvable shock deformations (Koeberl, 2003). Mojzsis and Ryder (2001) and Anbar et al. (2001) could likewise find no unequivocal chemical evidence from platinum-group elements for the late heavy bombardment in sedimentary rocks with ages at least to ∼3.83 Ga (Nutman et al., 1997; Manning et al., 2006). On the other hand, Schoenberg et al. (2002) reported tungsten isotope anomalies in ca. 3.7–3.8 Ga paragneisses from West Greenland and Labrador (Canada) which they interpreted to be remnants of the late bombardment in younger materials. However, follow-up studies with platinoid elements, Cr and other isotopic systems (e.g., Frei and Rosing, 2005) could find no corroborating evidence for cosmic materials in the Isua sediments (Koeberl, 2006). To further compound these difficulties, the various studies cited above explored rocks with formation times (ca. 3.7–3.8 Ga) that likely did not overlap with the main period of late heavy bombardment to the inner solar system (Kring and Cohen, 2002). Since evidence for the bombardment epoch from terrestrial rocks remains elusive, all estimates of the role of extraterrestrial matter to the early Earth must be treated with caution. Marty and Yokochi (2006) estimated the total range of all extraterrestrial material (including dust and other meteoritic debris) collected on Earth’s surface from 4.4–3.8 Ga to have been in the range of 2.4–7.2 × 1023 g. With the average sulphur content of CM and CI meteorites provided above as a guide, this would amount to an accumulation of about 0.8–3.6 × 1022 g of extraterrestrial sulphur to the planet integrated over the first 600 My Although significant when compared to the cumulative mass delivered to the Moon as provided in Hartmann et al. (2000), this amount is still 1% of the total sulphur inventory for all sediments + seawater presently in the surface zone of the Earth (Holser et al., 1988). In terms of MIF sulphur, Farquhar et al. (2002) argued that bulk extracts of many different meteorite classes indicate that 33 S values are homogeneous and range between −0.01 and +0.04h. Earth’s mantle did not inherit S-isotope heterogeneities from its own formation. It appears that terrestrial sulphur was dominantly indigenous to the Earth since primary accretion ceased prior to ∼4.4 Ga and that extraterrestrial matter was, overall, a relatively minor contributor to the global sulphur cycle to the early Earth. This is important, 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 dpg15 v.2007/05/23 Prn:4/06/2007; 13:56 aid: 15075 pii: S0166-2635(07)15075-1 docsubty: REV F:dpg15035.tex; VTEX/JOL p. 17 7.5-4. Sulphur and the Hadean Earth Surface State 1 2 3 17 because mass-independently fractionated sulphur isotopes documented in the oldest Earth rocks and minerals can with reasonable confidence be assigned an origin from terrestrial atmospheric reactions. 4 9 10 11 12 13 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 39 40 41 42 43 10 11 12 13 15 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 7.5-4.2. Sulphide in Hadean Zircon 37 38 9 16 A subset of Hadean zircons, which are up to 4.38 Gyr old (Harrison et al., 2005, 2006) are enriched in heavy oxygen (Wilde et al., 2001; Mojzsis et al., 2001; Peck et al., 2001; Cavosie et al., 2005, 2006; Trail et al., 2007). This observation, coupled with characteristic trace element patterns (Maas and McCulloch, 1991; Maas et al., 1992; Peck et al., 2001; Crowley et al., 2005) has provided mutually consistent evidence that an evolved rock cycle was present within ∼150 My of the formation of the Moon (cf. Whitehouse and Kamber, 2002; Nemchin et al., 2006; Coogan and Hinton, 2006). Detailed studies of Hadean zircons from 176 Hf/177 Hf systematics show that large volumes of continental crust were present throughout the Hadean (Amelin et al., 1999; Harrison et al., 2005, 2006; cf. Valley, 2006). Zircon thermometry based on Ti contents of individual pre-4.0 Ga Jack Hills grains also shows that formation temperatures cluster narrowly around 680 ◦ C (Watson and Harrison, 2005). The simplest explanation for this result is that low-temperature wet minimum-melt conditions during granite genesis prevailed in Hadean melts that gave rise to the oldest zircons (Watson and Harrison, 2006). Studies of pre-4 Ga zircons now provide a rather firm foundation to arguments that water and a sustained atmosphere was present within the first 100 My of the formation of the solar system. In the absence of an actual rock record from the first ∼500 My, what data for the earliest surface state might possibly be gleaned from sulphur isotopes? 35 36 8 14 7.5-4.1. Surface Environments in the Hadean 16 17 6 7 No terrestrial rocks have yet been found that yield ages older than ca. 4.03 Ga (Bowring and Williams, 1999). What we do know of the geochemical evolution of Hadean Earth comes primarily from the study of pre-4.0 Gyr old Hadean detrital zircons shed in younger sediments captured in the Mount Narryer (Froude et al., 1983) and the Jack Hills (Compston and Pidgeon, 1986) sedimentary belts in Western Australia (see Cavosie et al., this volume). 14 15 3 5 7.5-4. SULPHUR AND THE HADEAN EARTH SURFACE STATE 7 8 2 4 5 6 1 36 37 Some Hadean zircons contain inclusions of diverse minerals, but few studies have provided comprehensive results bearing on identified inclusions in these samples (Maas et al., 1992; Cavosie et al., 2004; Crowley et al., 2005). In fact, zircons with noticeable inclusions are often avoided during the selection process as an ion probe spot analyses that overlap inclusions may affect data (e.g., Amelin et al., 1999). Individual Hadean zircons have been shown to contain polyphase domains of albite, Ca-Al silicate, muscovite/quartz/Fe-oxide, 38 39 40 41 42 43 dpg15 v.2007/05/23 Prn:4/06/2007; 13:56 aid: 15075 pii: S0166-2635(07)15075-1 docsubty: REV 18 F:dpg15035.tex; VTEX/JOL p. 18 Chapter 7.5: Sulphur on the Early Earth 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 10 10 11 11 12 12 13 13 14 14 15 15 16 16 17 17 18 18 19 19 20 20 21 21 22 22 23 23 24 24 25 25 26 26 27 27 28 28 29 29 30 30 31 31 32 32 33 33 34 34 35 35 36 36 37 37 38 38 39 40 41 42 43 39 Fig. 7.5-7. Optical micrographs of Hadean zircon sample JH992_CF01_88 from Mojzsis et al. (2001). The location of a Ni-rich pyrite inclusion is shown by the arrow. The multicollector ion microprobe analysis area is indicated by the dashed oval (transmitted light micrograph at top, reflected light below). 40 41 42 43 dpg15 v.2007/05/23 Prn:4/06/2007; 13:56 aid: 15075 pii: S0166-2635(07)15075-1 docsubty: REV F:dpg15035.tex; VTEX/JOL p. 19 7.5-4. Sulphur and the Hadean Earth Surface State 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 19 abundant quartz, K-feldspar, and phosphates such as monazite, apatite and xenotime (Maas et al., 1992; Cavosie et al., 2004; Crowley et al., 2005). In these studies, it is important to distinguish between primary melt inclusions and secondary/exsolution products of zircon. Mineral inclusions encapsulated inside zircons are only of relevance to host rock characteristics if it is possible to show that they represent patches of melt now solid at normal surface temperatures and specifically of magmatic origin. Such inclusions are often ovoid and chemically incompatible with zircon. For example, in sample JH992_88 from Mojzsis et al. (2001), a small (<10 µm diameter) Ni-rich pyrite inclusion was identified near the centre of a 96% concordant 4.105 Ga zircon with igneous [Th/U]Zr values = 0.52 (Mojzsis and Harrison, 2002). This zircon has no visible alteration or cracks leading to or from the inclusion (Fig. 7.5-7). Zircon JH992_88 has δ 18 OVSMOW values from two separate analysis spots of +5.9 ± 0.7h and +6.3 ± 0.4h (reported in Mojzsis et al., 2001), which are slightly enriched in 18 O compared to average crust and mantle oxygen (+5.5h; Eiler et al., 1997), but still within the field of I-type magmas (White and Chappell, 1977). The sulphide contained ∼2 wt% Ni as determined by wavelength dispersive spectroscopy by electron microprobe, which along with oxygen values, is consistent with a mafic- (or ultramafic?) origin for zircon and its inclusion (e.g., Fleet, 1987). Three separate measurements of the multiple sulphur isotope composition of this sulphide were obtained following the techniques described in Mojzsis et al. (2003). The δ 34 S values yield a narrow range of −8.1 to −10.1h (1σ uncertainties were ±0.17h); these values are lower in 34 S/32 S than average MORB and mantle (Chaussidon et al., 1987) but comparable to those reported for hydrothermally altered oceanic crust sulphides (Alt, 1995). Two of the three 33 S values measured for the inclusion are within 1σ error of the York-MDF band (+0.5 ± 0.5h and −0.9 ± 1.2h), and the third has a slightly 33 S-depleted value of −1.3 ± 0.7h (Table 7.5-2). The absence of resolvable 33 S in 2/3 of the measurements may in part be a consequence of the low S count rates for this minute sulphide inclusion. It is obvious that further analyses of this kind are needed on larger sulphide inclusions in Hadean zircon when they can be found. Other sulphide inclusion studies in resistant mineral hosts such 29 30 31 34 35 36 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 30 31 32 33 S/32 S ±1σ CF01_88@1 CF01_88@2 CF01_88@3 4.4640E–02 4.4549E–02 4.4603E–02 7.89E–06 7.60E–06 7.09E–06 7.9399E–03 7.9464E–03 7.9399E–03 5.53E–06 3.94E–06 9.28E–06 34 ±1σ 37 0.71 0.52 1.18 38 spot CF01_88@1 CF01_88@2 CF01_88@3 −8.11 −10.12 −8.92 VCDT ±1σ δ 33 S ±1σ 33 S 0.18 0.17 0.16 −5.53 −4.71 −5.53 0.70 0.50 1.17 −1.35 0.50 −0.93 33 41 43 5 ±1σ 38 42 4 34 S/32 S δ 34 S 40 3 spot 37 39 2 29 Table 7.5-2. Sulphur isotope composition of sulphide inclusion in JH992_CF01_88 by in situ ion microprobe multicollection 32 33 1 35 36 39 40 41 Notes: zircon 207 Pb/206 Pb age (1σ ) = 4105±11 Ma; [Th/U]Zr = 0.52; δ 18 OZr = +5.9±0.7h and +6.3±0.4h at two separate spots as reported in Mojzsis et al. (2001). Average 32 S count rates were: 3.62E7 to 4.23E7 cps. 42 43 dpg15 v.2007/05/23 Prn:4/06/2007; 13:56 aid: 15075 pii: S0166-2635(07)15075-1 docsubty: REV 20 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 F:dpg15035.tex; VTEX/JOL p. 20 Chapter 7.5: Sulphur on the Early Earth as in diamonds (Chaussidon et al., 1987) have been used to draw conclusions about the nature of sulphur in the mantle as well as crust of the Archaean. For instance, Farquhar et al. (2002) reported the presence of resolvable 33 S anomalies in Archaean eclogite-type diamonds from the Orapa kimberlite (Kaapvaal Craton, Botswana) and inferred from these results that atmospheric MIF sulphur was transferred to the mantle. If mass-independently fractionated sulphur isotopes are preserved in Hadean zircons, as hinted at by the single analysis that provided a slightly negative 33 S composition, it may be possible in the future with a greatly expanded data set to place some general constraints on the coupling between Hadean mantle, crust and atmosphere. It is interesting to note that in the conceptual model of Farquhar et al. (2002) for the early Archaean sulphur cycle, sulphur dioxide expelled from volcanoes and transformed by ultraviolet radiation can be deposited to surface reservoirs as aerosols and ultimately recycled into the mantle. In their schema, sulphate in oceanic crust accumulates uniformly negative 33 S values (Farquhar and Wing, 2003) which can become reduced to sulfide (biologically or thermo-chemically), subducted, and recycled into arc magmas (Fig. 7.5-8). 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 17 18 18 19 19 20 20 21 21 22 22 23 23 24 24 25 25 26 26 27 27 28 28 29 29 30 30 31 31 32 32 33 33 34 34 35 35 36 36 37 37 38 38 39 39 40 40 41 42 43 Fig. 7.5-8. A schematic model for sulphur cycles on the early Earth (from Mojzsis et al., 2003). The figure represents a passive margin environment, for a model of the possible contribution of mass-independent sulphur to subduction products on the early Earth see Farquhar et al. (2002). 41 42 43 dpg15 v.2007/05/23 Prn:4/06/2007; 13:56 aid: 15075 pii: S0166-2635(07)15075-1 docsubty: REV 7.5-4. Sulphur and the Hadean Earth Surface State F:dpg15035.tex; VTEX/JOL p. 21 21 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 10 10 11 11 12 12 13 13 14 14 15 15 16 16 17 17 18 19 20 21 22 23 24 25 26 18 Fig. 7.5-9. Changing CO2 levels in the Earth’s atmosphere over time expressed as both partial pressure of CO2 in bars (left), and against present atmospheric level (PAL; right). The grey shaded region is the range of concentrations required to compensate for the fainter young Sun (Kasting, 1993). Other data points shown are reviewed in (Rollinson, 2007). The multiple sulphur isotopes provide a strong upper constraint on the limit of CO2 partial pressure to below 0.5 bar as far back as 3.83 Ga, and perhaps before 4.0 Ga (Cates and Mojzsis, 2007b). The same may be said for partial pressures of methane, which had to be below the threshold necessary for haze formation (Pavlov et al., 2001a, 2001b). 27 30 31 32 33 34 35 36 37 38 39 40 41 42 43 20 21 22 23 24 25 26 27 28 29 19 28 A key feature of these arguments is that the atmosphere must have been transparent to ultraviolet and that an ozone UV shield was not present for MIF sulphur isotopes to be imparted to crustal rocks (Farquhar and Wing, 2003). This is because ultraviolet absorption by the Rayleigh scattering tail of the CO2 absorption spectrum at partial pressures that exceed ∼0.5 bar would have blocked UV sufficiently (Shemansky, 1972) to stop the reactions responsible for mass-independent sulphur isotope fractionations (Farquhar et al., 2001). Under these conditions, and with most solar models which show that solar luminosity was ∼70% of present day values, other greenhouse gases were required to keep the Hadean Earth from freezing over (Kasting, 1993). Abundant methane is the prime candidate for a greenhouse gas that supplemented water vapor and CO2 throughout the Hadean-Archaean to have kept the Earth above the freezing point of water (Sagan and Mullen, 1972; Kasting, 2005). Sagan and Chyba (1997) and Pavlov et al. (2001a, 2001b) suggested that photolysis of methane in the mesosphere by wavelengths shorter than 145 nm could have generated an organic haze that served as an UV shield early in Earth’s history to stabilise ammonia. If however short wavelength UV sulphur dioxide photolysis accounts for the Archaean mass- 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 dpg15 v.2007/05/23 Prn:4/06/2007; 13:56 aid: 15075 pii: S0166-2635(07)15075-1 docsubty: REV 22 1 2 3 4 5 F:dpg15035.tex; VTEX/JOL p. 22 Chapter 7.5: Sulphur on the Early Earth independently fractionated sulphur isotopes, data are inconsistent with the presence of a high-altitude UV shield, whether from ozone, dense CO2 or an organic haze (Fig. 7.5-9). It may also be that the atmosphere was mostly transparent to UV for much of the Hadean and the planet was cool (Zahnle, 2006), although the lack of evidence for glaciations older than ∼2.9 Ga (Young et al., 1998) apparently weakens this hypothesis. 1 2 3 4 5 6 6 7 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 7.5-5. SULPHUR AND THE EARLY ARCHAEAN ATMOSPHERE Quantitative constraints on the composition of the Archaean-Proterozoic atmosphere have been attempted for many years based on investigations of redox-sensitive minerals in the geologic record used as input parameters for model calculations. The prevailing view has been that free oxygen (O2 ) levels were substantially lower than present values, with estimates of pO2 10−2 present atmospheric level (PAL) before about 2.3 Ga (e.g., Cloud, 1968, 1972; Walker, 1990; Holland, 1984, 1994; Kasting, 1993; Rye et al., 1997; Rye and Holland, 1998; Farquhar et al., 2000a; Pavlov and Kasting, 2002). Alternatively, some have argued for an O2 -rich surface zone, or at least the condition that the atmosphere was not anoxic, for much or all of the Archaean (Dimroth and Kimberley, 1976; Towe, 1990; Ohmoto, 1997; Watanabe et al., 1997). Regardless of these different arguments for an oxic Archaean, it has not been specified whether these models would also apply to the Hadean Earth. Several reviews of the geologic evidence used to support the contention that the Archaean was anoxic by Holland (1984, 1994) noted detrital uraninite and pyrite grains in pre-2.3 Ga sediments as well as other geochemical data (e.g., Fe(II)/Fe(III) in palaeosols) as indicative of global anoxia at time of deposition (Rye and Holland, 1998; Rasmussen and Buick, 1999). As outlined in Mojzsis et al. (2003), the extensive production of mass-independently fractionated S isotopes formed on Earth in gas-phase reactions in UV transparent anoxic atmospheres, and preserved in terrestrial rocks and minerals in the absence of enough MDF oceanic sulphate to dilute mass-independently fractionated sulphur products to the surface zone, potentially provides three fundamental constraints on the nature of the early Earth’s atmosphere: (1) Separate mass-dependent arrays of slope m ≈ 0.5–0.52 within MIF δ 33 S vs δ 34 S data from ancient sulphur minerals show that effective oxidation of sulphur in the surface zone and homogenization of reduced and oxidised sulphur reservoirs by biological cycling was either absent or suppressed. In a model study, Pavlov and Kasting (2002) argued that in addition to the palaeosol and detrital mineral data cited above, pO2 levels had to be below ∼10−6 PAL throughout the Archaean. A conclusion of this work, and separate experimental studies of microbial sulphate reduction capabilities of organisms at low seawater SO4 2− concentrations (Habicht et al., 2002), is that sulphate was severely limited in the oceans for microbial sulphate reduction before the rise of atmospheric oxygen in the Proterozoic (Papineau et al., 2005, 2007; Papineau and Mojzsis, 2006). This observation is important because in standard 34 S/32 S isotopic 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 dpg15 v.2007/05/23 Prn:4/06/2007; 13:56 aid: 15075 pii: S0166-2635(07)15075-1 docsubty: REV F:dpg15035.tex; VTEX/JOL p. 23 7.5-5. Sulphur and the Early Archaean Atmosphere 23 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 10 10 11 11 12 12 13 13 14 14 15 15 16 16 17 17 18 18 19 19 20 20 21 21 22 23 24 22 Fig. 7.5-10. Plot of 33 S vs δ 34 S for closed cell photolysis experiments of SO2 gas mixtures irradiated at 193 nm (from Farquhar and Wing, 2003; data in Farquhar et al., 2001). 25 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 24 25 26 27 23 26 analyses of ca. 3.5 Ga barite deposits from the North Pole (Warrawoona Group, Pilbara Craton, Western Australia), Shen et al. (2001) concluded that a 20h range in δ 34 S values was evidence for effective microbial sulphate reduction by 3.5 Ga. As noted previously, photolysis reactions that involve SO2 + SO and other gases (e.g., H2 S, CS2 ) in anoxic atmospheres are known to produce large MIF effects (Fig. 7.5-10) with a range in 34 S/32 S of product sulphur that can mimic the entire range of biological fractionations of the sulphur isotopes. This observation underscores the now critical importance of multiple isotope measurements in all subsequent sulphur studies of ancient rocks, and warrants a comprehensive re-visit of pre-2.3 Gyr old terranes previously sampled for sulphur (reviewed in Strauss (1997, 2003)). (2) Experiments to delimit the range of conditions necessary for UV light-driven photolysis reactions with sulphur gases deep in the atmosphere, and to investigate the magnitude of isotopic fractionations in the mass-independently fractionated products (reviewed in Thiemens (1999) and Farquhar et al. (2001)), have succeeded in reproducing the large range of MIF observed in Archaean sulphides. A consensus view has emerged that column abundances of O2 and O3 before ∼2.3 Ga were very low if, for example, 190 nm UV and other wavelengths could penetrate deep into the atmosphere 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 dpg15 v.2007/05/23 Prn:4/06/2007; 13:56 aid: 15075 pii: S0166-2635(07)15075-1 docsubty: REV 24 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 F:dpg15035.tex; VTEX/JOL p. 24 Chapter 7.5: Sulphur on the Early Earth to result in widespread MIF. Farquhar et al. (2000a, 2001) showed that this result can be used to place an upper limit on pO2 in the Archaean of <10−2 PAL and an upper limit on pCO2 of ∼0.5 bar (1.5 × 103 PAL). Methane may have been present, but did not produce aerosols to attenuate UV (Fig. 7.5-9). (3) In Fig. 7.5-6 the principal laboratory reaction that has been documented to be most consistent with the data thus far obtained for MIF S in the geologic record involves SO2 photolysis at 193 nm UV (Farquhar and Wing, 2003). Pavlov and Kasting, 2002 used one-dimensional photochemical models of atmospheres at various O2 concentrations and found that the transfer of MIF S to the surface by aerosol deposition is only possible in anoxic conditions of the early Earth (e.g., Kasting et al., 1989, 1992). The proposed mechanism is that MIF in sulphur aerosols are preserved from homogenization in oceanic sulphate reservoirs only in atmospheres where pO2 10−6 PAL. Pavlov and Kasting (2002) concluded that it is not possible to preserve MIF δ 33 S/δ 34 S in high-O2 atmospheres; in these models, the demise of MIF S in the geologic record is reached even before the pO2 = 10−6 PAL threshold was overtaken in the Paleoproterozoic (Farquhar et al., 2000a; Mojzsis et al., 2003; Ono et al., 2003; Bekker et al., 2004), sometime between 2.35 and 2.42 Ga during glaciations (Papineau et al., 2006, 2007). As ever larger data sets become generated for multiple S isotopes in early Archaean rocks, results provide an increasingly robust indication that a chemically reactive, UV transparent, anoxic atmosphere existed on Earth prior to about 2.35 Ga. This anoxic regime stretched as far back as ∼3.83 Ga, and perhaps well into the Hadean. The diverse 33 S values for sulphides reported from Archaean and early Proterozoic rocks means that up to several percent of the marine sulphur cycle was affected by atmospheric deposition of MIF S aerosols following residence in the atmosphere. A consequence of planetary-scale deposition of sulphur aerosols (Fig. 7.5-8) is that they could have been tapped as a food source for early microbial communities that metabolise elemental sulphur and sulphate. 29 34 35 36 37 38 39 40 41 42 43 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 30 7.5-6. SULPHUR AND EARLY LIFE 32 33 2 29 30 31 1 31 32 Sulphur has played a central role in biological systems since the origin of life and has followed the genomic and metabolic diversification of organisms since their emergence some 4 b.y. ago (DeDuve, 2005). A landmark in studies of the evolutionary relationships of organisms was established with the comparative sequence analysis of genomes used to infer phylogenetic relationships (Woese and Fox, 1977; Woese, 2000). It is now widely held that the evolutionary history of life is recapitulated by its molecular biochemical inheritance (Pace, 1997, 2001), and that all life can be classified into three Domains within the small subunit ribosomal RNA Phylogenetic Tree: Bacteria, Archaea and Eukarya. In this context, a major objective to analyse the sulphur isotope compositions of Archaean sediments has been to identify and trace the long-term evolution of microbial metabolisms (e.g., Monster et al., 1979; Schidlowski et al., 1983), and lately, to be able to relate the 33 34 35 36 37 38 39 40 41 42 43 dpg15 v.2007/05/23 Prn:4/06/2007; 13:56 aid: 15075 pii: S0166-2635(07)15075-1 docsubty: REV 7.5-6. Sulphur and Early Life 1 2 3 4 5 6 7 8 F:dpg15035.tex; VTEX/JOL p. 25 25 divergence of different sulphur metabolisms to events in the geologic and paleontological record (Canfield, 2004). This rationale is based on several key observations: (i) some of the most deeply branching lineages in the universal phylogenetic tree that reside close to the ‘Root’ population that gave rise to all extant life, can metabolize sulphur compounds; (ii) significant sulphur isotopic fractionations can result from enzymatic processing of Scontaining molecules; and (iii) sulphides preserved in the geological record have a large range of isotopic compositions and data show that this range has increased in time (reviewed in Canfield and Raiswell (1999)). 9 10 13 14 2 3 4 5 6 7 8 9 7.5-6.1. Sulphur Chemistry and the Origin of Life 11 12 1 10 11 Reduced sulphur as H2 S, and its organic derivatives in the thiols (R –SH) and the thioesters (CO–S), form from the dehydration condensation of carboxylic acid (R –COOH) and thiol in the simple reaction: 12 13 14 15 15 16 16 17 17 18 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 19 These compounds were likely participants in the most basic proto-metabolic processes in the origin of life. Furthermore, no discussion of sulphur biochemistry is complete without taking into account the rich chemistry of metal-sulphur compounds. In all contemporary organisms, transition metal sulphide clusters play a central catalytic role in biological energy conversion systems (Beinert, 2000) and have been important since the establishment of the earliest metabolic cycles (Rees and Howard, 2003). It is the connection between the essential role of thioesters and the predominance of mineral sulphides in hydrothermal and volcanic vents that has led a number of workers to speculate how life could have emerged in such environments (e.g., Russell and Hall, 1997; Russell and Martin, 2004). Hydrothermal cells form wherever there is hot rock in contact with water, and such environments may have been widespread in the Hadean crust. It is thus highly likely – because of the ubiquity of hydrothermal environments away from a surface zone affected by impacts and intense UV – that the deep biosphere was amongst the earliest on Earth even if it was not necessarily the first (Russell and Arndt, 2005). As a basis for an ironsulphide theory for the origin of life, Wächtershäuser (1988, 1992) proposed a ‘fast origin’ by an autotrophic proto-metabolism of low-molecular weight constituents (Fig. 7.5-11) in hydrothermal environments. Along these lines, Cody et al. (2000) presented experimental support for the formation of pyruvic acid (CH3 –CO–COOH) from formic acid (HCOOH) in the presence of organo-metallic sulphur compounds such as nonylmercaptane (Fe2 (CH3 S)2 –(CO)6 ), and iron sulphide (FeS2 ) at high temperatures and pressures consistent with shallow oceanic crust near volcanic centres (250 ◦ C and 200 MPa). Mixture of these reaction products with lower temperature fluids that emanated further away from vent centres, such as is found at the crust-ocean interface, would have been more conducive to the survivability of other important biomolecules such as amino acids and 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 dpg15 v.2007/05/23 Prn:4/06/2007; 13:56 aid: 15075 pii: S0166-2635(07)15075-1 docsubty: REV 26 F:dpg15035.tex; VTEX/JOL p. 26 Chapter 7.5: Sulphur on the Early Earth 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 10 10 11 11 12 12 13 13 14 14 15 15 16 16 17 17 18 18 19 19 20 20 21 21 22 23 Fig. 7.5-11. Basic proto-biotic reactions that could have taken place in the ‘Iron-Sulphur World’ (modified after Wächtershäuser (2000)). 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 22 23 24 nucleosides (Orgel, 1998). In a separate analogy with the H2 S/CO system, the formation of FeS2 in the simple reaction: FeS(pyrrhotite) + H2 S → FeS2 (pyrite) + H2 produces molecular hydrogen. The FeS/H2 S couple is a strong reductant that could have played an important supporting role in prebiotic organic synthesis under crustal conditions common to the Hadean Earth. Therefore, a self-consistent picture has emerged that hydrothermal zones in shallow Hadean oceanic crust were, if not the birthplace of life on Earth as advocated by Russell and Arndt (2006) and Russell et al. (2005), at least were the crucible wherein early biological forms found a ready source of fluids rich in reduced carbon and more complex organic molecules (Shock and Schulte, 1998). In this scenario, electron acceptors such as S0 either from recycled sulphur in oceanic crust, from sulphidic hydrothermal fluids, or transferred from the water column to the crust plumbing system (Fig. 7.5-1) to be catalysed by carbonylated iron-sulphur clusters (Cody et al., 2000), could have provided both a kick-start to, and a rich food source for, the Hadean biosphere. A primordial repose for life in deep hydrothermal vent systems that metabolized reduced sulphur compounds is further supported by molecular phylogenetic studies. Biochemical evidence shows that some of the earliest biomes were located in deep hydrother- 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 dpg15 v.2007/05/23 Prn:4/06/2007; 13:56 aid: 15075 pii: S0166-2635(07)15075-1 docsubty: REV 7.5-6. Sulphur and Early Life F:dpg15035.tex; VTEX/JOL p. 27 27 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 10 10 11 11 12 12 13 13 14 14 15 15 16 16 17 17 18 18 19 19 20 20 21 21 22 23 24 25 26 27 22 Fig. 7.5-12. Phylogenetic tree based on ssu 16s rRNA comparisons which shows Bacterial and Archaeal lineages of extant organisms capable of elemental sulphur reduction (framed characters), sulphate reduction (underlined lineages) and sulphide oxidation (boxed lineages). This figure is modified from Pace (1997) with information from Klein et al. (2001), Canfield and Raiswell (1999), Stetter and Gaag (1983). 28 29 30 31 32 33 34 35 36 37 42 43 25 26 27 29 30 31 32 33 34 35 36 37 38 7.5-6.2. Sulphur Metabolic Styles of Early Life 40 41 24 28 mal environments. A crucial caveat to these studies is that before we actually know how life on Earth began there is no definite requirement that life started in a mild-, medium- or hot-hydrothermal vent field, even if it is a compelling and convenient place for the origin of life (Nisbet and Sleep, 2001). Sulphate and other oxidised S species figure prominently as electron acceptors for those deeply branching microbes that perform microbial sulphate reduction, yet were probably of limited use in the absence of significant sulphate before the Proterozoic. Instead, the ancient metabolic cycles of life that arose out of the metal-S chemistry described above in all probability metabolized volcanogenic sulphur gases such as H2 S, SO2 and sulphur compounds including elemental S. 38 39 23 39 40 Many hyperthermophilic, deep-branching organisms in the domains Bacteria (Thermotogales, Proteobacter) and in various Archaea (sub-Domain Crenarcheota and Pyrococcus, Thermoplasma in sub-Domain Euryarcheota) are known to reduce elemental sulphur to 41 42 43 dpg15 v.2007/05/23 Prn:4/06/2007; 13:56 aid: 15075 pii: S0166-2635(07)15075-1 docsubty: REV 28 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 F:dpg15035.tex; VTEX/JOL p. 28 Chapter 7.5: Sulphur on the Early Earth H2 S with both H2 and organic compounds as an electron donor (Fig. 7.5-12). This pathway could have evolved from proto-metabolic metal-sulphur cycles, and presently involves a short electron transport chain controlled by the activity of key enzymes including sulphur reductase, polysulphide reductase and hydrogenase (Laska et al., 2003). The antiquity of this metabolism is further evident in that both deep-branching bacterial and archaeal lineages share this metabolic style (Stetter and Gaag, 1983; Stetter, 1996; Canfield and Raiswell, 1999), an observation that strongly suggests that elemental sulphur reduction (ESR) might be an inherited trait from the last common ancestor of all life that resided in a high-temperature environment (Corliss, 1990). Supposing that ESR is truly ancient, it still remains unknown whether the last common ancestral population at the base of the phylogenetic tree (labelled ‘Root’ in Fig. 7.5-12) included the genes for this particular metabolic style. Elemental sulphur reduction could very well have evolved later in one of the domains and subsequent lateral gene transfer occurred between domains. Indeed, the lateral-transfer argument holds for all the discussions on the early rise of metabolisms interpreted from extant phylogenies if they cannot be specifically tied to molecular or isotopic biomarkers in the geologic record. It is anticipated that future phylogenetic comparisons with amino acid sequences of specific enzymes will better constrain the branching sequence of lineages. If a large number of lineages that perform a specific metabolic pathway are known from both the bacterial and archaeal domains, evidence would seem to favour a deeply ancient origin. A critical clue may be that no known Eukaryal organism has this metabolic style. Anaerobic respiration with elemental sulphur is performed by several bacteria and archaea, but has only been investigated in a few organisms in detail (Hedderich et al., 1998). As was noted by Canfield and Raiswell (1999), organisms that do ESR can readily obtain elemental sulphur from rapid cooling of volcanogenic sulphur gases where: SO2 + 2H2 S ↔ 3S + 2H2 O. 0 This reaction shifts the equilibrium in favor of S0 (Grinenko and Thode, 1970). For example, with S0 present, microbes can perform the reaction: 4S0 + 4H2 O → 3H2 S + SO4 2− + 2H+ and in the presence of iron hydroxides, which were abundant in the oceans before 1.9 Ga (see Holland, 1984; Bjerrum and Canfield, 2002; Thamdrup et al., 1993): H2 S + 4H+ + 2Fe(OH)3 → 2Fe2+ + S0 + 6H2 O As implied by Fig. 7.5-11, the rich chemistry at the interface of metal-sulphur and biochemistry is not restricted to iron, even if that particular branch of inorganic biochemistry has always been dominated by Fe-S (Daniel and Danson, 1995). Many metals which happen to be abundant in most mafic and ultramafic rocks readily interact with sulphur, such as Zn, Mo, Co and Ni. Average MORB contains 79 ppm Zn, 0.46 ppm Mo, 47 ppm Co and 150 ppm Ni (Hertogen et al., 1980; Newsom et al., 1986; Hofmann, 1988). Transition metal-sulphur chemistry figures prominently in the biochemistry of many deeplybranching microbes (reviewed in Konhauser, 2007). Most of the various catalytic roles of 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 dpg15 v.2007/05/23 Prn:4/06/2007; 13:56 aid: 15075 pii: S0166-2635(07)15075-1 docsubty: REV 7.5-6. Sulphur and Early Life 1 2 3 4 5 6 7 F:dpg15035.tex; VTEX/JOL p. 29 29 metal ion + S clusters other than Fe await experimental verification from analysis of controlled (culture) experiments and such experiments represent an important new avenue for research into the question of a biological origin of sulphur isotope fractionations in the geologic record. Microbial sulphate reduction (MSR) is an anaerobic metabolic pathway in which SO4 2− is used as an electron acceptor to be reduced to H2 S with electron donors such as H2 and/or a variety of organic molecules to produce hydrogen sulphide in the general form: 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 1 2 3 4 5 6 7 8 SO4 2− + 5H2 → H2 S + 4H2 O Sulphate reduction in bacteria and archaea can proceed via dissimilatory or assimilatory pathways that either excrete H2 S or insert it in organic compounds. A few key enzymes and compounds in MSR are illustrated in Fig. 7.5-13. The timing of evolution of these genes is not accurately known, but qualitative information can be obtained from molecular phylogeny of sulphate reducers. 7.5-6.3. Biological Sulphur Isotopic Fractionations Sulphate-reducers preferentially metabolize 32 SO4 2− rather than 34 SO4 2− to produce isotopically light H2 S with a range of δ 34 S values between −4 and −46h under nonlimiting concentrations of SO4 2− (Canfield and Raiswell, 1999, and references therein). Microbially-produced H2 S can react with dissolved Fe2+ or other metal cations to precipitate sulphides in the simple reaction: 2H2 S + Fe 2+ → FeS2 + 2H2 Diagenetic sulphides formed from H2 S and FeS (or other metal-sulfide) reactions carry the combined mass-balanced sulphur isotopic composition without significant isotopic fractionation (Butler et al., 2004; Böttcher et al., 1998). These isotope ratios can then become incorporated and preserved in the geological record of authigenic sulphides. The sulphur isotopic composition of sedimentary sulphides can therefore be used to pinpoint the isotopic fractionation between dissolved SO4 2− , and product H2 S as an isotopic biosignature to trace the early evolution of microbial sulphur metabolisms. It has been experimentally verified that microbial sulphate reduction under limiting SO4 2− concentrations (i.e., lower than 200 µM) has insignificant effect on the δ 34 S value of product H2 S (Habicht et al., 2002). If the concentration of SO4 2− in the environment is low, microbial sulphate reduction produces H2 S (and thence sulphide) with approximately the same δ 34 S value as the available δ 34 Ssulphate . The δ 34 S of sulphides from ancient sediments can also be used to trace the concentration of dissolved SO4 2− in seawater at the time of sedimentation. Sedimentary sulphides with negative δ 34 S values (i.e., <−10h) are consistent with microbial sulphate reduction in high seawater SO4 2− concentrations. Variability in sulphur isotopic fractionations during MSR can also depend strongly on the sources of organic compounds consumed during growth (Kleikemper et al., 2004) and on the different lineages of sulphate reducers (Detmers et al., 2001). Some organisms 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 30 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 F:dpg15035.tex; VTEX/JOL p. 30 Chapter 7.5: Sulphur on the Early Earth Fig. 7.5-13. Simplified biochemistry of sulphate reduction showing (left) key intermediate compounds produced during sulphate reduction and (at right) schemes of assimilative and dissimilative sulphate reduction (modified from Madigan et al. (2000)). dpg15 v.2007/05/23 Prn:4/06/2007; 13:56 aid: 15075 pii: S0166-2635(07)15075-1 docsubty: REV 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 dpg15 v.2007/05/23 Prn:4/06/2007; 13:56 aid: 15075 pii: S0166-2635(07)15075-1 docsubty: REV F:dpg15035.tex; VTEX/JOL p. 31 7.5-6. Sulphur and Early Life 31 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 10 10 11 11 12 12 13 13 14 14 15 16 17 18 15 Fig. 7.5-14. Isotopic fractionation in the modern sulfur cycle showing the values for average sulfur fractionations (± standard deviations) associated either with reduction or oxidation. Each disproportionation reaction couples the production of both H2 S and SO4 2− (from Habicht et al., 1998). 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 2− S0 , can also disproportionate thiosulphate (S2 O3 SO3 and/or and the disproportionation of sulphur-containing compounds produces different molar amounts of both H2 S and SO4 2− with isotopic fractionations characterized by enrichments of 34 S in SO4 2− and depletions of 34 S in H2 S (Böttcher, 2001; Habicht et al., 2002). Natural microbial communities are known to produce sulphide significantly more depleted in 34 S than is expected from microbial sulphate reduction alone. The disproportionation of intermediate sulphur-compounds metabolized by sulphate reducers can recycle sulphur through yet greater degrees of isotopic fractionation and this has been used to explain the observed large range of δ 34 S in modern sediments (Habicht and Canfield, 2001; Canfield and Thamdrup, 1994). A schematic representation of the different sulphur isotopic fractionations is shown in Fig. 7.5-14. Sulphur oxidation does not significantly fractionate δ 34 S values but returns oxidized sulphur compounds to the environment, which in the context of a hierarchical microbial community can then be recycled as electron acceptors for microbial sulphate reduction or disproportionation reactions. 38 39 40 41 42 43 18 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 7.5-6.4. Non-Authigenic Sulphur in Sediments 36 37 17 19 2− ), 34 35 16 35 36 Because sulphur is so widely distributed in the Earth and occurs in oxidized forms (sulphate), neutral state (elemental S0 ) and reduced forms (sulphides), it readily travels throughout the rock cycle. Criteria used to distinguish sedimentary from hydrothermal sulphides include the crystal habit, sulphur isotopic composition, and sometimes an unusual abundance of trace metals. Detrital sulphides, which can sometimes be identified from their rounded appearance and occurrence with other characteristic detrital minerals, are older than the depositional age of the sediment. Sulphide formation can postdate the origin 37 38 39 40 41 42 43 dpg15 v.2007/05/23 Prn:4/06/2007; 13:56 aid: 15075 pii: S0166-2635(07)15075-1 docsubty: REV 32 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 F:dpg15035.tex; VTEX/JOL p. 32 Chapter 7.5: Sulphur on the Early Earth of host sedimentary rocks if they formed from the crystallization of remobilized sulphur from post-depositional circulating fluids. Hydrothermal fluids may assimilate sulphur from host sedimentary rocks during water-rock interactions and therefore carry the δ 34 S value of the host rock. Pyrite in sediments may have the isotopic signature of microbial sulphate reduction, and subsequent hydrothermal circulation can transport Cu that will react with pyrite to form chalcopyrite with the same δ 34 S as the precursor pyrite (Ohmoto and Goldhaber, 1997; Papineau and Mojzsis, 2006). High concentrations of trace metals such as Co, Zn and Ni in sulphides may be used as an indicator of diagenetic conditions or interaction with magmatic or other fluids. The δ 34 S value of sulphur in igneous rocks from the upper mantle is in the range of −0.7 ± 5.0h (Chaussidon and Lorand, 1990) and more generally is in the range of −3.0 to +3.0h (Ohmoto, 1986). Sulphur isotopes of Archaean magmas (Hattori and Cameron, 1986) have massdependently fractionated 33 S values between −0.3 and +0.3h, unless the magma originated primarily from recycled Archaean sediments with a nonzero 33 S and the MIF sulphur isotopes were isolated from dilution by mantle sulphur (e.g., Farquhar et al., 2002; Mojzsis et al., 2003). Metamorphic effects only slightly fractionate sulphur isotopes, and these minor effects are mass-dependent. Metamorphism can potentially modify the 33 S value of sedimentary sulphides but it is thought that this can only be achieved by interaction with sulphur-containing metamorphic fluids such that a pre-existing MIF signature is either diluted or remobilized by the fluid. At 900–950 ◦ C, the self-diffusion of S in sulphides (pyrrhotite) is slow, (log D = 10−16 m2 s−1 ; Condit et al., 1974), which will tend to preserve mass-independent sulphur isotope signatures even in metamorphic sulphides, but an important caveat to this is that it must otherwise occur in the absence of massive S-rich fluid infiltration and replacement (Papineau and Mojzsis, 2006). Because of these competing factors, it must be noted that near-zero 33 S values for Archaean sedimentary rocks may not necessarily imply high levels of atmospheric O2 at time of deposition. Mass-independently fractionated sulphur isotopes can be diluted by mass-dependently fractionated sulphur, especially if sulphate production is enhanced in local Archaean environments (Huston et al., 2001a). This point probably explains the observation that some sulphides with nonzero 33 S values from Archaean sediments coexist in samples that also have mass-dependently fractionates sulphur isotopes (Mojzsis et al., 2003; Hu et al, 2003; Farquhar et al., 2000a; Whitehouse et al., 2005). The presence of a mass-independently fractionated sulphur isotopic signature is consistent with sedimentary sulphur that cycled through the atmosphere. However, to propose that mass-independent sulphur isotopes were absent at time of deposition requires other lines of evidence such as δ 34 S, sulphide composition, morphology and petrogenesis to firmly assign a sedimentary source of sulphur. In sum, without more data to support a sedimentary source, the nearzero 33 S values of these samples cannot be used to constrain atmospheric O2 at time of deposition. The crystal habit of the analysed sulphide crystals from metasedimentary rocks can vary from anhedral to euhedral and may be related to degree of recrystallization related to metamorphism. All Archaean sedimentary rocks experienced some degree of metamorphism, which may have modified the original sulphide morphologies. However, analysis 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 dpg15 v.2007/05/23 Prn:4/06/2007; 13:56 aid: 15075 pii: S0166-2635(07)15075-1 docsubty: REV 7.5-6. Sulphur and Early Life F:dpg15035.tex; VTEX/JOL p. 33 33 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 10 10 11 11 12 12 13 13 14 14 15 15 16 16 17 17 18 18 19 19 20 20 21 22 23 24 25 26 21 Fig. 7.5-15. Sulphur multiple isotope data (expressed as 33 S) for sedimentary sulphides and sulphates as a function of age (replotted after Farquhar et al. (2000); see also Seal (2006)). A large range in 33 S values for samples older than 2.4 Ga most likely reflects a change in atmospheric oxygen concentration past the pO2 = 10−6 PAL threshold (Pavlov and Kasting, 2002). Filled symbols are data from sulphides, open symbols are sulphates. 27 28 29 30 31 32 33 34 35 36 41 42 43 24 25 26 28 29 30 31 32 33 34 35 36 37 7.5-6.5. Tracking the Antiquity of Sulphur Metabolisms 39 40 23 27 of visible light and electron micrographs of sulphides thus far analysed in situ have failed to show any obvious correlations between sulphur isotopic composition and grain shape and/or size (e.g., Papineau and Mojzsis, 2006). Papineau et al. (2005, 2007) have argued that the habit of a sulphide grain is a weak criterion to assess the sedimentary origin of the sulphur, unless specific features can be identified, such as sulphide nodules. Metamorphic recrystallization is probably responsible for most of the large euhedral crystals observed in samples of various ages. Visible light, as well as electron micrograph images have so far failed to show any evidence for sulphide overgrowths on pre-existing sulphide cores in the hundreds of analysed sulphides from various Archaean localities worldwide. 37 38 22 38 39 33 S sulphur aerosol formation is that pyrite, A consequence of the model for anomalous forming via elemental sulphur reduction by organisms to H2 S, would retain positive 33 S signatures, while pyrite from sulphate reduction would be expected to preserve negative 33 S values. The latter case may be seen in published 33 S data for sedimentary rocks 40 41 42 43 dpg15 v.2007/05/23 Prn:4/06/2007; 13:56 aid: 15075 pii: S0166-2635(07)15075-1 docsubty: REV 34 F:dpg15035.tex; VTEX/JOL p. 34 Chapter 7.5: Sulphur on the Early Earth 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 10 10 11 11 12 12 13 13 14 14 15 15 16 16 17 17 18 18 19 20 21 22 23 24 Fig. 7.5-16. Three-isotope plot of sulphur isotope data from sulphides analysed in Isua supracrustal belt metasediments showing the MDF bands (grey lines) reported in Papineau and Mojzsis (2006). The separate MIF arrays in the data shows that effective homogenization of the S reservoirs by mixture with sulphate was suppressed in the anoxic Eoarchean oceans. Mojzsis et al. (2003) noted that the paucity of negative 33 S in early Archaean rocks argues against widespread MSR at that time and could provide crucial clues about BIF origins. 19 20 21 22 23 24 25 25 26 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 2.5 Ga where pyrites preserve both negative and positive mass-dependent fractionations (Fig. 7.5-15). In the majority of Archaean samples for which multiple sulphur isotope data are available, most sulphides have strongly positive 33 S values. Mojzsis et al. (2003) and Papineau and Mojzsis (2006) interpreted these data to be inconsistent with sulphate reduction and more in line with elemental sulphur reduction. The presence of such positive 33 S values provides a strong case that the source of sulphur in these systems was cycled through the atmosphere and introduced to the oceans in the early Archaean, and separate linear mass-dependent arrays in δ 33 S/δ 34 S space show that the sulphur was subsequently isolated there from re-homogenisation by volcanic and hydrothermal sources (Fig. 7.5-16). Elemental sulphur (S0 , S8 ) aerosols derived from mass-independent isotope fractionations from atmospheric reactions and implanted into the oceans would have provided a ready source of sulphur to a plethora of environments at the global scale from the Hadean onwards. In the absence of oxidative weathering of surface pyrite or other ready sources of sulphate, anoxic waters contain no more than trace sulphate over HS− + H2 S (Thorstenson, 1970). Although far from representing a consensus view, the current paradigm holds that the Archaean oceans were generally poor in sulphate relative to present values (Hol- 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 dpg15 v.2007/05/23 Prn:4/06/2007; 13:56 aid: 15075 pii: S0166-2635(07)15075-1 docsubty: REV F:dpg15035.tex; VTEX/JOL p. 35 7.5-7. Sulphur Isotopes in Early Archaean Rocks 1 2 35 land, 1984) at least before the Paleoproterozoic oxygenation of the surface environment (Papineau et al., 2007). 3 4 7.5-7. SULPHUR ISOTOPES IN EARLY ARCHAEAN ROCKS 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 24 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 7.5-7.1. Sulphides and Sulphates from the (ca. 3.49 Ga) Dresser Formation, Warrawoona Group, Western Australia 25 26 5 6 Sulphides are often preserved in ancient marine sediments but sedimentary sulphate minerals have yet to be reported in rocks older than about 3.5 Ga (Huston and Logan, 2004). The oldest evidence of sedimentary sulphate occurs as ∼3.4–3.5 Ga barite from Western Australia, South Africa and India (reviewed in Van Kranendonk (2006)). It is because of the paucity of early Archaean multiple sulphur isotope data that the sulphur isotopic composition of seawater sulphate during the 3.5–3.2 Ga interval is not well established, and not established at all for before 3.5 Ga. However, it is not unreasonable to suppose that seawater δ 34 Ssulphate at the time of deposition of Isua sedimentary protoliths at ca. 3.8 Ga (see below) was not significantly different from the 3.4–3.5 Ga seawater δ 34 Ssulphate of between +2.7 and +8.7h (Strauss, 2003). As opposed to the conventional 34 S/32 S measurements, an increasingly large body of multiple sulphur isotope data has been collected in the last few years for several of the key metasedimentary units in Western Australia (ca. 3.5 Ga) and West Greenland (ca. 3.8 Ga). These studies have brought to light several important features of the early Archaean surface state. 22 23 2 3 4 5 1 23 24 25 Microscopic sulphide (pyrite) grains in ca. 3.49 Ga barite beds from the Dresser Formation, Warrawoona Group at North Pole (Western Australia) have δ 34 S values up to 24h lighter than co-existing sulphate (barite) from the same unit. These data were interpreted by Shen et al. (2001) as evidence of microbial sulphate reduction in the Paleoarchaean, an interpretation that could also be viewed consistent with phylogenetic arguments that suggest an early evolution of microbial sulphate reduction (Fig. 7.5-12). However, to assign an actual time of relative phylogenetic divergence episodes on the RNA phylogenetic tree (Pace, 2001) should be attempted with extreme caution because changes per nucleotide/time have not yet been established with confidence. Smaller ranges of δ 34 S values in pyrite from Mesoarchaean marine metasedimentary rocks of between −2.5 and +8.5h have been put forth as evidence for sulphate-rich Archaean oceans with concentrations >1 mM that existed under 10−13 PAL O2 (Ohmoto and Felder, 1987; Ohmoto, 1997, 1999; Ohmoto et al., 1993). Such concentrations are about 5 times higher than what is expected from experiments that show similarly small sulphur isotopic fractionations when microbial sulphate reduction occurs at seawater sulphate concentrations of less than 0.2 mM (Habicht et al., 2002). If the Archaean atmosphere was oxygen-rich and stabilised sufficient sulphate in seawater to form the large barite deposits, it requires distinctive interpretations of geologic data and of thermodynamic arguments for oxidative weathering of siderite and 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 dpg15 v.2007/05/23 Prn:4/06/2007; 13:56 aid: 15075 pii: S0166-2635(07)15075-1 docsubty: REV 36 F:dpg15035.tex; VTEX/JOL p. 36 Chapter 7.5: Sulphur on the Early Earth 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 10 10 11 11 12 12 13 13 14 14 15 15 16 16 17 17 18 18 19 19 20 20 21 22 23 24 25 26 21 Fig. 7.5-17. Evolution of 34 S/32 S sulphur isotope ratios in the geological record. The two upper lines represent the band of δ 34 Ssulfate values and the diamonds are compiled published δ 34 Ssulfide data for sedimentary rocks. Before ∼1.7 Ga, constraints on δ 34 Ssulfate are scarce and the lower line is a 55h fractionation from contemporaneous seawater sulphate (from Shen et al., 2001). Data for pre-3.5 Ga sediments are incomplete for this graph. 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 22 23 24 25 26 27 detrital heavy minerals (Ohmoto, 1999; cf. Rasmussen et al., 1999), a different explanation of BIF genesis, and alternative interpretations of δ 13 Corg , δ 13 Ccarb and δ 34 Ssulphide data for Archaean sedimentary rocks (Ohmoto, 1997). The proposed evolution for seawater δ 34 Ssulphate is illustrated as a continuous band in Fig. 7.5-17. The observation that the range of δ 34 Ssulphide values has increased over time – specifically during the Paleoproterozoic and the Neoproterozoic – is instead most easily explained by significant accumulations of atmospheric O2 after about 2.5 Ga which helped stabilise oceanic sulphate at higher concentrations (Holland, 1984). The generally small ranges of δ 34 S values in Archaean metasedimentary rocks appear to indicate that either sulphate-reducing microbes were frustrated by the generally low concentration of seawater sulphate and limited to specific microenvironments where sulphate was present, or they had not yet evolved. The data of Shen et al. (2001) were collected in cherty barite-containing rocks from the Dresser Formation. The rocks experienced low degrees of metamorphism and slight deformation (Van Kranendonk, 2006), which argues against extensive post-diagenetic alteration of the sulphur isotopes. Groves et al. (1981) interpreted the depositional setting for these units as sedimentary deposits with precipitated gypsum (later replaced by barite) 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 dpg15 v.2007/05/23 Prn:4/06/2007; 13:56 aid: 15075 pii: S0166-2635(07)15075-1 docsubty: REV 7.5-7. Sulphur Isotopes in Early Archaean Rocks 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 F:dpg15035.tex; VTEX/JOL p. 37 37 from brine ponds separated from the sea by a sand berm. Buick and Dunlop (1990) postulated the origin of the precipitated sulphate from originally low sulphate sea water that had seeped into briny lagoons and evaporated to concentrate sulphate. These authors also suggested that sulphate may have been locally supplemented by the phototrophic oxidation of volcanogenic sulphide. In a series of papers, Van Kranendonk et al. (2001), Van Kranendonk and Pirajno (2004) and Van Kranendonk (2006) presented an alternative explanation for the origin of the sulphate with new high-resolution mapping and geochemical analyses of the North Pole rocks. This work convincingly showed that the extensive bedded chert + barite units of the Dresser Formation formed during discrete episodes of volcanogenic hydrothermal circulation during exhalative cooling of a felsic magma chamber. A similar conclusion was reached for the origin of sulphates in the 3.2–3.6 Ga Panorama volcanic-hosted sulphide district, also in Western Australia (Huston et al., 2001a). Under conditions analogous to contemporary S-rich volcanism at Mt. Pinatubo (Philippines), a silicic magma chamber with associated caldera collapse and seawater incursions will evolve highly oxidized (Scaillet et al., 1998) volatile-laden saline fluids (Newton and Manning, 2005). Such conditions stabilise SO2 and lead to the expulsion of oxidised fluids, which in the hydrolysis reaction (after Hattori and Cameron, 1986): 4H2 0 + 4SO2 ↔ H2 S + 3H+ + 3HSO− 4 leads to the highly localised enrichment of sulphate, without the intervention of oxygenic photosynthesizers. In the case of the Dresser Formation barites, locally recharged submarine brine-pools with reactive Ba2+ leached from basalt would have formed barite (cf. Van Kranendonk, 2006). Sulphate would have been rapidly scavenged by Ba2+ ; the solubility of barite is low (Hr◦ = 6.35 kcal mol−1 , log K = −9.97; Stumm and Morgan (1996)), and Ba2+ leached from basalt (average Archaean basalt contains 569 ppm Ba; Condie (1993)) was precipitated as barite syndepositionally with pyrite. Multiple S-isotope measurements of sulphate-sulphide pairs provide a crucial clue to the origin of the sulphur in the Dresser rocks. Barites from Dresser sample GSWA 169711 (A-I) reported in Farquhar et al. (2000a) have average 33 S values = −0.98 ± 0.02h and average δ 34 SVCDT = +4.9h that form a well-defined (r 2 = 0.977) linear array of MDF slope λ = 0.51 ± 0.04 (Fig. 7.5-18(a)). It is thus apparent from these data that the sulphur responsible for this barite resided for some time in the Archaean atmosphere before it was deposited in the water and stabilised as sulphate. Core rock samples of black chert with finely disseminated pyrite, also from the Dresser Formation (core sample GSWA 169729), have average 33 S values = +3.67 ± 0.03h and average δ 34 SVCDT = +2.70 ± 0.01h (Table 7.5-3) that form a linear array (r 2 = 0.893) of non-MDF slope λ = 0.837 ± 0.16 (Fig. 7.5-18(b)). When these data are plotted in 33 S vs δ 34 S space (Fig. 7.5-19), it is apparent that they are consistent with samples that experienced SO2 (or SO) photolysis at short UV (e.g., 193 nm) wavelengths (compare with Fig. 7.5-6). The differences in pyrite and barite multiple sulphur isotope compositions from the Dresser rocks show that deposition of MIF sulphur as pyrite and barite was swift once aerosols reached the water column. Because neither hydrothermal nor biological cycling 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 dpg15 v.2007/05/23 Prn:4/06/2007; 13:56 aid: 15075 pii: S0166-2635(07)15075-1 docsubty: REV 38 F:dpg15035.tex; VTEX/JOL p. 38 Chapter 7.5: Sulphur on the Early Earth 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 10 10 11 11 12 12 13 13 14 14 15 15 16 16 17 17 18 18 19 19 20 20 21 21 22 22 23 23 24 24 25 25 26 26 27 27 28 28 29 29 30 30 31 31 32 32 33 33 34 34 35 36 37 38 39 Fig. 7.5-18. A. Plot of multiple S-isotope measurements of barites from Dresser sample GSWA 169711 (A-I) reported in Farquhar et al. (2000a) shows a well-defined (r 2 = 0.977) linear array of MDF slope λ = 0.51 ± 0.04. B. Core samples of pyrite from black chert from the Dresser Formation sample GSWA 169729 form a less well-defined linear array (r 2 = 0.893) of non-MDF slope λ = 0.837 ± 0.16. 40 43 36 37 38 39 40 41 42 35 41 of sulphate had sufficient time to homogenise the neither process was important at time of deposition. 33 S values, it may be the case that 42 43 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 34 S/32 S ±1σ 33 S/32 S ±1σ δ 34 SVCDT ±1σ δ 33 S ±1σ 33 S ±1σ G1_s1 G1_s2 G1_s3 G2_s1 G2_s2 G2_s3 G3_s1 G3_s2 G3_s3 G4-s1 4.5135E–02 4.5114E–02 4.5110E–02 4.5113E–02 4.5134E–02 4.5119E–02 4.5134E–02 4.5132E–02 4.5128E–02 4.5140E–02 6.32E–07 5.63E–07 3.74E–07 6.50E–07 2.24E–07 5.82E–07 7.65E–07 3.42E–07 6.38E–07 6.76E–07 8.0006E–03 7.9969E–03 7.9962E–03 7.9986E–03 8.0011E–03 7.9993E–03 8.0003E–03 8.0005E–03 7.9990E–03 8.0014E–03 1.67E–07 2.06E–07 1.98E–07 1.88E–07 2.53E–07 1.63E–07 1.63E–07 1.81E–07 1.33E–07 2.10E–07 2.89 2.44 2.35 2.41 2.89 2.53 2.88 2.84 2.75 3.00 0.01 0.01 0.01 0.01 0.00 0.01 0.02 0.01 0.01 0.01 5.22 4.76 4.67 4.97 5.29 5.07 5.19 5.21 5.02 5.32 0.02 0.03 0.02 0.02 0.03 0.02 0.02 0.02 0.02 0.03 3.73 3.50 3.45 3.72 3.79 3.75 3.69 3.74 3.59 3.76 0.03 0.03 0.03 0.03 0.03 0.02 0.03 0.02 0.02 0.03 39 F:dpg15035.tex; VTEX/JOL p. 39 Notes: Nomenclature is grain number + ion microprobe spot number. Error demagnification and corrections for instrumental mass bias were applied to the data. Details for these measurement conditions are reported in Papineau et al. (2005). dpg15 v.2007/05/23 Prn:4/06/2007; 13:56 aid: 15075 pii: S0166-2635(07)15075-1 docsubty: REV spot 7.5-7. Sulphur Isotopes in Early Archaean Rocks Table 7.5-3. Sulphur isotope composition of sulphides in Dresser Mine core sample 169729-1B by in situ ion microprobe multicollection 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 dpg15 v.2007/05/23 Prn:4/06/2007; 13:56 aid: 15075 pii: S0166-2635(07)15075-1 docsubty: REV 40 F:dpg15035.tex; VTEX/JOL p. 40 Chapter 7.5: Sulphur on the Early Earth 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 10 10 11 11 12 12 13 13 14 14 15 15 16 16 17 17 18 18 19 19 20 20 21 21 22 22 23 23 24 24 25 26 27 28 29 30 25 Fig. 7.5-19. Plot of 33 S vs δ 34 S for sulphides and sulphates from the 3.46 Ga Dresser Fm. (sulphate data from Farquhar et al. (2000)). The field of isotope compositions for barite and hydrothermal sulphide (volcanogenic massive sulphide ‘VMS’ deposits) is also labelled. The data for the sulphide-sulphate pair tend to plot with an aspect ratio similar to the 193 nm photolysis array of SO2 and SO (see Fig. 7.5-6). 31 32 35 36 37 38 39 40 41 42 43 27 28 29 30 31 7.5-7.2. Sulphides from the (3.8–3.7 Ga) Isua Supracrustal Belt, West Greenland 33 34 26 32 33 Amphibolites of dominantly basaltic composition from the ca. 3.77 Ga Isua supracrustal belt (ISB), 150 km northeast of Nuuk, West Greenland, have δ 34 S values between −1.0 and +2.6h (Monster et al, 1979), consistent with a magmatic origin and an Archaean mantle with near-zero δ 34 S values (Hattori and Cameron, 1986). Rocks of sedimentary protolith, such as banded iron-formations (BIF) and garnet-biotite schists of probable ferruginous clay-rich sedimentary origin are recognizable throughout the ISB (reviewed in Nutman et al. (1984a)). Because these rocks are of marine sedimentary origin (Dymek and Klein, 1988) they are important candidate materials to host information relevant to the sulphur geochemistry of the Archaean oceans. In line with these observations, it was proposed some time ago that sulphur isotopes in sulphides from the metamorphic equivalents of 34 35 36 37 38 39 40 41 42 43 dpg15 v.2007/05/23 Prn:4/06/2007; 13:56 aid: 15075 pii: S0166-2635(07)15075-1 docsubty: REV 7.5-7. Sulphur Isotopes in Early Archaean Rocks F:dpg15035.tex; VTEX/JOL p. 41 41 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 10 10 11 11 12 12 13 13 14 14 15 15 16 16 17 17 18 18 19 19 20 21 22 20 Fig. 7.5-20. Comparison of published 34 S values for various sulfide phases in Isua supracrustal belt metasedimentary rocks (from Papineau and Mojzsis, 2006). 21 22 23 23 24 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 pelagic sedimentary rocks could preserve isotopic evidence of the early biosphere (Monster et al., 1979; Schidlowski et al., 1983). Bulk sulphides from Isua banded iron-formations have δ 34 S values in the range of −1.0 to +2.0h, comparable to values measured from associated garnet-amphibolite rocks of basaltic composition noted above, which volumetrically dominate the lithotypes of the ISB. Similar δ 34 S values for pyrite in other BIF units from Isua range between −1.2 to +2.5h, and were interpreted by Strauss (2003) to reflect magmatic and hydrothermal processes in the sulphur cycle, with no apparent biological fractionation. The total range of δ 34 S values measured for metasedimentary rocks of the ISB extends over ∼9h and is centred around +1h (Fig. 7.5-20). This δ 34 S range is similar to other sulphur isotope ranges that characterize some Mesoarchaean marine sediments (Ohmoto et al., 1993; Ohmoto and Felder, 1987). A possible explanation is that the small variations in δ 34 S of sulphides from Isua metasediments reflect mass-dependent fractionation processes during metamorphism, which depend on temperature, sulphide phase, cooling time, etc. Alternatively, such a range may be consistent with biological fractionation at the time of deposition, but the range in δ 34 S is small and as outlined previously, microbial sulphate reduction was either suppressed or absent at Isua time. More data are required to test the hypothesis that elemental sulphur reduction or some other early metabolic cycling of sulphur was present 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 dpg15 v.2007/05/23 Prn:4/06/2007; 13:56 aid: 15075 pii: S0166-2635(07)15075-1 docsubty: REV 42 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 F:dpg15035.tex; VTEX/JOL p. 42 Chapter 7.5: Sulphur on the Early Earth when the Isua sediments formed, especially if the range of δ 34 S for co-existing sulphur phases can be expanded further. Published sulphur isotope analyses of anhedral pyrites that occur as interstitial blebs in biotite from various quartz-biotite schists (‘metapelites’ of clay-rich origin, as opposed to banded iron-formations) from the ISB showed positive 33 S values between +1.06 and +1.43h, and a range of δ 34 S between −2.82 and +5.44h (Mojzsis et al., 2003; Papineau and Mojzsis, 2006). Banded iron-formation samples have also been investigated for their multiple sulphur isotopes from the northeast sector of the ISB. Many of these rocks contain bands of large (<200 µm) pyrite grains within grunerite+magnetite and quartz bands. Published data for subhedral to anhedral sulphide for the ISB can be used to define maximum ranges of δ 34 S data for sulphides (n = 161) as between −3.1 and +5.8h, and for reported 33 S data (n = 99) between −0.87 and +3.41h. A compendium of published and recent δ 34 S data from metasedimentary rocks from the ISB is presented in Fig. 7.5-20. From the standpoint of environmental chemistry, the multiple sulphur isotope data for the Isua supracrustal belt provides evidence for an anoxic atmosphere at 3.8 Ga and low concentrations of dissolved seawater sulphate and atmospheric oxygen. Under these constraints, it is interesting to consider whether the early Archaean oceans were severely limited in many oxidants necessary for various microbial respiration pathways. The dominant biome could have been carbon-fixing autotrophs as suggested by 13 C-depleted graphite particles reported from Isua (Ueno et al., 2002; Rosing, 1999; Mojzsis et al., 1996). This conclusion would mean that the low abundance of oxidants in early Earth environments was not conducive to an extensive biosphere nor to metabolically diverse microbial communities before the Paleoproterozoic transition from a globally anoxic world to the beginnings of a oxygenated planet (Papineau and Mojzsis, 2006; Papineau et al., 2007). 26 27 30 31 32 33 34 35 36 37 38 39 40 41 42 43 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 7.5-7.3. Sulphides from the 3.83 Ga Akilia Association, Akilia Island, West Greenland 28 29 1 27 28 As outlined in Manning et al. (2006, and references therein), the supracrustal rocks of the Akilia association at the type locality of Akilia, an island ∼30 km S of Nuuk, West Greenland, have undergone a complicated metamorphic history that led to recrystallization under granulite facies conditions (Griffin et al., 1980). The complexity of these rocks, compounded with a long history of ‘reconnaissance studies’ from this terrane, has been the principal reason for current debates in the interpretation of protoliths for the Akilia enclaves. On the south-western peninsula of Akilia are two units of ferruginous quartzpyroxene rocks sandwiched between amphibolites (Manning et al., 2006). The mineral composition of the units is dominated by quartz, clinopyroxene, magnetite, hornblende, sulphides and minor accessory phases including zircon and graphite (Nutman et al., 1997). The age of the quartz-pyroxene rock has been the subject of debate. One interpretation holds that the units are greater than the ca. 3.83 Ga zircon U-Pb ages for tonalitic orthogneisses, some of which were shown to intersect the supracrustal enclave (Manning et al., 2006). Published U-Th-Pb depth-profiles from Akilia orthogneiss zircons by ion microprobe (Mojzsis and Harrison, 2002a) and Pb-Pb ages on apatite separates in the 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 dpg15 v.2007/05/23 Prn:4/06/2007; 13:56 aid: 15075 pii: S0166-2635(07)15075-1 docsubty: REV 7.5-7. Sulphur Isotopes in Early Archaean Rocks 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 F:dpg15035.tex; VTEX/JOL p. 43 43 quartz-pyroxene rock (Sano et al., 1999b; cf. Mojzsis et al., 1999) indicate a complicated metamorphic history with regional major events at ∼3.73 Ga, ∼3.65 Ga, ∼2.65 Ga and ∼1.50 Ga (reviewed in Cates and Mojzsis, 2006). The protolith of the quartz-pyroxene rocks was originally interpreted as banded-iron formation (BIF) by Nutman et al. (1997) and was used by them to earmark these particular samples for biosignatures analyses of C-isotopes. Detailed geochemical results published in the last few years provide supporting evidence for a sedimentary for these rocks. These data include major, minor, trace element and rare earth distributions (Mojzsis and Harrison, 2002b; Friend et al., 2002c; Nishizawa et al., 2005; Manning et al., 2006), δ 56 Fe and δ 57 Fe values3 (Dauphas et al., 2004), δ 18 O values (Manning et al., 2006) and 33 S values (Mojzsis et al., 2003). In an alternative interpretation, REE patterns and trace elements have been used to argue instead for a metasomatized ultramafic igneous protolith for the Akilia quartz-pyroxene rocks (Fedo and Whitehouse, 2002; Bolhar et al., 2004; cf. Johannesson et al., 2006). Also, Whitehouse et al. (2005) were unable to corroborate previously reported mass-independent sulphur isotopes values for these units (Mojzsis et al., 2003). Lastly, Manning et al. (2006) showed that only an origin as chemical sediment with minor detrital input satisfies all field, petrologic and geochemical tests, and because the Akilia quartz-pyroxene rocks represent a primary lithology that was deposited in the original volcanosedimentary succession, the rocks have the same age as the enclave as a whole or 3825 Ma. Whole-rock sulphur isotopic analyses of Akila quartz-pyroxene sample GR9707 reported in Farquhar et al., 2000) revealed 33 S = +0.12h. Subsequent ion microprobe measurements of sulphides in Akilia sample GR9707 reported in Mojzsis et al. (2003) revealed a large positive 33 S anomaly at +1.47 ± 0.14h (2σ ). The data also showed a population of positive 33 S values that ranged between +0.84 to +0.30h. A relatively large range (∼12h) of δ 34 S was also observed (−6.7 to +5.2h) from this sample. These data are not that different from reported values for various ISB metasedimentary rocks. In a separate study on a different Akilia sample, Whitehouse et al. (2005) measured the multiple sulphur isotope composition of quartz-pyroxene sample G91-26 (Nutman et al., 1997) and found no clear evidence for mass-independently fractionated sulphur. Their 33 S data ranged from −0.55 to +0.35h and they describe a range in δ 34 S of +0.02 to +2.45h, substantially smaller than that reported in Mojzsis et al. (2003). Based on their analysis, Whitehouse et al., 2005) concluded that multiple sulphur isotopes could not be used to infer protolith for highly metamorphosed rocks. It is likely that the complexity of the Akilia quartz-pyroxene rocks revealed by the various isotopic and trace element data cited above is manifest in heterogeneities in the sulphur isotopes at the outcrop scale. Further detailed work is needed on these rocks, but fortunately, Fe-rich chemical metasedimentary rocks with abundant sulphides turn out to be relatively common in Akilia association enclaves beyond the ‘type-locality’ on Akilia Island. Indeed, rocks of the ‘Akilia type’ in mineralogy, bulk composition and antiquity can found throughout scattered throughout the southern limits of the Itsaq Gneiss Complex of 3 The δ 5x Fe(h) = ((5x Fe/54 Fe) 5x 54 sample /( Fe/ Fe)IRMM-014 − 1) × 1000 and IRMM-014 is the Fe-isotope standard 014 of the Institute of Reference Materials and Measurements. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 dpg15 v.2007/05/23 Prn:4/06/2007; 13:56 aid: 15075 pii: S0166-2635(07)15075-1 docsubty: REV 44 1 2 F:dpg15035.tex; VTEX/JOL p. 44 Chapter 7.5: Sulphur on the Early Earth West Greenland as well as in other early Archaean terranes of the North American Craton (Cates and Mojzsis, 2006, 2007a). 3 4 5 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 2 3 7.5-7.4. Sulphides from the 3.77 Ga Akilia Association Enclaves on Innersuartuut Island, West Greenland 6 7 1 4 5 6 Finely-laminated quartz + magnetite ± garnet banded iron-formations from the main island of Innersuartuut (approximately 30 km south of Akilia at N63◦ 50.227 , W51◦ 41.173 ) were sampled for sulphur isotope analysis and reported in Cates and Mojzsis (2006). This rock preserves quartz-magnetite bands that apparently escaped the pervasive strain/ recrystallization/silica-mobility recorded by Akilia association units on Akilia Island. In this regard, it most resembles samples 119233 from Ugpik, and 119217 from an unspecified field locality on Innersuartuut, as described in McGregor and Mason (1977). Multiple sulphur isotope geochemistry of this rock, which apparently experienced the same regional metamorphisms as other Akilia association samples, provides a useful and independent (from Akilia Island) benchmark for the preservation of mass-independent sulphur in granulite-grade supracrustal enclaves (Fig. 7.5-21). Sulphides are present as pyrrhotite blebs in the quartz-magnetite matrix with fine intergrowths of SiO2 . The analysed pyrrhotites preserve consistently large 33 S values between +1.31 ± 0.19h and +1.49 ± 0.19h (2σ external errors) and record a small range in δ 34 S of ∼1.5h. Other ferruginous quartz-pyroxene rocks also reported in Cates and Mojzsis (2006) from the Innersuartuut localities are similar in both mineralogy and gross geochemical composition to the samples G91-26 of Mojzsis et al. (1996) and GR9707 of Mojzsis et al. (2003). Like the Akilia Island rocks, these samples contain abundant pyrrhotite and occasional chalcopyrite with subhedral habit in a dominantly quartz + hedenbergite matrix. All analysed pyrrhotite in the Innersuartuut samples preserve MIF S isotopes with large 33 S values between +1.90 ± 0.25h and +3.15 ± 0.25h (2σ external errors) and range in δ 34 S by ∼2.5h (Cates and Mojzsis, 2006). Although they record a smaller total range in δ 34 S compared to sample GR9707 (∼12h) from Akilia Island (Mojzsis et al., 2003), the Innersuartuut samples preserve exceptionally large 33 S values akin to those reported for ISB banded iron-formation sample 248474 (Baublys et al., 2004; ca. +3.3h) that was reanalysed by Whitehouse et al., 2005). The Innersuartuut rocks are also notable in that they preserve a unit of quartz-biotite-garnet schist what contains abundant pyrrhotite (∼1 mode%). All analysed sulphides from this particular unit, which Cates and Mojzsis (2006) interpreted to be a paragneiss of probable pelitic origin, contain MIS sulphur isotopes with well-resolved 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 36 37 37 38 39 40 41 42 43 Fig. 7.5-21. Compilation plot of 33 S vs δ 34 S for sulphides and sulphates from pre-3.7 Ga metasediments in the pre-3.77 Ga Isua supracrustal belt and the pre-3.83 Ga Akilia association rocks from Akilia (island) and Innersuartuut (West Greenland). Data are from Farquhar et al. (2000), Mojzsis et al. (2003), Hu et al. (2003), Whitehouse et al. (2005), Cates and Mojzsis (2006), Papineau and Mojzsis (2006), and unpublished data. Compare the different trends in multiple isotope end-member compositions to the 193-nm results in Fig. 7.5-6. 38 39 40 41 42 43 dpg15 v.2007/05/23 Prn:4/06/2007; 13:56 aid: 15075 pii: S0166-2635(07)15075-1 docsubty: REV 7.5-7. Sulphur Isotopes in Early Archaean Rocks F:dpg15035.tex; VTEX/JOL p. 45 45 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 10 10 11 11 12 12 13 13 14 14 15 15 16 16 17 17 18 18 19 19 20 20 21 21 22 22 23 23 24 24 25 25 26 26 27 27 28 28 29 29 30 30 31 31 32 32 33 33 34 34 35 35 36 36 37 37 38 38 39 39 40 40 41 41 42 42 43 43 dpg15 v.2007/05/23 Prn:4/06/2007; 13:56 aid: 15075 pii: S0166-2635(07)15075-1 docsubty: REV 46 1 2 3 4 5 6 7 8 9 10 11 12 F:dpg15035.tex; VTEX/JOL p. 46 Chapter 7.5: Sulphur on the Early Earth 33 S values, between +0.67 ± 0.21h and +0.98 ± 0.12h (2σ external errors), and range in δ 34 S by ∼3h. These results for mass-independent sulphur isotopes in amphibolite- to granulite-grade sedimentary rocks from various early Archaean localities in West Greenland underscore the observation that 33 S values in a rock containing accessory sulphur minerals can be preserved. The simplest explanation for the small spread of δ 34 S values in these data for the oldest known rocks of marine sedimentary origin is by re-precipitation of sulphides during metamorphic processes. Dilution by invasive fluids (H2 S etc.) which carried exotic sulphur does not appear to be an important process in rocks that contain no more than ∼1 mode percent sulphur (Ohmoto, 1986). Scatter in 33 S values is minimal for each these units, which suggests that no significant foreign component of sulphur was added to the system since formation as aqueous sediments in the early Archaean ocean. 13 16 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 3 4 5 6 7 8 9 10 11 12 14 7.5-8. SUMMARY: BANDED IRON-FORMATIONS, SULPHUR AND LIFE ON THE EARLY EARTH 17 18 2 13 14 15 1 15 16 17 The Archaean banded iron-formations are regarded solely as a chemical sediments that have been enriched in metals from volcanic/hydrothermal sources (reviewed in Polat and Frei (2005)) and probably represent part of a relatively deep (>100 m) marine sedimentary facies derived from either the photo-oxidation of upwelled Fe(II)-rich seawater to ferroferri-oxyhydroxides (Braterman et al., 1983) or biological precipitation and/or oxidation of insoluble iron oxides (e.g., Konhauser et al., 2002). In either of these models, the Feprecipitates subsequently underwent diagenetic transformation to magnetite. Models for biological modulation of iron-formation deposition via anoxygenic photosynthetic Fe(II) oxidation, and the nature of microbially-mediated iron-oxide deposition and organic matter recycling (Kappler et al., 2005), are still in their early stages of development. Cloud (1973) postulated that ferrous iron [Fe(II)aq ] oxidation by molecular oxygen after cyanobacteria evolved on Earth was responsible for the banded iron-formations. However, it has been argued that the anoxygenic photoautotrophic bacteria are the most ancient type of photosynthetic organisms (Xiong et al., 2000), and these can readily catalyse Fe(II) oxidation under anoxic conditions (Widdel et al., 1993). The Fe isotope compositions of banded iron-formations are consistent with the possibility that anoxygenic photoautotrophs such as purple bacteria played a role in their deposition. Calculations based on experimentally determined Fe(II) oxidation rates by anaerobic photoautotrophic bacteria under low-light regimes representative of ocean depths of a few hundred meters suggest that, even in the presence of cyanobacteria, anoxygenic phototrophs living beneath a wind-mixed surface layer provide the most likely explanation for BIF deposition in a stratified ancient ocean and the absence of Fe in Precambrian surface waters (Kappler et al., 2005). Following Gross (1980), the Archaean BIFs such as those at Isua and in the Akilia association tend to resemble the ‘Algoma-type’ which are thought to have been deposited in small basins around island arcs (Jacobsen and Pimentel-Close, 1988). Enrichment of seawater in ferrous iron and the transformation to abundant Fe3 O4 in marine sediments is considered a 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 dpg15 v.2007/05/23 Prn:4/06/2007; 13:56 aid: 15075 pii: S0166-2635(07)15075-1 docsubty: REV F:dpg15035.tex; VTEX/JOL p. 47 7.5-8. Summary: Banded Iron-Formations, Sulphur and Life on the Early Earth 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 47 signature style of sedimentation under anoxic conditions on the early Earth, when Fe(II) concentrations were high in seawater (Holland, 1984; Bjerrum and Canfield, 2002). Banded iron-formations are strongly enriched in sulphur relative to average Archaean crust and hydrothermal fluids; the average S composition of Isua iron-formation is taken to be close to that of the international banded iron-formation standard IF-G (Govindaraju, 1994) at 700 ppm. BIF sulphur was introduced to the water column from both atmospheric and magmatic exhalative sources at time of deposition (Huston and Logan, 2004), and the major sulphide phases present in the Isua and Akilia rocks are pyrite and pyrrhotite (with minor chalcopyrite and cubanite). As noted by Farquhar and Wing (2003, and references therein), an important consequence of the model for MIF-carrying aerosol formation in the Archaean atmosphere is that sulphide formation via elemental sulphur reduction by microbial life – perhaps deposited as greigite: Fe3 S4 , or mackinawite: Fe1−x S (e.g., Mann et al., 1990) which was later transformed to pyrite: FeS2 and metamorphosed to pyrrhotite: ∼Fe7 S8 – would be expected to retain positive 33 S signatures (Mojzsis et al., 2003) with > 10h spread in δ 34 S (Canfield and Raiswell, 1999). Sulphide formed from microbial sulphate reduction would be expected to preserve negative 33 S values with a potentially large spread in δ 34 S values. Sulphur aerosols provided a ready source of sulphur to a plethora of microbial environments at the global scale on the early Earth, at issue of course is whether this oxidative chemistry was actually exploited by life, as perhaps Fe(II)aq was by early microbial communities for an electron donor (Johnson et al., 2003; Dauphas et al., 2004). Could then the low abundance of oxidants in early Archaean environments globally have severely limited the early biosphere before the gradual build-up of oxygen (Papineau and Mojzsis, 2006)? If the Archaean biosphere did in fact modulate BIF deposition, it still remains to be seen whether it left traces of itself in the sulphur isotopes. Of the principal elements involved in biological activity (C, N, O, H, S, P, Fe etc.), sulphur is probably the most versatile for geochemistry. As summarised by Goldschmidt (1954), chemists have long recognised that sulphur participates in many of the most important processes in inorganic geochemistry, and serves as a bridge between the inorganic world and the chemistry contained in the central metabolic machinery of all classes of organisms. Because of its chemical reactivity, large mass difference between multiple stable isotopes (32 S, 33 S, 34 S and 36 S), diverse redox chemistry through eight valence states (2− to 6+), and tendency to form both ionic and covalent bonds in a wide variety of minerals, sulphur and its isotopes have been used to trace igneous, sedimentary, metamorphic, hydrothermal, atmospheric and biological processes since the early days of geochemistry (Thode et al., 1949). New inroads in transition metal stable isotopic systems used to trace changes in the surface state of the Earth with time, such as Mo (reviewed in Anbar and Knoll (2002)) and Fe (reviewed in Johnson et al. (2003)), also figure prominently in its phase-space as the various metal-sulphides. How the chemistry of the ‘inorganic bridge’ relates to the distribution of inorganic components in the cell (‘metallomics’) and in response to the evolution of the surface zone as traced by the multiple sulphur isotopes, represents an exciting new horizon that is ripe for exploration. Future work will unite transition metal isotope systematics with the chemistry of the multiple sulphur isotopes preserved in sedimentary sulphides. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 dpg15 v.2007/05/23 Prn:4/06/2007; 13:56 aid: 15075 pii: S0166-2635(07)15075-1 docsubty: REV 48 1 F:dpg15035.tex; VTEX/JOL p. 48 Chapter 7.5: Sulphur on the Early Earth ACKNOWLEDGEMENTS 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 1 2 Discussions and debates over the years on the various topics presented herein with A.D. Anbar, G.L. Arnold, A. Bekker, P.S. Braterman, R. Buick, N.L. Cates, M. Chaussidon, R.N. Clayton, C.D. Coath, N. Dauphas, J. Farquhar, C. Fedo, R. Frei, C.R.L. Friend, J.P. Greenwood, T.M. Harrison, K. Hattori, H.D. Holland, B.S. Kamber, A.J. Kaufman, A. Kappler, J. Karhu, J.L. Kirschvink, M.J. Van Kranendonk, A. Lepland, D. Lowe, J.R. Lyons, C.E. Manning, B. Marty, K.D. McKeegan, S. Moorbath, A.P. Nutman, H. Ohmoto, S. Ono, N.R. Pace, D. Papineau, A.A. Pavlov, M. Rosing, D. Rumble, B. Runnegar, M. Schidlowski, A.K. Schmitt, J.W. Schopf, H. Strauss, M.H. Thiemens, M.J. Whitehouse, B. Wing, Y. Watanabe and M. Van Zuilen have helped to refine and focus this work. N. Pace at the University of Colorado is thanked for access to his library of Archaea and Bacteria molecular phylogenies. Constructive reviews by N.L. Cates, M.J. Van Kranendonk and two anonymous reviewers helped a great deal to improve the manuscript. Our work on the evolution of sulphur isotopes was supported by the National Science Foundation grants EAR9978241 and EAR0228999 to SJM, and since 2000 by the University of Colorado Center for Astrobiology through a cooperative agreement with the NASA Astrobiology Institute. Correspondence and request for material should be addressed to [email protected]. 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 20 21 21 22 22 23 23 24 24 25 25 26 26 27 27 28 28 29 29 30 30 31 31 32 32 33 33 34 34 35 35 36 36 37 37 38 38 39 39 40 40 41 41 42 42 43 43 dpg15 v.2007/06/04 Prn:5/06/2007; 11:41 F:dpg15ref.tex; VTEX/zk p. 1 aid: dpg15ref pii: S0166-2635(07)15094-5 docsubty: MISC 1 1 1 2 2 3 3 4 5 REFERENCES 4 5 6 6 7 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 Abbott, D.H., Hoffman, S.E., 1984. Archaean plate tectonics revisited 1. Heat flow, spreading rate, and the age of subducting oceanic lithosphere and their effects on the origin and evolution of continents. Tectonics 3, 429–448. Abbott, D.H., Isley, A.E. 2001. Oceanic upwelling and mantle plume activity: paleomagnetic tests of ideas on the source of the Fe in early Precambrian iron formations. In: Geological Society of America, Special Paper 352, 323–339. Abbott, D.H., Isley, A.E., 2002. The intensity, occurrence and duration of superplume events and eras over geological time. Journal of Geodynamics 34, 265–307. Abbott, D., Drury, R., Smith, W.H.F., 1994. Flat to steep transition in subduction style. Geology 22, 937–940. Abell, P.I., McClory, J., Martin, A., Nisbet, E.G., 1985a. Archaean stromatolites from the Ngesi Group, Belingwe greenstone belt, Zimbabwe; preservation and stable isotopes; preliminary results. Precambrian Research 27 (4), 357–383. Abell, P.I., McClory, J., Martin, A., Nesbit, E.G., Kyser, K.T., 1985b. Petrography and stable isotope ratios from Archaean stromatolites, Mushandike Formation, Zimbabwe. Precambrian Research 27, 385–398. Abeysinghe, P.B., Fetherston, J.M., 1997. Barite and fluorite in Western Australia. Western Australia Geological Survey Mineral Resources Bulletin 17, 97 pp. Abraham, A-C., Francis, D., Polvé, M. 2005. Origin of Recent alkaline lavas by lithospheric thinning beneath the northern Canadian Cordillera. Canadian Journal of Earth Sciences 42, 1073–1095. Addington, E.A., 2001. A Stratigraphic Study of Small Volcano Clusters on Venus. Icarus 149, 16–36. Ahmat, A.L., Ruddock, I., 1990. Windimurra and Narndee layered complexes. In: Geology and Mineral Resources of Western Australia. Western Australia Geological Survey, Memoir 3, pp. 119–126. Alard, O., Griffin, W.L., Lorand, J.P., Jackson, S.E., O’Reilly, S.Y., 2000. Non-chondritic distribution of the highly siderophile elements in mantle sulfides. Nature 407, 891–894. Alard, O., Griffin, W.L., Pearson, N.J., Lorand, J.-P., O’Reilly, S.Y., 2002. New insights into the Re-Os systematics of subcontinental lithospheric mantle from in-situ analysis of sulfides. Earth and Planetary Science Letters 203, 651–663. Albarède, F., Blichert-Toft, J., Vervoort, J.D., Gleason, J.D., Rosing, M., 2000. Hf-Nd isotope evidence for a transient dynamic regime in the early terrestrial mantle. Nature 404, 488–490. Aleinikoff, J.N., Williams, I.S., Compston, W., Stuckless, J.S., Worl, R.G., 1989. Evidence for an Early Archean component in the Middle to Late Archean gneisses of the Wind 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 dpg15 v.2007/06/04 Prn:5/06/2007; 11:41 F:dpg15ref.tex; VTEX/zk p. 2 aid: dpg15ref pii: S0166-2635(07)15094-5 docsubty: MISC 2 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 References River Range, west-central Wyoming: conventional and ion microprobe U-Pb data. Contributions to Mineralogy and Petrology 101, 198–206. Al-Jishi, R., Dresselhaus, G., 1982. Lattice-dynamical model for graphite. Physics Review B 26, 4514–4522. Allaart, J.H., 1976. The pre-3760 m.y. old supracrustal rocks of the Isua area, Central West Greenland, and the associated occurrence of quartz-banded ironstone. In: Windley, B.F. (Ed.), The Early History of the Earth. Wiley, London, pp. 177–189. Allègre, C.J., 1982. Genesis of Archaean komatiites in a wet subducted plate. In: Arndt, N.T., Nisbet, E.G. (Eds.), Komatiites. Allen and Unwin, London, pp. 495–500. Allègre, C.J., Birck, J-L., Fourcade, S., Semet, M.P., 1975. Rubidium-87/Strontium-87 age of Juvinas basaltic achondrite and early igneous activity in the solar system. Science 187, 436–438. Allen, M.B., Windley, B.F., Chi, Z., 1992. Palaeozoic collisional tectonics and magmatism of the Chinese Tien Shan, Central Asia. Tectonophysics 220, 89–115. Allwood, A.C., Walter, M.R., Kamber, B.S., Marshall, C.P., Burch, I.W., 2006a. Stromatolite reef from the Early Archaean era of Australia. Nature 441, 714–717. Allwood, A.C., Walter, M.R., Marshall, C.P., 2006b. Raman spectroscopy reveals thermal palaeoenvironments of c. 3.5 billion-year-old organic matter. Vibrational Spectroscopy 41, 190–197. Alonso-Perez, R., Ulmer, P., Müntener, O., Thompson, A.B. (2003). Role of garnet fractionation in H2O undersaturated andesite liquids at high pressure. Lithos 73 (1–2), S116. Alt, A.D., Sears, J.W., Hyndman, D.W., 1988. Terrestrial mare: The origins of large basalt plateaus, hotspot tracks and spreading ridges. Journal of Geology 96, 647–662. Alt, J.C., 1995. Sulfur isotopic profile through the oceanic-crust – sulfur mobility and seawater-crustal sulfur exchange during hydrothermal alteration. Geology 23, 585–588. Alvarez, W., 1986. Toward a theory of impact crises. Eos 67, 649–658. Amelin, Y.V., 1998. Geochronology of the Jack Hills detrital zircons by precise U-Pb isotope dilution analysis of crystal fragments. Chemical Geology 146, 25–38. Amelin, Y., Lee, D.C., Halliday, A.N., Pidgeon, R.T., 1999. Nature of the Earth’s earliest crust from hafnium isotopes in single detrital zircons. Nature 399, 252–255. Amelin, Y., Lee, D.C., Halliday, A.N., 2000. Early-middle Archaean crustal evolution deduced from Lu-Hf and U-Pb isotopic studies of single zircon grains. Geochimica et Cosmochimica Acta 64, 4205–4225. Amelin, Y., Krot, A.N., Hutcheon, I.D., Ulyanov, A.A., 2002. Lead isotopic ages of chondrules and calcium-aluminium-rich inclusions. Science 297, 1678–1683. Amelin, Y., Krot, A.N., Twelker, E., 2004. Pb isotopic age of the CB chondrite Gujba and the duration of the chondrule formation interval. Geochimica et Cosmochimica Acta 68, E958. Amelin, Y., Wadhwa, M., Lugmair, G.W., 2006. Pb-isotopic dating of meteorites using 202 Pb-205 Pb double-spike: comparison with other high-resolution chronometers. Lunar and Planetary Science XXXVII, abstract 1970. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 dpg15 v.2007/06/04 Prn:5/06/2007; 11:41 F:dpg15ref.tex; VTEX/zk p. 3 aid: dpg15ref pii: S0166-2635(07)15094-5 docsubty: MISC References 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 3 Anbar, A.D., Knoll, A.H., 2002. Proterozoic ocean chemistry and evolution: A bioinorganic bridge? Science 297, 1137–1142. Anbar, A.D., Zahnle, K.J., Arnold, G.L., Mojzsis, S.J., 2001. Extraterrestrial iridium, sediment accumulation and the habitability of the early Earth’s surface. Journal of Geophysical Research – Planets 106 (E2), 3219–3236. Anders, E., 1964. Origin, age and composition of meteorites. Space Science Reviews 3, 583–714. Anders, E., Ebihara, M., 1982. Solar System abundances of the elements. Geochimica et Cosmochimica Acta 53, 2363–2380. Anders, E., Grevesse, N., 1989. Abundances of the elements: Meteoritic and solar. Geochimica et Cosmochimica Acta 53, 197–214. Anderson, R.B., 1956. Catalysts for Fischer-Tropsch synthesis. In: Emmett, P.H. (Ed.), Catalysis. Hydrocarbon Synthesis Hydrogeneation and Cyclization. Reinhold, New York, pp. 29–255. André, L., Cardinal, D., Alleman, L.Y., Moorbath, S., 2006. Silicon isotopes in ∼ 3.8 Ga West Greenland rocks as clues to the Eoarchaean supracrustal Si cycle. Earth and Planetary Science Letters 245, 162–173 Andreasen, R., Sharma, M., 2006. Solar nebula heterogeneity in p-process samarium and neodymium isotopes. Science 314, 806–809. Anisimova, I.V., Kotov, A.B., Salnikova, E.B., Yakovleva, S.Z., Morozova, I.M., 2005. Age and geodynamic settings of the Archean greenstone belts from western part of Aldan Shield. In: Archean Geology and Geodynamics. First Russian Conference on Problems of Precambrian Geology and Geodynamics, Abstract Volume. Inst. Geol and Geochron. Precambr., St.-Petersburg, pp. 23–27 (in Russian). Anhaeusser, C.R., 1972. The geology of the Jamestown Hills area of the Barberton Mountain Land, South Africa. Transactions of the Geological Society of South Africa 75, 225–263. Anhaeusser, CR., 1973. The evolution of the early Precambrian crust of southern Africa. Philosophical Transactions of the Royal Society of London Ser. A 273, 359–388. Anhaeusser, C.R., 1976. The geology of the Sheba Hills area of the Barberton Mountain Land, South Africa, with particular reference to the Eureka Syncline. Transactions of the Geological Society of South Africa 79, 253–280. Anhaeusser, C.R., 1983. The geology of the Schapenburg greenstone remnant and surrounding Archaean granitic terrane south of Badplaas, eastern Transvaal. In: Anhaeusser, C.R. (Ed.), Contributions to the Geology of the Barberton Mountain Land. In: Geological Society of South Africa, Special Publication 9, pp. 31–44. Anhaeusser, C.R., 1985. Archean layered ultramafic complexes in the Barberton Mountain Land, South Africa. In: Ayres, L.D., Thurston, P.C., Card, K.D., Weber, W. (Eds.), Evolution of Archean Supracrustal Sequences. In: Geological Association of Canada, Special Paper 28, pp. 281–302. Anhaeusser, C.R., 1986. Archaean gold mineralization in the Barberton Mountain Land. In: Anhaeusser, C.R., Maske, S. (Eds.), Mineral Deposits of Southern Africa. In: Geological Society of South Africa Special Publications, pp. 113–154. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 dpg15 v.2007/06/04 Prn:5/06/2007; 11:41 F:dpg15ref.tex; VTEX/zk p. 4 aid: dpg15ref pii: S0166-2635(07)15094-5 docsubty: MISC 4 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 References Anhaeusser, C.R., 2001. The anatomy of an extrusive-intrusive Archaean mafic-ultramafic sequence: the Nelshoogte schist belt and Stolzburg layered ultramafic complex, Barberton greenstone belt, South Africa. South African Journal of Geology 104, 167–204. Anhaeusser, C.R., 2006. A re-evaluation of Archean intracratonic terrane boundaries on the Kaapvaal Craton, South Africa: Collisional suture zones? In: Reimold, W.U., Gibson, R.L. (Eds.), Processes on the Earth Earth. In: Geological Society of America, Special Paper 405, pp. 193–210. Anhaeusser, C.R., Robb, L.J., 1980. Regional and detailed field and geochemical studies of Archean trondhjemitic gneisses, migmatites and greenstone xenoliths in the southern part of the Barberton mountain land, South Africa. Precambrian Research 11, 373–397. Anhaeusser, C.R., Robb, L.J., 1981. Magmatic cycles and the evolution of the Archaean granitic crust in the eastern Transvaal and Swaziland. In: Glover, J.E., Groves, D.E. (Eds.), Archaean Geology. In: Geological Society of Australia, Special Publication 7, pp. 457–467. Anhaeusser, C.R., Robb, L.J., 1983. Chemical analyses of granitoid rocks from the Barbeton Mountain Land. In: Geological Society of South Africa, Special Publication 9, pp. 189–219. Anhauesser, C.R., Viljoen, M.J., 1965. The base of the Swaziland System in the BarbertonNordkaap-Louwś Creek area, Barberton Mountain Land. Information Circular, Economic Geology Research Unit, University of the Witwatersrand, Johannesburg, 25, 32 pp. Anhaeusser, C.R., Mason, R., Viljoen, M.J., Viljoen, R.P., 1969. A reappraisal of some aspects of Precambrian Shield geology. Bulletin of Geological Society of America 80, 2175–2200. Anhaeusser, C.R., Robb, L.J., Viljoen, M.J., 1981. Provisional geological map of the Barberton Greenstone Belt and surrounding granitic terrane, eastern Transvaal and Swaziland scale 1:250,000. In: Anhaeusser, C.R. (Ed.), Contributions to the Geology of the Barberton Mountain Land. In: Geological Society of South Africa, Special Publication 9, pp. 221–223 and insert map. Anhaeusser, C.R., Robb, L.J., Viljoen, M.J., 1983. Notes on the provisionnal geological map of the Barberton greenstone belt and surrounding granitic terrane, eastern Transvaal and Swaziland (1:250,000 color map). Transactions of the Geological Society of South Africa 9, 221–223. Annen, C., Blundy, J.D., Sparks, R.S.J., 2006. The genesis of intermediate and silicic magmas in deep crustal hot zones. Journal of Petrology 47, 505–539. Ansdell, K.M., 2005. Tectonic evolution of the Manitoba–Saskatchewan segment of the Paleoproterozoic Trans-Hudson Orogen, Canada. Canadian Journal of Earth Sciences 42, 741–759. Appel, P.W., 1983. Rare earth elements in the early Archaean Isua iron-formation, West Greenland. Precambrian Research 20, 243–258. Appel, P.W.U., Fedo, C.M., Moorbath, S., Myers, J.S., 1998. Recognisable primary volcanic and sedimentary features in a low-strain domain of the highly deformed, oldestknown (ca. 3.7–3.8 Gyr) greenstone belt, Isua, Greenland. Terra Nova 10, 57–62. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 dpg15 v.2007/06/04 Prn:5/06/2007; 11:41 F:dpg15ref.tex; VTEX/zk p. 5 aid: dpg15ref pii: S0166-2635(07)15094-5 docsubty: MISC References 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 5 Appel, P.W.U., Rollinson, H.R., Touret, J.L.R., 2001. Remnants of an Early Archaean (>3.75 Ga) sea-floor, hydrothermal system in the Isua greenstone belt. Precambrian Research 112, 27–49. Appel, P.W.U., Moorbath, S., Myers, J.S., 2003. Isuasphaeara isua (Pflug) revisited. Precambrian Research 126, 309–313. Arima, M., Barnett, R.L., 1984. Sapphirine-bearing granulites from the Sipiwesk Lake area of the late Archean Pikwitonei granulite terrain, Manitoba, Canada. Contributions to Mineralogy and Petrology 88, 102–112. Armstrong, R.A., 1981. Radiogenic isotopes: the case for crustal recycling on a nearsteady-state no-continental-growth Earth. Philosophical Transaction of the Royal Society of London 301, 443–472. Armstrong, R., 1989. 1988 Annual Technical report of the Geological Survey of South Africa. Department of Mineral and Energy Affairs, 27 pp. Armstrong, R.A., Compston, W., de Wit M.J., Williams I.S., 1990. The stratigraphy of 3.5– 3.2 Ga Barberton Greenstone Belt revisited: A single zircon microprobe study. Earth and Planetary Science Letters 101, 90–106. Armstrong, R.A., Compston, W., Retief, E.A., Williams, I.S., Welke, H.J., 1991. Zircon ion microprobe studies bearing on the age and evolution of the Witwatersrand triad. Precambrian Research 53, 243–266. Armstrong, R.L., 1963. K-Ar dates from West Greenland. Bulletin of Geological Society of America 74, 1189–1192. Armstrong, R.L., 1968. A model for Sr and Pb isotope evolution in a dynamic Earth. Reviews of Geophysics 6, 175–199. Armstrong, R.L., 1981. Radiogenic isotopes: the case for crustal recycling on a nearsteady-state no-continental-growth Earth. Philosophical Transaction of the Royal Society of London A301, 443–472. Armstrong, R.L., 1991. The persistent myth of crustal growth. Australian Journal of Earth Sciences 38 (5), 613–630. Arndt, N.T., Jenner, G.A., 1986. Crustally contaminated komatiites and basalts from Kambalda, Western Australia. Chemical Geology 56, 229–255. Arndt, N., Albarede, F., Nisbet, E.G., 1997. Mafic and Ultramafic Magmatism. In: de Wit, M.J., Ashwal, L.D. (Eds.), Greenstone Belts. Oxford University Press Oxford, United Kingdom, pp. 231–254. Arndt, N., Ginibre, C., Chauval, C., Albarède, F., Cheadle, M., Herzberg, C., Jenner, G., Lahaye, Y., 1998. Were komatiites wet? Geology 26, 739–742. Arndt, N.T., Nelson, D.R., Compston, W., Trendall, A.F., Thorne, A.M., 1991. The age of the Fortescue Group, Hamersley Basin, Western Australia, from iron microprobe zircon U-Pb results. Australian Journal of Earth Sciences 38, 261–281. Arndt, N., Bruzak, G., Reischmann, T., 2001. The oldest continental and oceanic plateaus: Geochemistry of basalts and komatiites of the Pilbara Craton, Australia. In: Ernst, R.E., Buchan, K.L. (Eds.), Mantle Plumes: Their Identification Through Time. In: Geological Society of America, Special Paper 352, pp. 359–387. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 dpg15 v.2007/06/04 Prn:5/06/2007; 11:41 F:dpg15ref.tex; VTEX/zk p. 6 aid: dpg15ref pii: S0166-2635(07)15094-5 docsubty: MISC 6 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 References Arriens, P.A., 1971. Archaean geochronology of Australia. In: Geological Society of Australia, Special Publication 3, pp. 1–23. Arth, J.G., Hanson, G.N., 1975. Geochemistry and origin of the Early Precambrian crust of North-eastern Minnesota. Geochimica and Cosmochimica Acta 39, 325–362. Arth, J.G., Barker, F., Peterman, Z.E., Frideman, I., 1978. Geochemistry of the gabbrodiorite-tonalite-trondhjemite suite of south-west Finland and its implications for the origin of tonalitic and trondhjemitic magmas. Journal of Petrology 19, 289–316. Ashton, K.E., Heaman, L.M., Lewry, J.F., Hartlaub, R.P., Shi, R., 1999. Age and origin of the Jan Lake Complex: a glimpse at the buried Archean craton of the Trans-Hudson Orogen. Canadian Journal of Earth Sciences 36, 185–208. Atherton, M.P., Petford, N., 1993. Generation of sodium-rich magmas from newly underplated basaltic crust. Nature 362, 144–146. Aubele, J., 1996. Akkruva small shield plains; definition of a significant regional plains unit on Venus. In: Lunar and Planetary Science Conference XXVII, pp. 49–50. Aulbach, S., Griffin, W.L., Pearson, N.J., O’Reilly, S.Y., Kivi, K., Doyle, B.J., 2004. Mantle formation and evolution, Slave Craton: constraints from HSE abundances and Re-Os systematics of sulfide inclusions in mantle xenocrysts. Chemical Geology 208, 61–88. Awramik, S.M., Schopf, J.W., Walter, M.R., 1983. Filamentous fossil bacteria from the Archean of Western Australia. Precambrian Research 20, 357–374. Ayer, J., Amelin, Y., Corfu, F., Kamo, S., Ketchum, J., Kwok, K., Trowell, N., 2002. Evolution of the southern Abitibi greenstone belt based on U-Pb geochronology: autochthonous volcanic construction followed by plutonism, regional deformation and sedimentation. Precambrian Research 115, 63–95. Baadsgaard, H., 1973. U-Th-Pb dates on zircons from the early Precambrian Amîtsoq gneisses, Godthaab district, West Greenland. Earth and Planet Science Letters 19, 22– 28. Baadsgaard, H., Nutman, A.P., Bridgwater, D., McGregor, V.R., Rosing, M., Allaart, J.H., 1984. The zircon geochronology of the Akilia association and the Isua supracrustal belt, West Greenland. Earth and Planetary Science Letters 68, 221–228. Baadsgaard, H., Nutman, A.P., Bridgwater, D., 1986. Geochronology and isotopic variation of the early Archaean Amîtsoq gneisses of the Isukasia area, southern West Greenland. Geochimica et Cosmochimica Acta 50, 2173—2183. Baadsgaard, H., Nutman, A.P., Samsonov, A.V., 1990. Geochronology of the Olondo greenstone belt. In: Fifth International Conference on Geochronology, Cosmochronology, and Isotope Geology, Abstract Volume. Geological Society of Australia, Publ. 6. Bagas, L., 2005. Geological of the Nullagine 1:100,000 sheet. Western Australia Geological Survey, 1:100,000 Geological Series Explanatory Notes, 33 pp. Bagas, L., Smithies, R.H., Champion, D.C., 2003. Geochemistry of the Corunna Downs Granitoid Complex, East Pilbara Granite–Greenstone Terrane, Western Australia. In: Western Australia Geological Survey, Annual Review 2001-02, pp. 61–69. Bai, J., Huang, X.G., Wang, H.C., Guo, J.J., Yan, Y.Y., Xue, Q.Y., Dai, F.Y., Xu, W.Z., Wang, G.F., 1996. The Precambrian Crustal Evolution of China. Beijing, Geological Publishing House, pp. 1–259 (in Chinese with English abstract). 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 dpg15 v.2007/06/04 Prn:5/06/2007; 11:41 F:dpg15ref.tex; VTEX/zk p. 7 aid: dpg15ref pii: S0166-2635(07)15094-5 docsubty: MISC References 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 7 Bai, J., Li, S.X., He, G.P., Xu, C.L., 1986. The Early Precambrian Geology of Wutaishan. Tianjin, Tianjin Science and Technology Press, pp. 1–475 (in Chinese with English abstract). Bailes, A.H., Percival, J.A., 2005. Geology of the Black Island area, Lake Winnipeg, Manitoba (parts of NTS 62P1, 7 and 8). Manitoba Geological Survey Geoscientific Report GR2005-2. Baker, J., Bizzarro, M., Wittig, N., Connelly, J., Haack, H., 2005. Early planetesimal melting from an age of 4.5662 Gyr for differentiated meteorites. Nature 436, 1127–1131. Baker, V.R., Komatsu, G., Gulick, V.C., Parker, T.J., 1997. Channels and valleys. In: Bouger, S.W., Hunten, D.M., Phillips, R.J. (Eds.), Venus II. University of Arizona Press, Tucson, AZ, pp. 757–798. Baker, V.R., Komatsu, G., Parker, T.J., Gulick, V.C., Kargel, J.S., Lewis, J.S., 1992. Channels and Valleys on Venus: Preliminary analysis of Magellan data. Journal of Geophysical Research 97, 13395–13420. Banerdt, W.B., McGill, G.E., Zuber, M.T., 1997. Plains tectonics on Venus. In: Bouger, S.W., Hunten, D.M., Phillips, R.J. (Eds.), Venus II. University of Arizona Press, Tucson, AZ, pp. 901–930. Banerjee, N.R., Furnes, H., Muehlenbachs, K., Staudigel, H., de Wit, M., 2006. Preservation of ∼3.4–3.5 Ga microbial biomarkers in pillow lavas and hyaloclastites from the Barberton Greenstone Belt, South Africa. Earth and Planetary Science Letters 241, 707–722. Banerjee, N.R., Simonnetti, A., Furnes, H., Staudigel, H., Muehlenbachs, K., Heaman, L., Van Kranendonk, M., 2007. Direct dating of Archean microbial ichnofossils. Geology, in press. Bannister, R.A., 2006. Geologic analysis of deformation in the interior region of Artemis (Venus, 34◦ S 132◦ E). M.S. thesis. University Minnesota Duluth, Duluth, 83 pp. Bannister, R.A., Hansen, V.L., 2006a. Geologic analysis of deformation in the interior region of Artemis (Venus, 34◦ S 132◦ E). In: Lunar and Planetary Science Conference XXXVII, 1370.pdf. Bannister, R.A., Hansen, V.L., 2006b. Geologic map of the Artemis quadrangle (V-48), Venus. In: U.S. Geological Survey Geologic Investigations Series, 1:5,000,000, submitted. Barker, F., 1979. Trondhjemite: a definition, environment and hypotheses of origin. In: Barker, F. (Ed.), Trondhjemites, Dacites and Related Rocks. Elsevier, Amsterdam, pp. l-12. Barker, F., Arth, J.G., 1976. Generation of trondhjemite-tonalite liquids and Archean bimodal trondhjemite-basalt suites. Geology 4, 596–600. Barker, F., Wones, D.R., Sharp, W.N., Desborough, G.A., 1975. The Pikes Peak batholith, Colorado Front Range, and a model for the origin of the gabbro-anorthosite-syenitpotassic granite suite. Precambrian Research 2, 97–160. Barley, M.E., 1982. Porphyry-style mineralization associated with early Archean calcalkaline igneous activity, eastern Pilbara, Western Australia. Economic Geology 77, 1230–1236. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 dpg15 v.2007/06/04 Prn:5/06/2007; 11:41 F:dpg15ref.tex; VTEX/zk p. 8 aid: dpg15ref pii: S0166-2635(07)15094-5 docsubty: MISC 8 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 References Barley, M.E., 1986. Incompatible-element enrichment in Archean basalts – A consequence of contamination by older sialic crust rather than mantle heterogeneity. Geology 14, 947–950. Barley, M.E., 1993. Volcanic, sedimentary and tectonostratigraphic environments of the ∼3.46 Ga Warrawoona Megasequence: a review. Precambrian Research 60, 47–67. Barley, M.E., 1997. The Pilbara Craton. In: de Wit, M.J., Ashwal, L. (Eds.), Greenstone Belts. In: Oxford University Monographs on Geology and Geophysics, vol. 35. Clarendon Press, Oxford, pp. 657–664. Barley, M.E., Groves, D.I., 1992. Supercontinent cycles and the distribution of metal deposits through time. Geology 20, 291–294. Barley, M.E., Pickard, A.L., 1999. An extensive, crustally-derived, 3325 to 3310 Ma silicic volcano-plutonic suite in the eastern Pilbara Craton: evidence from the Kelley Belt, McPhee Dome, and Corunna Downs Batholith. Precambrian Research 96, 41–62. Barley, M.E., Dunlop, J.S.R., Glover, J.E., Groves, D.I., 1979. Sedimentary evidence for an Archean shallow-water volcanic-sedimentary facies, Eastern Pilbara Block, Western Australia. Earth and Planetary Science Letters 43, 74–84. Barley, M.E., Sylvester, G.C., Groves, D.I., 1984. Archaean calc-alkaline volcanism in the Pilbara Block, Western Australia. Precambrian Research 24, 285–319. Barley, M.E., Eisenlohr, B.N., Groves, D.I., Perring, C.S., Vearncombe, J.R., 1989. Late Archaean convergent margin tectonics and gold mineralization: A new look at the Norseman–Wiluna Belt, Western Australia. Geology 17, 826–829. Barley, M.E., Krapez, B., Groves, D.I., Kerrich, R., 1998a. The Late Archaean bonanza: metallogenic and environmental consequences of the interaction between mantle plumes, lithospheric tectonics and global cyclicity. Precambrian Research 91, 65–90. Barley, M.E., Loader, S.E., McNaughton, N.J., 1998. 3430 to 3417 Ma calc-alkaline volcanism in the McPhee Dome and Kelley Belt, and growth of the eastern Pilbara Craton. Precambrian Research 88, 3–24. Barley, M.E., Bekker, A., Krapez, B., 2005. Late Archean to Early Proterozoic global tectonics, environmental change and the rise of atmospheric oxygen. Earth and Planetary Science Letters 238, 156–171. Bally, R.C., 1999. Gravity-driven continental overflow and Archean tectonics. Nature 398, 413–415. Barovich, K.M., Patchett, P.J., Peterman, Z.E., Sims, P.K., 1991. Neodymium isotopic evidence for Early Proterozoic units in the Watersmeet gneiss dome, northern Michigan. In: U.S. Geological Survey, Bulletin 1904-G, 7 pp. Barry, T.L., Kent, R.W., 1998. Cenzoic magmatism in Mongolia and the origin of central and east Asian basalts. In: American Geophysical Union, Geodynamics Series, vol. 27. Washington, DC, pp. 347–364. Barsukov, V.L. et al., 1984. Geology of Venus from the result of analysis of radar images taken by Venera 15/16 probes: Preliminary data. Geokhimiya 12, 1811–1820. Barsukov, V.L., Surkov, Y.A., Dmitriev, L.V., Khodakovsky, I.L., 1986. Geochemical study of Venus by landers of Vega-1 and Vega-2 probes. Geokhimiya 14, 275–288. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 dpg15 v.2007/06/04 Prn:5/06/2007; 11:41 F:dpg15ref.tex; VTEX/zk p. 9 aid: dpg15ref pii: S0166-2635(07)15094-5 docsubty: MISC References 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 9 Barth, M.G., Foley, S.F., Horn, I., 2002. Partial melting in Archean subduction zones: constraints from experimentally determined trace element partition coefficients between eclogitic minerals and tonalitic melts under upper mantle conditions. Precambrian Research 113, 323–340. Barton, J.M., 1984. Timing of ore emplacement and deformation, Murchison and Sutherland greenstone belts, Kaapvaal Craton. In: Foster, R.P. (Ed.), Gold ’82, The Geology, Geochemistry and Genesis of Gold Deposits. In: Spec. Publ. Geol. Soc. Zimbabwe. A.A. Balkema, Rotterdam, pp. 629–644. Barton, M.D., 1996. Granitic magmatism and metallogeny of southwestern North America. In: Geological Society of America, Special Paper 315, pp. 261–280. Barton, J.M., Robb, J.R., Anhaeusser, C.R., Van Nierop, D.A., 1983. Geochronologic and Sr-isotopic studies of certain units in the Barberton granite-greenstone terrane, South Africa. In: Geological Society of South Africa, Special Publication 9, pp. 63–72. Basilevsky, A.T., Head, J.W., 1988. The geology of Venus. Annual Review of Earth and Planetary Sciences 16, 295–317. Basilevsky, A.T., Head, J.W., 1996. Evidence for rapid and widespread emplacement of volcanic plains on Venus: Stratigraphic studies in the Baltis Vallis region. Geophysical Research Letters 23, 1497. Basilevsky, A.T., Head, J.W., 1998. The geologic history of Venus: A stratigraphic view. Journal of Geophysical Research 103, 8531–8544. Basilevsky, A.T., Head, J.W., 2002. Venus: Timing and rates of geological activity. Geology 30, 1015–1018. Batchelor, M.T., Burne, R.V., Henry, B.I., Jackson, M.J., 2004. A case for biogenic morphogenesis of coniform stromatolites. Physica A 337, 319–326. Bateman, R., Hagemann, S.G., 2004. Gold mineralisation throughout about 45 Ma of Archean orogenesis: protracted flux of gold in the Golden Mile, Yilgarn craton, Western Australia. Mineralium Deposita 39, 536–559. Bateman, R., Costa, S., Swe, T., Lambert, D., 2001. Archaean mafic magmatism in the Kalgoorlie area of the Yilgarn Craton, Western Australia: a geochemical and Nd isotopic study of the petrogenetic and tectonic evolution of a greenstone belt. Precambrian Research 108, 75–112. Bau, M., 1996. Controls on the fractionation of isovalent trace elements in magmatic and aqueous systems: evidence from Y/Ho, Zr/Hf, and lanthanide tetrad effect. Contributions to Mineralogy and Petrology 123, 323–333. Bau, M., Alexander, B., 2006. Preservation of primary REE patterns without Ce anomaly during dolomitization of Mid-Paleoproterozoic limestone and the potential reestablishment of marine anoxia immediately after the “Great Oxidation Event”. South African Journal of Geology 109, 81–86. Bau, M., Moeller, P., 1993. Rare earth element systematics of the chemically precipitated component in Early Precambrian iron formations and the evolution of the terrestrial atmosphere–hydrosphere–lithosphere system. Geochimica et Cosmochimica Acta 57, 2239–2249. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 dpg15 v.2007/06/04 Prn:5/06/2007; 11:41 F:dpg15ref.tex; VTEX/zk p. 10 aid: dpg15ref pii: S0166-2635(07)15094-5 docsubty: MISC 10 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 References Baublys, K.A., Golding, S.D., Young, E., Kamber, B.S., 2004. Simultaneous determination of δ 33 SV-CDT and δ 34 SV-CDT using masses 48, 49 and 50 in a continuous flow isotope ratio mass spectrometer. Rapid Communications in Mass Spectrometry 18, 2765–2769. Bauer, R.L., 1980. Multiphase deformation in the Granite Falls-Montevideeo area, Minnesota River Valley. In: Geological Society of America, Special Paper 182, pp. 1–18. Baxter, J.L., Wilde, S.A., Pidgeon, R.T., Fletcher, I.R., 1984. The Jack Hills Metasedimentary Belt: an extension of the early Archaean terrain in the Yilgarn Block, Western Australia. In: Seventh Australian Geological Convention – Geoscience in the Development of Natural Resources. In: Geological Society of Australia Abstracts 12, pp. 56–57. Baxter, J.L., Wilde, S.A., Pidgeon, R.T., Collins, L.B., 1986. A video presentation on the geological setting of ancient detrital zircons within the Jack Hills Metamorphic Belt, W.A. In: Eighth Australian Geological Convention – Earth Resources in Time and Space. In: Geological Society of Australia Abstracts 15, p. 220. Beakhouse, G.P., 1991. Winnipeg River subprovince. In: Thurston, P.C., Williams, H.R., Sutcliffe, R.H., Stott, G.M. (Eds.), Geology of Ontario. In: Ontario Geological Survey, Special Volume 4, Part 1, pp. 279–301. Beakhouse, G.P., McNutt, R.H., 1991. Contrasting types of late Archean plutonic rocks in northwestern Ontario; implications for crustal evolution in the Superior Province. Precambrian Research 49, 141–165. Beakhouse, G.P., McNutt, R.H., Krogh, T.E., 1988. Comparative Rb-Sr and U-Pb geochronology of late to post tectonic plutons in the Winnipeg River belt, northwestern Ontario, Canada. Chemical Geology 72, 283–291. Beard, B.L., Johnson, C.M., Skulan, J.L., Nealson, K.H., Cox, L., Sun, H., 2003. Application of Fe isotopes to tracing the geochemical and biological cycling of Fe. Chemical Geology 196, 43–56. Beard, J.S., Lofgren, G.E., 1991. Dehydration melting and water-saturated melting of basaltic and andesitic greenstones and amphibolites at 1, 3, and 6.9 kb. Journal of Petrology 32, 365–401. Beaudoin, G., Taylor, B.E., Rumble, D., Thiemens, M., 1994. Variations in the sulfur isotope composition of troilite from the Cañon-Diable iron meteorite. Geochimica et Cosmochimica Acta 58, 4253–4255. Beckinsale, R.D., Drury, S.A., Holt, R.W., 1980. 3360 Myr gneisses from the South Indian craton. Nature 283, 469–470. Bédard, J.H., 2003. Evidence for regional-scale, pluton-driven, high-grade metamorphism in the Archaean Minto Block, northern Superior Province, Canada. Journal of Geology 111, 183–205. Bédard, J., 2005. Partitioning coefficients between olivine and silicate melts. Lithos 83, 394–419. Bédard, J., 2006. A catalytic delamination-driven model for coupled genesis of Archaean crust and sub-continental lithospheric mantle. Geochimica et Cosmochimica Acta 70, 1188–1214. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 dpg15 v.2007/06/04 Prn:5/06/2007; 11:41 F:dpg15ref.tex; VTEX/zk p. 11 aid: dpg15ref pii: S0166-2635(07)15094-5 docsubty: MISC References 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 11 Bédard, J.H., Brouillette, P., Madore, L., Berclaz, A., 2003. Archaean cratonization and deformation in the northern Superior Province, Canada: an evaluation of plate tectonic versus vertical tectonic models. Precambrian Research 127, 61–87. Bédard, L.P., 1996. Archaean high-Mg monzodiorite plutonic suite: a reevaluation of the parentla magma and differenciation. Journal of Geology 104, 713–728. Bédard, L.P., Ludden, J.N., 1997. Nd-isotope evolution of Archaean plutonic rocks in southeastern Superior province. Canadian Journal of Earth Sciences 34 (3), 286–298. Beichman, C.A., Bryden, G., Gautier, T.N., Stapelfeldt, K.R., Werner, M.W., Misselt, K., Rieke, G., Stansberry, J., Trilling, D., 2005. An excess due to small grains around the nearby K0V star HD 69830: Asteroid or cometary debris? Astrophysical Journal 626, 1061–1069. Beinert, H., 2000. A tribute to sulfur. European Journal of Biochemistry 267, 5657–5664. Bekker, A., Holland, H.D., Wang, P.L., Rumble, D., Stein, H.J., Hannah, J.L., Coetzee, L.L., Beukes, N.J., 2004. Dating the rise of atmospheric oxygen. Nature 427, 117–120. Belcher, R.W., Kisters, A.F.M., 2006a. Syntectonic emplacement and deformation of the Heerenveen batholith: Conjectures on the structural setting of the 3.1 Ga granite magmatism in the Barberton granite-greenstone terrain, South Africa. In: Reimold, W.U., Gibson, R.L. (Eds.), Processes on the Earth Earth. In: Geological Society of America, Special Publication 405, pp. 211–231. Belcher, R.W., Kisters, A.F.M., 2006b. Progressive adjustments of ascent and emplacement controls during incremental construction of the 3.1 Ga Heerenveen batholith, South Africa. Journal of Structural Geology 28, 1406–1421. Belcher, R.W., Kisters, A.F.M., Poujol, M., Stevens, G., 2005. Structural emplacement of the 3.2 Ga Nelshoogte pluton: implications for the origin of dome-and-keel structures in the Barberton granite-greenstone terrain. In: Geocongress, Durban. Belcher, R.W., Moyen, J.-F., Kisters, A.F.M., Stevens, G., submitted. Origin of compositional and geochemical heterogeneity within the incrementally assembled 3.1 Ga Heerenveen batholith, Barberton granitoid-greenstone terrain, South Africa. Lithos. Bell, D.R., Gregoire, M., Grove, T.L., Chatterjee, N., Carlson, R.W., Buseck, P.R., 2005. Silica and volatile-element metasomatism of Archean mantle: a xenolith-scale example from the Kaapvaal Craton. Contributions to Mineralogy and Petrology 150, 251–267. Belousova, E.A., Griffin, W.L., O’Reilly, S.Y., Fisher, N.I., 2002. Igneous zircon: trace element composition as an indicator of source rock type. Contributions to Mineralogy and Petrology 143, 602–622. Benedix, G.K., McCoy, T.J., Keil, K., Bogard, D.D., Garrison, D.H., 1998. A petrologic and isotopic study of winonaites: evidence for early partial melting, brecciation and metamorphism. Geochimica et Cosmochimica Acta 62, 2535–2553. Benedix, G.K., McCoy, T.J., Keil, K., Love, S.G., 2000. A petrologic study of the IAB iron meteorites: constraints on the formation of the IAB-winonaite parent body. Meteoritics and Planetary Science 35, 1127–1141. Benn, K., Moyen, J.-F., submitted. Geodynamic origin and tectonomagmatic evolution of the Late Archean Abitibi–Opatica terrane, Superior Province: Magmatic modification of 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 dpg15 v.2007/06/04 Prn:5/06/2007; 11:41 F:dpg15ref.tex; VTEX/zk p. 12 aid: dpg15ref pii: S0166-2635(07)15094-5 docsubty: MISC 12 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 References a plateau-type crust and plume-subduction interaction In: Condie, K.C. (Ed.), Penrose Special Volume. Geological Society of America, Boulder, CO. Benn, K., Sawyer, E.W., Bouchez, J.L., 1992. Orogen parallel and transverse shearing in the Opatica belt, Quebec: implications for the structure of the Abitibi belt. Canadian Journal of Earth Sciences 29, 2429–2444. Bennett, V.C., Nutman, A.P., McCulloch, M.T., 1993. Nd isotopic evidence for transient, highly depleted mantle reservoirs in the early history of the Earth. Earth and Planetary Science Letters 119, 299–317. Benz, W., Slatterly, W.L., Cameron, A.G.W., 1988. Collisional stripping of Mercury’s mantle. Icarus 74, 516–528. Berclaz, A., Godin, L., David, J., Maurice, C., Parent, M., Francis, D., Stevenson, R., Leclair, A., 2003. Geology of the Nuvvuagittuq Belt (3.8 Ga), northeastern Superior Province: towards a multidisciplinary approach [abstract]. In: Québec Exploration 2003, Ministère des Ressources naturelles, Québec, DV 2003-10, 50 pp. Berclaz, A., Leclair, A., David, J., Maurice, C., 2004. Structural evolution of the Northeastern Superior Province (NESP) over 1 billion years, with emphasis on greenstone belts and their relation with enclosing granitoids [abstract]. In: Eos Transactions, CGU/AGU/SEG/EEGS Joint Assembly, Abstract no. V31A-03. Beresford, S.W., Cas, R.A.F., Lambert, D.D., Stone, W.E., 2000. Vesicles in thick komatiite lava flows, Kambalda, Western Australia. Journal of the Geological Society 157, 11–14. Beresford, S.W., Cas, R.A.F., Lahaye, Y., Jane, M., 2002. Facies architecture of an Archean komatiite-hosted N-sulphide ore deposit, Victor, Kambalda, Western Australia: Implications for komatiite lava emplacement. Journal of Volcanology and Geothermal Research 118, 57–75. Berger, M., Rollinson, H., 1997. Isotopic and geochemical evidence for crust-mantle interaction during late Archaean crustal growth. Geochimica et Cosmochimica Acta 61 (22), 4809–4829. Berner, E.K., Berner, R.A., 1996. Global Environment. Water, Air and Geochemical Cycles. Prentice Hall, Upper Saddle River, NJ, 376 pp. Bernstein, S., Kelemen, P.B., Brooks, C.K., 1998. Depleted spinel harzburgite xenoliths in Tertiary dikes from East Greenland: restites from degree melting. Earth and Planet Science Letters 154, 221–235. Bernstein, S., Hanghoi, K., Kelemen, P.B., Brooks, C.K., 2006. Ultra-depleted shallow cratonic mantle beneath West Greenland: dunitic xenoliths from Ubekendt Ejland. Contributions to Mineralogy and Petrology 152, 335–347.1 Beyer, E.E., Brueckner, H.K., Griffin W.L., O’Reilly, S.Y., Graham, S., 2004. Archean mantle fragments in Proterozoic crust, Western Gneiss Region, Norway. Geology 32, 609–612. Beyer, E.E., Griffin W.L., O’Reilly, S.Y., 2006. Transformation of Archean lithospheric mantle by refertilisation: evidence from exposed peridotites in the Western Gneiss Region, Norway. Journal of Petrology 47, 1611–1636. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 dpg15 v.2007/06/04 Prn:5/06/2007; 11:41 F:dpg15ref.tex; VTEX/zk p. 13 aid: dpg15ref pii: S0166-2635(07)15094-5 docsubty: MISC References 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 13 Beyssac, O., Rouzaud, J.-N., Goffe, B., Brunet, F., Chopin, C., 2002. Graphitization in a high-pressure, low-temperature metamorphic gradient: A Raman micro-spectroscopy and HRTEM study. Contributions to Mineralogy and Petrology 143, 19–31. Bhattacharya, S., Kar, R., Misra, S., Teixeira, W., 2001. Early Archean continental crust in the Eastern Ghats granulite belt, India: isotopic evidence from a charnockite suite. Geological Magazine 138, 609–618. Bibikova, E.V., Drugova, G.M., Kirnozova, T.I., Gracheva, T.V., Makarov, V.A., 1984. Age of volcanism of the Olondo greenstone belt (Eastern Siberia). Doklady Earth Sciences 279 (6), 1424–1428. Bibikova, E.V., Belov, A.N., Rosen, O.M., 1988. Metamorphic rocks isotope dating in the Anabar shield. In: Markov, M.S. (Ed.), Archean of the Anabar Shield and Problems of the Early Earth’s Evolution. Nauka, Moscow, 122–133 (in Russian). Bibikova, E.V., Morozova, I.M., Gacheva, T.V., Makarov, V.A., 1989. U-Pb age of granulites from the Kurulta complex. In: Rudnik, V.A. (Ed.), The Oldest Rocks of the Aldan– Stanovik Shield, Eastern Siberia, USSR. Excursion Guide, IGCP 280, Lenningrad– Mainz, pp. 89–91. Bibikova, E.V., Levitsky, V.I., Reznitsky, L.Z., Kirnozova, T.I., Gracheva, T.V., Makarov, V.A., 2001. Archean tonalite- trondhjemite assemblage in the Cis-Sayan salient of the Siberian platform basement: U-Pb, Sm-Nd and Sr isotope data. In: Letnikov, F.A. (Ed.), Geology, Geochemistry and Geophysics. Proceedings of the Russian Basic Research Foundation Conference. Institute of the Earth’s Crust, Irkutsk, pp. 175–176 (in Russian). Bibikova, E.V., Petrova, A., Claesson, S., 2005. The temporal evolution of sanukitoids in the Karelian Craton, Baltic Shield: an ion microprobe U-Th-Pb isotopic study of zircons. Lithos 79, 129–145. Bibikova, E.V., Turkina, O.M., Kirnozova, T.I., Fugzan, M.M., 2006. Ancient plagiogneisses of the Onot block of the Sharyzhalgay metamorphic massif: isotopic geochronology. Geochemistry International 44 (3), 310–316. Bickford, M.E., Wooden, J.L., Bauer, R.L., 2004. New SHRIMP U-Pb zircon ages for the Paleoarchean to Mesoarchean rocks of the Minnesota River Valley. In: Geological Society of America Program with Abstracts, Colorado, p. 458. Bickford, M.E., Wooden, J.L., Bauer, R.L., 2005. SHRIMP study of zircons from Early Archean rocks in the Minnesota River Valley: Implications for the tectonic history of the Superior Province. Bulletin of Geological Society of America 118, 94–108. Bickle, M.J., 1978. Heat loss from the Earth: A constraint on Archaean tectonics from the relation between geothermal gradients and the rate of plate production. Earth and Planetary Science Letters 40, 301–315. Bickle, M.J., 1986. Implications of melting for stabilisation of the lithosphere and heat loss in the Archaean. Earth and Planetary Science Letters 80, 314–324. Bickle, M.J., 1994. The role of metamorphic decarbonation reactions in returning strontium to the silicate sediment mass. Nature 367, 699–704 Bickle, M.J., Bettenay, L.F., Boulter, C.A., Groves, D.I., Morant, P., 1980. Horizontal tectonic intercalation of an Archaean gneiss belt and greenstones, Pilbara Block, Western Australia. Geology 8, 525–529. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 dpg15 v.2007/06/04 Prn:5/06/2007; 11:41 F:dpg15ref.tex; VTEX/zk p. 14 aid: dpg15ref pii: S0166-2635(07)15094-5 docsubty: MISC 14 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 References Bickle, M.J., Bettenay, L.F., Barley, M.E., Chapman, H.J., Groves, D.I., Campbell, I.H., de Laeter, J.R., 1983. A 3500 Ma plutonic and volcanic calc-alkaline province in the Archaean East Pilbara Block. Contributions to Mineralogy and Petrology 84, 25–35. Bickle, M.J., Morant, P., Bettenay, L.F., Boulter, C.A., Blake, T.S., Groves, D.I., 1985. Archaean tectonics of the Shaw Batholith, Pilbara Block, Western Australia: structural and metamorphic tests of the batholith concept. In: Ayers, L.D., Thurston, P.C., Card, K.D., Weber, W. (Eds.), Evolution of Archean Supracrustal Sequences. In: Geological Association of Canada, Special Paper 28, pp. 325–341. Bickle, M.J., Bettenay, L.F., Chapman, H.J, Groves, D.I., McNaughton, N.J., Campbell, I.H., de Laeter, J.R., 1989. The age and origin of younger granitic plutons in the Archean of the Pilbara Block, Western Australia. Contributions to Mineralogy and Petrology 101, 361–376. Bickle, M.J., Bettenay, L.F., Chapman, H.J, Groves, D.I., McNaughton, N.J., Campbell, I.H., de Laeter, J.R., 1993. Origin of the 3500–3300 Ma calc-alkaline rocks in the Pilbara Archaean: isotopic and geochemical constraints from the Shaw Batholith. Precambrian Research 60, 117–149. Bigeleisen, J., Mayer, M.G., 1947. Calculation of equilibrium constants for isotope exchange reactions. Journal of Chemical Physics 15, 261–267. Bigeleisen, J., Wolfsberg, M., 1958. Theoretical and experimental aspects of isotope effects in chemical kinetics. Advances in Chemical Physics 1, 15–76. Bild, R.W., 1977. Silicate inclusions in group IAB irons and a relation to the anomalous stones Winona and Mt. Morris (Wis.). Geochimica et Cosmochimica Acta 41, 1439– 1456. Bindschadler, D.L., 1995. Magellan-a new view of Venus geology and geophysics. Reviews in Geophysics 33, 459–467. Bindschadler, D.L., Parmentier, E.M., 1990. Mantle flow tectonics: the influence of a ductile lower crust and implications for the formation of topographic uplands on Venus. Journal of Geophysical Research 95, 21329–21344. Bindschadler, D.L., deCharon, A., Beratan, K.K., Head, J.W., 1992a. Magellan observations of Alpha Regio: Implications for formation of complex ridged terrains on Venus. Journal of Geophysical Research 97, 13563–13577. Bindschadler, D.L., Schubert, G., Kaula, W.M., 1992b. Coldspots and hotspots: Global tectonics and mantle dynamic of Venus. Journal of Geophysical Research 97, 13495– 13532. Bird, P., 1978. Initiation of intracontinental subduction in the Himalaya. Journal of Geophysical Research 83, 4975–4987. Birk, J-L., Allegre, C.J., 1988. Manganese-chromium isotope systematics and the development of the early solar system. Nature 331, 579–584. Bischoff, A., Geiger, T., Palme, H., Spettel, B., Schultz, L., Scherrer, P., Bland, P., Clayton, R.N., Mayeda, T.K., Herpers, U., Michel, R., Dittrich-Hannen, B., 1994. Acfer 217 – a new member of the Rumuruti chondrite group (R). Meteoritics 29, 264–274. Bischoff, A., 2000. Mineralogical characterization of primitive type-3 lithologies in Rumuruti chondrites. Meteoritics and Planetary Science 35, 699–706. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 dpg15 v.2007/06/04 Prn:5/06/2007; 11:41 F:dpg15ref.tex; VTEX/zk p. 15 aid: dpg15ref pii: S0166-2635(07)15094-5 docsubty: MISC References 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 15 Bishop, J.W., Sumner, D.Y., Huerta, N.J., 2006. Molar tooth structures of the Neoarchean Monteville Formation, Transvaal Group, South Africa. II: A wave-induced fluid model. Sedimentology 53, 1069–1082. Bizzarro, E.A., Baker, J.A., Haack, H., Ulfbeck, D., Rosing, M., 2003. Early history of the Earth’s crust-mantle system inferred from hafnium isotopes in chondrites. Nature 421, 931–933. Bizzarro, M., Baker, J.A., Haack, H., 2004. Mg isotope evidence for contemporaneous formation of chondrules and refractory inclusions. Nature 431, 275–278. Bjerrum, C.J., Canfield, D.E., 2002. Ocean productivity before about 1.9 Gyr ago limited by phosphorus adsorption onto iron oxides. Nature 417, 159–162. Black, L.P., James, P.R., 1983. Geological history of the Archaean Napier Complex of Enderby Land. In: Oliver, R.L., James, P.R., Jago, J.B. (Eds.), Antarctic Geoscience. Australian Academy of Sciences, Canberra, pp. 11–15. Black, L.P., McCulloch, M.T., 1987. Evidence for isotopic re-equilibration of Sm-Nd whole-rock systems in early Archaean crust of Enderby Land, Antarctica. Earth and Planetary Science Letters 82, 15–24. Black, L.P., Gale, N.H., Moorbath, S., Pankhurst, R.J., McGregor, V.R., 1971. Isotopic dating of very early Precambrian amphibolite facies gneisses from the Godthaab district, West Greenland. Earth and Planetary Science Letters 12, 245–259. Black, L.P., James, P.R., Harley, S.L., 1983a. The geochronology, structure and metamorphism of early Archaean rocks at Fyfe Hills, Enderby Land, Antarctica. Precambrian Research 21, 197–222. Black, L.P., James, P.R., Harley, S.L., 1983b. Geochronology and geological evolution of metamorphic rocks in the Field Islands area, East Antarctica. Journal of Metamorphic Geology 1, 277–303. Black, L.P., Williams, I.S., Compston, W., 1986. Four zircon ages from one rock: the history of a 3930 Ma old granulite from Mount Sones, Enderby Land, Antarctica. Contributions to Mineralogy and Petrology 94, 427–437. Black, L.P., Harley, S.L., Sun, S.S., McCulloch, M.T., 1987. The Rayner Complex of East Antarctica: complex isotopic systematics within a Proterozoic mobile belt. Journal of Metamorphic Geology 5, 1–26. Black, L.P., Kinny, P.D., Sheraton, J.W., Delor, C.P., 1991. Rapid production and evolution of late Archaean felsic crust in the Vestfold Block of East Antarctica. Precambrian Research 50, 283–310. Black, L.P., Sheraton, J.W., Tingey, R.J., McCulloch, M.T., 1992. New U-Pb zircon ages from the Denman Glacier area, East Antarctica, and their significance for Gondwana reconstruction. Antarctic Science 4, 447–460. Blackburn, C.E., John, G.W., Ayer, J., Davis, D.W., 1991. Wabigoon Subprovince. In: Thurston, P.C., Williams, H.R., Sutcliffe, R.H., Stott, G.M. (Eds.), Geology of Ontario. In: Ontario Geological Survey, Special Volume 4, Part 1, pp. 303–381. Blake, T.S., Buick, R., Brown, S.J.A., Barley, M.E., 2004. Geochronology of a Late Archaean flood basalt province in the Pilbara Craton, Australia: constraints on basin evolu- 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 dpg15 v.2007/06/04 Prn:5/06/2007; 11:41 F:dpg15ref.tex; VTEX/zk p. 16 aid: dpg15ref pii: S0166-2635(07)15094-5 docsubty: MISC 16 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 References tion, volcanic and sedimentary accumulations, and continental drift rates. Precambrian Research 133, 143–173. Bland, P.A., 2005. The impact rate on Earth. Philosophical Transactions of the Royal Society A – Mathematical, Physical and Engineering Sciences 363, 2793–2810. Bleeker, W., 1990. New structural-metamorphic constraints on Early Proterozoic oblique collision along the Thompson Nickel Belt, Manitoba, Canada. In: Lewry, J.F., Stauffer, M.R. (Eds.), The Early Proterozoic Trans-Hudson Orogen of North America. In: Geological Association of Canada, Special Paper 37, pp. 57–73. Bleeker, W., 2003. The late Archaean record: a puzzle in ca. 35 pieces. Lithos 71, 99–134. Bleeker, W., 2004. Towards a ‘natural’ timescale for the Precambrian – A proposal. Lethaia 37, 219–222. Bleeker, W., Davis, W., 1999. The 1991–1996 NATMAP Slave Province Project: Introduction. Canadian Journal of Earth Sciences 36, 1033–1042. Bleeker, W., Stern, R., 1997. The Acasta gneisses: an imperfect sample of Earth’s oldest crust. In: Cook, F., Erdmer, P. (Eds.), Slave-Northern Cordillera Lithospheric Evolution (SNORCLE) Transect and Cordilleran Tectonics Workshop Meeting. In: Lithosphere Report 56, pp. 32–35. Bleeker, W., Davis, W.J., Villeneuve, M.E., 1997. The Slave Province: evidence for contrasting crustal domains and complex, multistage tectonic evolution. In: Cook, F., Erdmer, P. (Eds.), Slave-Northern Cordillera Lithospheric Evolution (SNORCLE) Transect and Cordilleran Tectonics Workshop Meeting. In: Lithosphere Report 56, pp. 36–37. Bleeker, W., Ketchum, J.W.F., Jackson, V.A., Villeneuve, M.E., 1999. The Central Slave Basement Complex, Part I. Its structural topology and autochthonous cover. Canadian Journal of Earth Sciences 36, 1083–1109. Blewett, R., 2002. Archaean tectonic processes: a case for horizontal shortening in the North Pilbara granite-greenstone terrane, Western Australia. Precambrian Research 113, 87–120. Blewett, R.S., Champion, D.C., 2005. Geology of the Wodgina 1:100,000 sheet. Geological Survey of Western Australia, 1:100,000 Geological Series Explanatory Notes. Blichert-Toft, J., Albarède, F., 1997. The Lu-Hf isotope geochemistry of chondrites and the evolution of the crust-mantle system. Earth and Planetary Science Letters 148, 243–258. Blichert-Toft, J., Albarede, F., Rosing, M., Frei, R., Bridgwater, D., 1999. The Nd and Hf isotope evolution of the mantle through the Archean; results from the Isua supracrustals, West Greenland, and from the Birimian terranes of West Africa. Geochimica et Cosmochimica Acta 63, 3901–3914. Bliss, N.W., Stidolph, P.A., 1969. A review of the Rhodesian basement complex. In: Transactions of the Geological Society of South Africa, Special Publication 2, pp. 305–333. Bocklée-Morvan, D., Crovisier, J., Mumma, M.J., Weaver, H.A., 2004. The composition of cometary volatiles. In: Festou, M., Keller, H.U., Weaver, H. (Eds.), Comets II. University of Arizona Press, Tucson, AZ, pp. 391–423. Bodinier, J.L., Burg, J-P., Leyreloup, A., Vidal, H., 1988. Reliques d’un bassin d’arriere arc subducté puis obducté dans la région de Marvejols (Massif Central). Bulletin de la Société Géologique de France 8 (4), 20–34. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 dpg15 v.2007/06/04 Prn:5/06/2007; 11:41 F:dpg15ref.tex; VTEX/zk p. 17 aid: dpg15ref pii: S0166-2635(07)15094-5 docsubty: MISC References 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 17 Bodorkos, S., Sandiford, M., 2006. Thermal and mechanical controls on the evolution of Archean crustal deformation: examples from Western Australia. In: Benn, K., Mareschal, J.-M., Condie, K. (Eds.), Archean Geodynamics and Environments. In: Geophysical Monograph Series, vol. 164. American Geophysical Union, pp. 131–147. Boerner, D.E., Craven, J.A., Kurtz, R.D., Ross, G.M., Jones, F.W., 1998. The Great Falls Tectonic Zone: suture or intracontinental shear zone? Canadian Journal of Earth Sciences 35, 175–183. Bogard, D.D., 1995. Impact ages of meteorites: a synthesis. Meteoritics 30, 244–268. Bogard, D.D., Garrison, D.H., 1994. 39 Ar-40 Ar ages of four ureilites. Lunar and Planetary Science XXV, 137–138. Bogard, D.D., Garrison, D.H., 1998. 39 Ar-40 Ar ages and thermal history of mesosiderites. Geochimica et Cosmochimica Acta 62, 1459–1468. Bogard, D.D., Burnett, D.S., Eberhardt, P., Wasserburg, G.J., 1967. 87 Rb-87 Sr and 40 K40 Ar ages of the Norton County achondrite. Earth and Planetary Science Letters 3, 179– 189. Bogard, D.D., Garrison, D.H., Jordan, J.L., Mittlefehldt, D.W., 1990. 39 Ar-40 Ar dating of mesosiderites – evidence for major parent body disruption leass than 4 Ga ago. Geochimica et Cosmochimica Acta 54, 2549–2564. Boger, S.D., Miller, J.M., 2004. Terminal suturing of Gondwana and the onset of the RossDelamerian Orogeny: the cause and effect of an Early Cambrian reconfiguration of plate motions. Earth and Planet Science Letters 219, 35–48. Boger, S.D., Wilson, C.J.L., Fanning, C.M., 2001. Early Palaeozoic tectonism within the east Antarctic craton: the final suture between east and west Gondwana? Geology 29, 463–466. Boger, S.D., Wilson, C.J.L., Fanning, C.M., 2006. An Archaean province in the southern Prince Charles Mountains, East Antarctica: U-Pb zircon evidence for c. 3170 Ma granite plutonism and c. 2780 Ma partial melting and orogenesis. Precambrian Research 145, 207–228. Böhm, C.O., 1997a. Geology of the Assean Lake area (parts of NTS 64A 1, 2, 3, 4). In: Report of Activities 1997, Manitoba Energy and Mines, Minerals Division, pp. 47–49. Böhm, C.O., 1997b. Geology of the Assean Lake area. In: Manitoba Energy and Mines, Minerals Division, Preliminary Map 1997 S-3, scale 1:50,000. Böhm, C.O., 1998. Geology of the Natawahunan Lake area (part of NTS 63P/11). In: Report of Activities 1998, Manitoba Energy and Mines, Geological Services, pp. 56– 59. Böhm, C.O., Heaman, L.M., Corkery, M.T., 1999a. Archean crustal evolution of the northwestern Superior craton margin: U-Pb zircon results from the Split Lake Block. Canadian Journal of Earth Sciences 36, 1973–1987. Böhm, C.O., Corkery, M.T., 1999b. Geology of the Waskaiowaka Lake area (part of 64A7,8,9,10). In: Manitoba Industry, Trade and Mines, Geological Services, Preliminary Map 1999T-1, scale 1:50,000. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 dpg15 v.2007/06/04 Prn:5/06/2007; 11:41 F:dpg15ref.tex; VTEX/zk p. 18 aid: dpg15ref pii: S0166-2635(07)15094-5 docsubty: MISC 18 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 References Böhm, C.O., Heaman, L.M., Creaser, R.A., Corkery, M.T., 2000a. Discovery of pre-3.5 Ga exotic crust at the northwestern Suprerior Province margin, Manitoba. Geology 28, 75–78. Böhm, C.O., Heaman, L.M., Creaser, R.A., Corkery, M.T., 2000b. The northwest Superior Province margin in Manitoba: a single Archean-Proterozoic boundary or heterogeneous transition zone? In: Harrap, R.M., Helmstaedt, H. (Eds.), 2000 Western Superior Transect Sixth Annual Workshop. In: Lithoprobe Report 77, pp. 13–18. Böhm, C.O., Heaman, L.M., Stern, R.A., Corkery, M.T., Creaser, R.A., 2003. Nature of Assean Lake ancient crust, Manitoba: a combined SHRIMP-ID-TIMS U-Pb geochronology and Sm-Nd isotope study. Precambrian Research 126, 55–94. Boily, M., Dion, C., 2002. Geochemistry of boninite-type volcanic rocks in the FrotetEvans greenstone belt, Opatica Subprovince, Quebec; implications for the evolution of Archaean greenstone belts. Precambrian Research 115, 349–371. Boily, M., Leclair, A., Maurice, C., Berclaz, A., David, J., 2004. Étude lithogéochimique et isotopique du Nd des assemblages volcaniques et plutoniques de la région sud du Grand-Nord québecois. Ministère des Ressources naturelles, Faune et Parcs du Québec, RP 2004-01, 28 pp. Boily, M., Leclair, A., Berclaz, A., Labbé, J-Y., Lacoste, P., Simard, M., Maurice, C. 2006a. Terrane definition in the Northeastern Superior Province. Abstract in Joint Annual Meeting; Geological Association of Canada, Mineralogical Association of Canada and Society of Economic Geologists, Montreal, Qc., Canada, vol. 31. Boily, M., Leclair, A., Maurice, C., Berclaz, A., David, J., 2006. Étude géochimique et isotopique du Nd des assemblages volcaniques et plutoniques du nord-est de la Province du Supieur (NEPS). Ministère des Ressources naturelles, Québec, Ministère des Ressources naturelles, Québec, GM 62031, 50 pp. Bolhar, R., Woodhead, J.D., Hergt, J.M., 2002. Comment on: “Growth and recycling of early Archaean continental crust: geochemical evidence from the Coonterunah and Warrawoona Groups, Pilbara Craton, Australia” by Green, M.G. et al. (Tectonophysics 322, 69–88). Tectonophysics 344, 289–292. Bolhar, R., Kamber, B.S., Moorbath, S., Fedo, C.M., Whitehouse, M.J., 2004. Characterisation of early Archaean chemical sediments by trace element signatures. Earth and Planetary Science Letters 222, 43–60. Bolhar, R., Kamber, B.S., Moorbath, S., Whitehouse, M.J., Collerson, K.D., 2005. Chemical characterization of earth’s most ancient clastic metasediments from the Isua Greenstone Belt, southern West Greenland. Geochimica et Cosmochimica Acta 69 (6), 1555– 1573. Bonin, B., Ethien, R., Gerbe, M.C., Cottin, J.Y., Feraud, G., Gagnevin, D., Giret, A., Michon, G., Moine, B., 2004. The Neogen to recent Rallier-duBaty nested ring complex, Kerguelen Archipelago (TAAF, Indian Ocean): stratigraphy revisited, implications for cauldron subsidence mechanisms. In: Geological Society of London, Special Publication 234, pp. 125–149. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 dpg15 v.2007/06/04 Prn:5/06/2007; 11:41 F:dpg15ref.tex; VTEX/zk p. 19 aid: dpg15ref pii: S0166-2635(07)15094-5 docsubty: MISC References 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 19 Bosch, D., Bruguier, O., Pidgeon, R.T., 1996. Evolution of an Archean metamorphic belt: a conventional and SHRIMP U–Pb study of accessory minerals from the Jimperding metamorphic belt, Yilgarn Craton, West Australia. Journal of Geology 104, 695–711. Boss, A.P., 1990. Solar nebula models: implications for Earth origin. In: Newsome, H.E., Jones, J.H. (Eds.), Origin of the Earth. Oxford University Press, New York, pp. 3–15. Boss, A.P., 1997. Giant planet formation by gravitational instability. Science 276, 1836– 1839. Boss, A.P., 2003. Rapid formation of outer giant planets by disk instability. Astrophysical Journal 599, 577–581. Böttcher, M.E., Smock, A.M., Cypionka, H., 1998. Sulfur isotope fractionation during experimental precipitation of iron (II) and manganese (II) sulfide at room temperature. Chemical Geology 146, 127–1343. Böttcher, M.E., 2001. Sulfur isotope fractionation in the biogeochemical sulfur cycle of marine sediments. Isotopes in Environmental and Health Studies 37, 97–99. Botz, R., Pokojski, H., Schmitt, M., Thomm, M., 1996. Carbon isotope fractionation during bacterial methanogenesis by CO2 reduction. Organic Geochemistry 25, 255–262. Boulter, C.A., Bickle, M.J., Gibson, B., Wright, R.K., 1987. Horizontal tectonics predating upper Gorge Creek Group sedimentation, Pilbara Block, Western Australia. Precambrian Research 36, 241–258. Bourassa, I., 2002. Geology, geochemistry, geochronology and metallogeny of the CuZn-Au-Ag volcanogenic showings of the Archean Duquet Belt, Superior Province, Northern Québec. Thesis. Université du Québec à Montréal, 78 pp. Bowerman, M.S., Böhm, C.O., Hartlaub, R.P, Heaman, L.M., Creaser, R.A., 2004. Preliminary geochemical and isotopic results from the Gull Rapids area of the eastern Split Lake Block, northwestern Superior Province, Manitoba (parts of NTS 54D5 and 6). In: Report of Activities 2004, Manitoba Industry, Economic Development and Mines, Manitoba Geological Survey, pp. 156–170. Bowring, S.A., 1990. The Acasta gneisses: Remnant of Earth’s early crust. In: Newsom, H.E., Jones, J.H. (Eds.), Origin of the Earth. Oxford University Press, Oxford, pp. 319– 343. Bowring, S.A., Housh, T.B., 1995. The Earth’s early evolution. Science 269, 1535–1540. Bowring, S.A., Van Schmus, W.R., 1984. U-Pb zircon constraints on evolution of Wopmay Orogen, N.W.T. Geological Association of Canada/Mineralogical Association of Canada, Abstract 9, 47 pp. Bowring, S.A., Williams, I.S., 1999. Priscoan (4.00–4.03 Ga) orthogneisses from NW Canada. Contributions to Mineralogy and Petrology 134, 3–16. Bowring, S.A., Williams, I.S., Compston, W., 1989a. 3.96 Ga gneisses from the Slave Province, NWT, Canada. Geology 17, 971–975. Bowring, S.A., King, J.E., Housh, T.B., Isachsen, C.E., Podsek, F.A., 1989b. Neodymium and lead isotope evidence for enriched early Archean crust in North America. Nature 340, 222–225. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 dpg15 v.2007/06/04 Prn:5/06/2007; 11:41 F:dpg15ref.tex; VTEX/zk p. 20 aid: dpg15ref pii: S0166-2635(07)15094-5 docsubty: MISC 20 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 References Bowring, S.A., Housh, T.B., Isachsen, C.E., 1990. The Acasta Gneisses: remnant of earth’s early crust. In: Newsom, H.E., Jones, J.H. (Eds.), Origin of the Earth. Oxford University Press, New York, pp. 319–343. Boyd F.R., 1989. Composition and distinction between oceanic and cratonic lithosphere. Earth and Planetary Science Letters 96, 15–26. Boyd, F.R., Pokhilenko N.P., Pearson D.G., Mertzman S.A., Sobolev N.V., Finger L.W., 1997. Composition of the Siberian cratonic mantle: evidence from Udachnaya peridotite xenoliths. Contributions to Mineralogy and Petrology 128, 228–246. Boyet, M., Carlson, R.W., 2005. 142Nd isotope evidence for early (>4.53 Ga) global differentiation of the silicate Earth. Science 309, 576–578. Boynton, W.V. 1984. Geochemistry of the rare earth elements: meteorite studies. In: Henderson, P. (Ed.), Rare Earth Element Geochemistry. Elsevier, Amsterdam, pp. 63–114. Brandl, G., de Wit, M.J., 1997. The Kaapvaal Craton. In: de Wit, M.J., Ashwal, L.D. (Eds.), Greenstone Belts. Oxford Science Publications, Oxford, pp. 581–607. Brandl, G., Kröner, A., 1993. Preliminary results of single zircon studies from various Archaean rocks of the Northeastern Transvaal. In: Mines, G.S.A. (Ed.), 16th Colloquium of African Geology, Mbabane, Swaziland, pp. 54–56. Brasier, M.D., Green, O.R., Jephcoat, A.P., Kleppe, A.K., Van Kranendonk, M.J., Lindsay, J.F., Steele, A., Grassineau, N., 2002. Questioning the evidence for Earth’s oldest fossils. Nature 416, 76–81. Brasier, M.D., Green, O.R., Lindsay, J.F., McLoughlin, N., Steele, A., Stokes, C., 2005. Critical testing of Earth’s oldest putative fossil assemblage from the ∼3.5 Ga Apex chert, Chinaman Creek, Western Australia. Precambrian Research 140, 55–102. Brasier, M.D., McLoughlin, N., Green, O., Wacey, D., 2006. A fresh look at the fossil evidence for early Archaean cellular life. Philosophical Transactions of the Royal Society of London Ser. B 361, 887–902. Braterman, P.S., Cairns-Smith, A.G., Sloper, R.W., 1983. Photooxidation of hydrated Fe2+ – significance for banded iron formations. Nature 303, 163–164. Brauhart, C., 1999. Regional alteration systems associated with Archean volcanogenic massive sulphide deposits at Panorama, Pilbara, Western Australia. Unpublished Ph.D. thesis. University of Western Australia, 194 pp. Brauhart, C.W., Morant, P., 2000. Discussion on “Geochemistry and geodynamic setting of volcanic and plutonic rocks associated with early Archean volcanogenic massive sulphide mineralisation, Pilbara Craton” by Vearncombe, S.E., Kerrich, R., 1999. Precambrian Research 98, 243–270. Precambrian Research 104, 95–99. Brauhart, C.W., Groves, D.I., Morant, P., 1998. Regional alteration systems associated with volcanogenic massive sulfide mineralization at Panorama, Pilbara, Western Australia. Economic Geology 93, 292–302. Brauhart, C.W., Huston, D.L., Groves, D.I, Mikucki, E.J., Gardoll, S.J, 2001. Geochemical mass transfer patterns as indicators of the architecture of a complete volcanic-hosted massive sulfide hydrothermal alteration system in the Panorama district, Pilbara, Western Australia. Economic Geology 96, 1263–1278. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 dpg15 v.2007/06/04 Prn:5/06/2007; 11:41 F:dpg15ref.tex; VTEX/zk p. 21 aid: dpg15ref pii: S0166-2635(07)15094-5 docsubty: MISC References 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 21 Brazzle, R.H., Pravdivetseva, O.V., Meshik, A.P., Hohenburg, C.M., 1999. Verification and interpretation of the I-Xe chronometer. Geochimica et Cosmochimica Acta 63, 739– 760. Brearley, A.J., 2003. Nebula versus parent-body processing. In: Davis, A.M. (Ed.), Meteorites, Comets and Planets. Treatise on Geochemistry, vol. 1, Elsevier-Pergamon, Oxford, pp. 247–268. Brearley, A.J., Hutcheon, I.D., Browning, L., 2001. Compositional zoning and Mn-Cr systematics in carbonates from the Y791198 CM2 carbonaceous chondrite. In: Lunar and Planetary Science XXXII, #1458. Lunar and Planetary Institute, Houston, TX (CDROM). Brearley, A.J., Hutcheon, I.D., 2000. Carbonates in the CM1 chondrite ALH84034:mineral chemistry, zoning and Mn-Cr systematics. In: Lunar and Planetary Science XXXI, #1407. Lunar and Planetary Institute, Houston, TX (CD-ROM). Brearly, A.J., Jones, R.H., 1998. Chondritic meteorites. In: Papike, J.J. (Ed.), Planetary Materials. In: Reviews in Mineralogy, vol. 36. Mineralogical Society of America, Washington, DC, pp. 3-1–3-398. Bridges, N.T., 1995. Submarine analogs to Venusian pancake domes. Geophysical Research Letters 22, 2781. Bridges, N.T., 1997. Ambient effects on basalt and rhyolite lavas under Venusian, subaerial, and subaqueous conditions. Journal of Geophysical Research 102, 9243. Bridgwater, D., McGregor, V.R., 1974. Field work on the very early Precambrian rocks of the Isua area, southern West Greenland. Rapport Grønlands Geologiske Undersøgelse 65, 49–54. Bridgwater, D., Schiotte, L., 1990. The Archean gneiss complex of northern Labrador a review of current results, ideas and problems. Bulletin of the Geological Society of Denmark 39, 153–166. Bridgwater, D., McGregor, V.R., Myers, J.S., 1974. A horizontal tectonic regime in the Archaean of Greenland and its implications for early crustal thickening. Precambrian Research 1, 179–197. Bridgwater, D., Allaart, J.H., Schopf, J.W., Klein, C., Walter, M.R., Barghoorn, E.S., Strother, P., Knoll, A.H., Gorman, B.E. 1981. Microfossil-like objects from the Archaean of Greenland: a cautionary note. Nature 289, 51–53. Bridgwater, D., Jackson, G., Bostock, H., 1991. The Anabar shield, field conference, Siberia, 1990. Geoscience Canada 18 (1), 28–32. Brocks, J.J., Love, G.D., Snape, C.E., Logan, G.A., Summons, R.E., Buick, R., 2003. Release of bound aromatic hydrocarbons from late Archean and Mesoproterozoic kerogens via hydropyrolysis. Geochimica et Cosmochimica Acta 67, 1521–1530. Broecker, W.S., 1970. A boundary condition on the evolution of atmospheric oxygen. Journal of Geophysical Research 75, 3553–3557. Brown, C.D., Grimm, R.E., 1995. Tectonics of Artemis Chasma: a Venusian “plate” boundary. Icarus 117, 219–249. Brown, C.D., Grimm, R.E., 1996. Lithospheric rheology and flexure at Artemis Chasma, Venus. Journal of Geophysical Research 101, 12697–12708. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 dpg15 v.2007/06/04 Prn:5/06/2007; 11:41 F:dpg15ref.tex; VTEX/zk p. 22 aid: dpg15ref pii: S0166-2635(07)15094-5 docsubty: MISC 22 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 References Brown, J.L., 2002. Neoarchean evolution of the western – central Wabigoon boundary zone, Brightsand Forest area, Ontario. Unpublished M.Sc. thesis. University of Ottawa, Ottawa, Ontario. Brown, M., 2006. Duality of thermal regimes is the distinctive characteristic of plate tectonics since the Neoarchean. Geology 34, 961–964. Brueckner, H.K., Medaris, L.G., 1998. A tale of two orogens: the contrasting T-P-t history and geochemical evolution of mantle in high- and ultrahigh-pressure metamorphic terranes of the Norwegian Caledonides and the Czech Variscides. Schweizerische Mineralogische und Petrographische Mitteilungen 78, 293–307. Brueckner, H.K., Medaris, L.G., 2000. A general model for the intrusion and evolution of “mantle” garnet peridotites in high-pressure and ultra-high-pressure metamorphic terranes. Journal of Metamorphic Geology 18, 123–133. Bruguier, O., Dada, S., Lancelot, J.R., 1994. Early Archean component (>3.5 Ga) within a 3.05-Ga orthogneiss from northern Nigeria, U-Pb zircon evidence. Earth and Planetary Science Letters 125, 89–103. Bryan, W.B., Thompson, G., Ludden, J.N., 1981. Compositional variation in normal MORB from 22’-25’N: Mid-Atlantic Ridge and Kane Fracture Zone. Journal of Geophysical Research 86, 11815–11836. Bucher, K., Frey, M., 1994. Petrogenesis of Metamorphic Rocks. Springer-Verlag, New York, 318 pp. Buick, R., 1984. Carbonaceous filaments from North Pole, Western Australia: are they fossil bacteria in Archean stromatolites? Precambrian Research 24, 157–172. Buick, R., 1988. Carbonaceous filaments from North Pole, Western Australia: are they fossil bacteria in Archean stromatolites? A reply. Precambrian Research 39, 311–317. Buick, R., 1990. Microfossil recognition in Archean rocks: an appraisal of spheroids and filaments from a 3500 M.Y. old chert-barite unit at North Pole, Western Australia. Palaios 5, 441–491. Buick, R., Barnes, K.R., 1984. Cherts in the Warrawoona Group: Early Archaean silicified sediments deposited in shallow-water environments. In: Muhling, J.R., Groves, D.I., Blake, T.S. (Eds.), Archaean and Proterozoic Basins of the Pilbara, Western Australia: Evolution and mineralization potential. In: The Geology Department and University Extension, Publication 9. University of Western Australia, pp. 37–53. Buick, R., Doepel, M.G., 1999. Panorama VMS zinc-copper deposits. In: Ferguson, K.M. (Compiler), Lead, Zinc and Silver Deposits of Western Australia. In: Western Australia Geological Survey, Mineral Resources Bulletin 15, pp. 80–86. Buick, R., Dunlop, J., 1990. Evaporitic sediments of early Archaean age from the Warrawoona Group, North Pole, Western Australia. Sedimentology 37, 247–277. Buick, R., Dunlop, J.S.R., Groves, D.I., 1981. Stromatolite recognition in ancient rocks: An appraisal of irregularly laminated structures in an Early Archaean chert-barite unit from North Pole, Western Australia. Alcheringa 5, 161–181. Buick, R., Thornett, J.R., McNaughton, N.J., Smith, J.B., Barley, M.E., Savage, M., 1995. Record of emergent continental crust ∼3.5 billion years ago in the Pilbara Craton of Australia. Nature 375, 574–577. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 dpg15 v.2007/06/04 Prn:5/06/2007; 11:41 F:dpg15ref.tex; VTEX/zk p. 23 aid: dpg15ref pii: S0166-2635(07)15094-5 docsubty: MISC References 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 23 Buick, R., Brauhart, C.W., Morant, P., Thornett, J.R., Maniw, J.G., Archibald, N.J., Doepel, M.G., Fletcher, I.R., Pickard, A.L., Smith, J.B., Barley, M.E., McNaughton, N.J., Groves, D.I., 2002. Geochronology and stratigraphic relationships of the Sulphur Springs Group and Strelley Granite: a temporally distinct igneous province in the Archaean Pilbara Craton, Australia. Precambrian Research 114, 87–120. Bullock, M.A., Grinspoon, G.H., 2001. The recent evolution of climate on Venus. Icarus 150, 19–37. Bullock, M.A., Grinspoon, D.H., 1996. The stability of climate on Venus. Journal of Geophysical Research 101, 7521–7530. Bunch, T.E., Keil, K., Olsen, E., 1970. Mineralogy and petrology of silicate inclusions in iron meteorites. Contributions to Mineralogy and Petrology 25, 297–240. Bureau of Geology and Mineral Resources of Henan Province (BGMRHP), 1989. Regional Geology of Henan Province. People’s Republic of China, Ministry of Geology and Mineral Resources, Geological Memoirs, Series 1, vol. 19. Geological Publishing House, Beijing, pp. 1–232 (in Chinese). Burg, J-P., Ford, M., 1997. Orogeny through time: an overview. In: Geological Society of London, Special Publication 121, pp. 1–17. Burg, J-P., Leyreloup, A., Marchand., J., Matte, P., 1984. Inverted metamorphic zonation and large-scale thrusting in the Variscan Belt: an example in the French Massif Central. In: Geological Society Special Publication 14, pp. 47–61. Burg, J-P., Delor, C.P., Leyreloup, A., Romney, F., 1989. Inverted metamorphic zonation and Variscan thrust tectonics in the Rouergue area (Massif Central, France): P-T-t record from mineral to regional scale. In: Daly, R.A.C.J.S., Yardley, B.W.D. (Eds.), Evolution of Metamorphic Belts. In: Geological Society Special Publication, vol. 43, pp. 423–439. Busfield, A., Gilmour, J.D., Whitby, J.A., Simon, S.B., Grossman, L., Tang, C.C., Turner, G., 2001. I-Xe analyses of Tagish Lake magnetite and Monahans halite. Meteoritics and Planetary Science 36 (Supplement), A34–35. Busfield, A., Gilmour, J.D., Whitby, J.A., Turner, G., 2004. Iodine-Xenon analysis of ordinary chondrite halide: implications for early solar system water. Geochimica et Cosmochimica Acta 68, 195–202. Bussey, D.B.J., Sorensen, S.-A., Guest, J.E., 1995. Factors influencing the capability of lava to erode its substrate: Application to Venus. Journal of Geophysical Research 100, 6941–6949. Butler, I.B., Bottcher, M.E., Rickard, D., Oldroyd, A., 2004. Sulfur isotope partitioning during experimental formation of pyrite via the polysulfide and hydrogen sulfide pathways: Implications for the interpretation of sedimentary and hydrothermal pyrite isotope records. Earth and Planetary Science Letters 228, 495–509. Butler, I.B., Archer, C., Vance, D., Oldroyd, A., Rickard, D., 2005. Fe isotope fractionation on FeS formation in ambient aqueous solution. Earth and Planetary Science Letters 236, 430–442. BVTP – Basaltic Volcanism of the Terrestrial Planets (BVTP). Basaltic Volcanism Study Project, 1981. Pergamon Press Inc., New York, 1286 pp. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 dpg15 v.2007/06/04 Prn:5/06/2007; 11:41 F:dpg15ref.tex; VTEX/zk p. 24 aid: dpg15ref pii: S0166-2635(07)15094-5 docsubty: MISC 24 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 References Byerly, G.R., 1999. Komatiites of the Mendon Formation: Late-stage ultramafic volcanism in the Barberton Greenstone Belt, In: Lowe, D.R., Byerly, G.R. (Eds.), Geologic Evolution of the Barberton Greenstone Belt, South Africa. In: Geological Society of America, Special Paper 329, pp. 189–212. Byerly, G.R., Lowe, D.R., 1994. Spinels from Archaean impact spherules. Geochimica et Cosmochimica Acta 58, 3469–3486. Byerly, G.R., Kröner, A., Lowe, D.R., Todt, W., Walsh, M.M., 1996. Prolonged magmatism and time constraints for sediments deposition in the early Archaean Barberton greenstone belt: evidence from the Upper Onverwacht and Fig Tree Groups. Precambrian Research 78, 125–138. Byerly, G.R., Lowe, D.R., Wooden, J.L., Xie, X., 2002. An Archean impact layer from the Pilbara and Kaapvaal cratons. Science 297, 1325–1327. Cagnard, F., Brun, J.P., Gapais, D., 2006. Modes of thickening of analogue weak lithospheres. Tectonophysics 421, 145–160. Cairns-Smith, A.G., 1978. Precambrian solution photochemistry, inverse segregation, and banded iron formations. Nature 276, 807–808. Calais, E., Ebinger, C., Hartnady, C., Nocquet, J.M., 2006. Kinematics of the East African Rift from GPS and earthquake slip vector data. In: Geological Society of London, Special Publication 259, pp. 9–22. Calvert, A., Ludden, J.N., 1999. Archean continental assembly in the southeastern Superior Province of Canada. Tectonics 18, 412–429. Cameron, A.G.W., 1979. Neutron-rich silicon-burning and equilibrium processes of nucleosynthesis. Astrophysical Journal 230, L53-L57. Cameron, W.E., Nisbet, E.G., Dietrich, V.J., 1979. Boninites, komatiites and ophiolitic basalts. Nature 280 (16), 550–553. Campbell, B.A., 1999. Surface formation rates and impact crater densities on Venus. Journal of Geophysical Research 104, 21,951–21,955. Campbell, B.A., Arvidson, R.E., Shepard, M.K., Brackett, R.A., 1997. Remote sensing of surface processes. In: Bouger, S.W., Hunten, D.M., Phillips, R.J. (Eds.), Venus II. University of Arizona Press, pp. 503–526. Campbell, I.H., 1998. The mantle’s chemical structure: insights from the melting products of mantle plumes. In: Jackson, I.N.S. (Ed.), The Earth’s Mantle: Composition, Structure and Evolution. Cambridge University Press, Cambridge, pp. 259–310. Campbell, I.H., 2003. Constraints on continental growth models from Nb/U ratios in the 3.5 Ga Barberton and other Archaean basalt-komatiite suites. American Journal of Science 303, 319–351. Campbell, I.H., Davies, G.F., 2006. Do mantle plumes exist? Episodes 29, 162–168. Campbell, I.H., Hill, R.I. 1988. A two-stage model for the formation of the granitegreenstone terrains of the Kalgoorlie–Norseman area, Western Australia. Earth and Planetary Science Letters 90, 11–25. Campbell, I.H., Griffiths, R.W., Hill, R.I., 1989. Melting in an Archaean mantle plume: heads it’s basalts, tails it’s komatiites. Nature 339, 697–699. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 dpg15 v.2007/06/04 Prn:5/06/2007; 11:41 F:dpg15ref.tex; VTEX/zk p. 25 aid: dpg15ref pii: S0166-2635(07)15094-5 docsubty: MISC References 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 25 Candela, P.A., Picolli, P.M., 2005. Magmatic processes in the development of porphyrytype ore systems. Economic Geology, 100th Anniversary Volume, 25–38. Canfield, D.E., 2001. Biogeochemistry of sulphur isotopes. In: Valley, J.W., Cole, D.R. (Eds.), Stable Isotope Geochemistry. In: Reviews in Mineralogy and Geochemistry, vol. 43, pp. 607–636. Canfield, D.E., 2004. The evolution of the Earth surface sulfur reservoir. American Journal of Science 304, 839–861. Canfield, D.E., 2005. The early history of atmospheric oxygen: Homage to Robert M. Garrels. Annual Review of Earth and Planetary Sciences 33, 1–36. Canfield. D.E., Raiswell, R., 1999. The evolution of the sulfur cycle. American Journal of Science 299, 697–723. Canfield, D.E., Thamdrup, B., 1994. The production of S-34-depleted sulfide during bacterial disproportionation of elemental sulfur. Science 266, 1973–1975. Canup, R.N., 2004. Simulations of a late lunar-forming impact. Icarus 168, 433–456. Canup, R., Agnor, C.B., 2000. Accretion of the terrestrial planets and the Earth-Moon system. In: Canup, R., Righter, K. (Eds.), Origin of the Earth and Moon. Arizona University Press, Tucson, AZ, pp. 113–129. Canup, R., Asphaug, E., 2001. Origin of the Moon in a giant impact near the end of the Earth’s formation. Nature 412, 708–712. Cao, G.Q., Wang, Z.P., Zhang, C.J., 1996. Early Precambrian Geology of Western Shandong. Geological Publishing House, Beijing, pp. 1–193 (in Chinese). Card, K.D., 1990. A review of the Superior Province of the Canadian Shield, a product of Archean accretion. Precambrian Research 48, 99–156. Card, K.D., Ciesielski, A., 1986. Subdivisions of the Superior Province of the Canadian Shield. Geoscience Canada 13, 5–13. Card, K.D., Poulsen, K.H., 1998. Geology and mineral deposits of the Superior Province of the Canadian shield. In: Lucas, S. (Coordinator), Geology of the Precambrian Superior and Grenville Provinces and Precambrian Fossils in North America. In: Geological Survey of Canada Geology of Canada, vol. 7, pp. 13–194 (Chapter 2). Carlson, R.W., Hauri, E.H., 2001. Extending the 107 Pd-107 Ag chronometer to low Pd/Ag meteorites with the MC-ICPMS. Geochimica et Cosmochimica Acta 65, 1839–1848. Carlson, R.W., Lugmair, G.W., 2000. Timescales of planetesimal formation and differentiation based on extinct and extant radioisotopes. In: Canup, R., Righter, K. (Eds.), Origin of the Earth and Moon. Arizona University Press, Tucson, AZ, pp. 25–44. Carlson, R.W., Hunter, D.R., Barker, F., 1983. Sm-Nd age and isotopic systematics of the bimodal suite, ancient gneiss complex, Swaziland. Nature 305, 701–704. Carlson, R.W., Pearson, D.G., Boyd, F.R., Shirey, S.H., Irvine, G., Menzies, A.H., Gurney, J.J., 1999. Re-Os systematics of lithospheric peridotites: Implications for lithosphere formation and preservation. In: Proceedings of the 7th International Kimberlite Conference. Red Roof Design, Cape Town, pp. 99–108. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 dpg15 v.2007/06/04 Prn:5/06/2007; 11:41 F:dpg15ref.tex; VTEX/zk p. 26 aid: dpg15ref pii: S0166-2635(07)15094-5 docsubty: MISC 26 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 References Carlson, R.W., Irving, A.J., Schulze, D.J., Hearn, B.C., Jr., 2004. Timing of Precambrian melt depletion and Phanerozoic refertilization events in the lithospheric mantle of the Wyoming craton and adjacent Central Plains Orogen. Lithos 77, 453–472. Carpenter, J.M., Wolf, S., Schreyer, K., Launhardt, R., Henning, T., 2005. Evolution of cold circumstellar dust around solar-type stars. Astronomical Journal 129, 1049–1062. Carson, C.J., Ague, J.J., Coath, C.D., 2002. U-Pb geochronology from Tonagh Island, East Antarctica: implications for the timing of ultra-high temperature metamorphism of the Napier Complex. Precambrian Research 116, 237–263. Caro, G., Bourdon, B., Wood, B.J., Corgne, A., 2005. Trace element fractionation in Hadean mantle generated by melt segregation from a magma ocean. Nature 436, 246– 249. Caro, G., Bourdon, B., Birck, J L., Moorbath, S., 2006. High-precision Nd-142/Nd-144 measurements in terrestrial rocks: Constraints on the early differentiation of the Earth’s mantle. Geochimica et Cosmochimica Acta 70 (1), 164–191. Cas, R., Self, S., Beresford, S., 1999. The behavior of the fronts of komatiite lavas in medial to distal settings. Earth and Planetary Science Letters 172, 127–139. Casey, J.F., 1997. Comparison of major and trace element geochemistry of abyssal peridotites and mafic plutonic rocks with basalts from the MARK region of the mid-Atlantic Ridge. In: Proceedings of the Ocean Drilling Program, Scientific Results, vol. 153, pp. 181–240. Cassidy, K.F., Champion, D.C., McNaughton, N.J., Fletcher, I.R., Whitaker, A.J., Bastrakova, I.V., Budd, A.R., 2002. Characterization and metallogenic significance of Archaean granitoids of the Yilgarn Craton, Western Australia. Amira International Limited, AMIRA Project no. P482 / MERIWA Project M281 (unpublished report no. 222). Cassidy, K.F., Champion, D.C., Krapež, B., Barley, M.E., Brown, S.J.A., Blewett, R.S., Groenewald, P.B., Tyler, I.M., 2006. A revised geological framework for the Yilgarn Craton, Western Australia. Western Australia Geological Survey, Record 2006/8, 8 pp. Cassidy, K.F., Champion, D.C., Krapez, B., Barley, M.E., Brown, S.J.A., Blewett, R.S., Groenwald, N.B., Tyler, I.M., 2006, A revised geological framework for the Yilgarn Craton. Geological Survey of Western Australia, Record 2006/8. Catanzaro, E.J., 1963. Zircon ages in southwestern Minnesota. Journal of Geophysical Research 68, 2045–2048. Cates, N.L., Mojzsis, S.J., 2006. Chemical and isotopic evidence for widespread Eoarchean ( 3750 Ma) metasedimentary enclaves in southern West Greenland. Geochimica et Cosmochimica Acta 70, 4229–4257. Cates, N.L., Mojzsis, S.J., 2007a. Pre-3770 Ma supracrustal rocks from the Nuvvuagittuq supracrustal belt, northern Québec. Earth and Planetary Science Letters, in press. Cates, N.L., Mojzsis, S.J., 2007b. Rare or prevalent Earth? Conditions suitable for life were established rapidly on the young Earth. In: Lunar and Planetary Science Conference XXXVIII, Houston, TX. Cavosie, A.J., Wilde, S.A., Liu, D., Weiblen, P.W., Valley, J.W., 2004. Internal zoning and U-Th-Pb chemistry of jack Hills detrital zircons: a mineral record of early Archean to Mesoproterozoic (4348–1576 Ma) magmatism. Precambrian Research 135, 251–279. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 dpg15 v.2007/06/04 Prn:5/06/2007; 11:41 F:dpg15ref.tex; VTEX/zk p. 27 aid: dpg15ref pii: S0166-2635(07)15094-5 docsubty: MISC References 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 27 Cavosie, A.J., Valley, J.W., Wilde, S.A., 2005a. Magmatic δ 18 O in 4400–3900 Ma detrital zircons: A record of the alteration and recycling of crust in the Early Archean. Earth and Planetary Science Letters 235, 663–681. Cavosie, A.J., Wilde, S.A., Valley, J.W., 2005b. A lower age limit for the Archean based on δ 18 O of detrital zircons. Geochimica et Cosmochimica Acta 69, A391. Cavosie, A.J., Valley, J.W., Wilde, S.A., 2006. Correlated microanalysis of zircon: Trace element, delta O-18, and U-Th-Pb isotopic constraints on the igneous origin of complex >3900 Ma detrital grains. Geochimica et Cosmochimica Acta 70, 5601–5616. Cawood, P.A., 2005. Terra Austaris Orogen: Rodinia breakup and the development of the Pacific and Iapetus margins of Gondwana during the Neoproterozoic and Paleozoic. Earth Science Reviews 69, 249–279. Cawood, P.A., Kröner, A., Pisarevsky, S., 2006. Precambrian plate tectonics: Criteria and evidence. GSA Today 16 (7), 4–11. Chamberlain, K.R., 1998. Medicine Bow Orogeny: Timing of deformation and model of crustal structure produced during continent-arc collision, ca. 1.78 Ga, southeastern Wyoming. Rocky Mountain Geology 33 (2), 259–278. Chamberlain, K.R., Bowring, S.A. 2001. Apatite-feldspar U-Pb thermochronometer: a reliable, mid-range (450 ◦ C), diffusion-controlled system. Chemical Geology 172, 173– 200. Chamberlain, K.R., Bauer, R.L., Frost, B.R., Frost, C.D., 2002. Dakotan Orogen: Continuation of Trans-Hudson Orogen or younger, separate suturing of Wyoming and Superior cratons. Geological Association of Canada – Mineralogical Association of Canada Abstracts 27, 18. Chamberlain, K.R., Frost, C.D., Frost, B.R., 2003. Early Archean to Mesoproterozoic evolution of the Wyoming Province: Archean origins to modern lithospheric architecture. Canadian Journal of Earth Sciences 40, 1357–1374. Chamberlin, T.C., 1897. The method of multiple working hypotheses. Journal of Geology 5, 837–848. Champion, D.C., Sheraton, J.W., 1997. Geochemistry and Nd isotope systematics of Archaean granites of the Eastern Goldfields, Yilgarn Craton, Australia: implications for crustal growth processes. Precambrian Research 83, 109–132. Champion, D.C., Smithies, R.H., 2000. The geochemistry of the Yule Granitoid Complex, East Pilbara Granite-Greenstone Terrane; evidence for early felsic crust. In: Western Australia Geological Survey, Annual Review 1999–2000, pp. 42–48. Champion, D.C., Smithies, R.H., 2001. Archean granites of the Yilgarn and Pilbara Cratons, Western Australia. In: Cassidy, K.F., Dunphy, J.M., Van Kranendonk, M.J. (Eds.), 4th International Archean Symposium 2001, Extended Abstracts, AGSO – Geoscience Australia, Record 2001/37, pp. 134–136. Chandler, V.W., 1987. Aeromagnetic map of Minnesota, west-central region, magnetic intensity anomaly. Scale 1:250,000, 2 pls. Map A-6. Minnesota Geological Survey, Minneapolis, MN. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 dpg15 v.2007/06/04 Prn:5/06/2007; 11:41 F:dpg15ref.tex; VTEX/zk p. 28 aid: dpg15ref pii: S0166-2635(07)15094-5 docsubty: MISC 28 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 References Chandler, V.W., 1989. Aeromagnetic map of Minnesota, southwestern region, magnetic intensity anomaly: Scale 1:250,000, 2 pls. Map A-8. Minnesota Geological Survey, Minneapolis, MN. Chandler, V.W., 1991. Aeromagnetic map of Minnesota, southeastern region, magnetic intensity anomaly: Scale 1:250,000, 2 pls. Map A-9. Minnesota Geological Survey, Minneapolis, MN. Chapman, M.G., 1999. Geologic/Geomorphic Map of the Galindo Quadrangle (V–40), Venus Geologic Investigations Series I-2613. U.S. Geological Survey, 1:5,000,000. Chappell, B.W., White, A.J.R., 1974. Two contrasting granite types. Pacific Geology 8, 173–174. Chardon, D.H., Choukroune, P., Jayananda, M., 1996. Strain patterns, decollement and incipient sagducted greenstone terrains in the Archaean Dharwar craton (South India). Journal of Structural Geology 18, 991–1004. Chardon, D.H., Choukroune, P., Jayananda, M., 1998. Sinking of the Dharwar Basin (South India); implications for Archaean tectonics. Precambrian Research 91, 15–39. Chardon, D., Peucat, J.-J., Jayananda, M., Choukroune, P., Fanning, M., 2002. Archean granite-greenstone tectonics at Kolar (South India): Interplay of diapirism and bulk inhomogeneous contraction during juvenile magmatic accretion. Tectonics 21, 10.1029/2001TC901032. Chaussidon, M., Lorand, J.P., 1990. Sulfur isotope composition of orogenic spinel lherzolite massifs from Ariege (north-eastern Pyrenees, France) – an ion microprobe study. Geochimica et Cosmochimica Acta 54, 2835–2846. Chaussidon, M., Albarède, F., Sheppard, S.M.F., 1987. Sulfur isotope heterogeneity in the mantle from ion microprobe measurements of sulfide inclusions in diamonds. Nature 330, 242–244. Chen, H.-L., Yang, S.-F., Wang, Q.-H., Luo, J.-C., Jia, C.-Z., Wei, G.-Q., Li, Z.-L., He, G.-Y., Hu, A.-P., 2006. Tarim platform, Early to Middle Permian basalt magmatism and interaction with sedimentary rocks (title translated from Chinese). Geology in China 33, 544–551 (in Chinese). Chen, J.H., Wasserburg, G.J., 1981. The isotopic composition of uranium and lead in Allende inclusions and meteoritic phosphates. Earth and Planetary Science Letters 52, 1–15. Chen, J.H., Wasserburg, G.J., 1990. The isotopic composition of Ag in meteorites and the presence of 107 Pd in protoplanets. Geochimica et Cosmochimica Acta 54, 1729–1743. Chen, J.H., Papanastassiou, D.A., Wasserburg, G.J., 2002. Re-Os and Pd-Ag systematics in group IIIAB irons and in pallasites. Geochimica et Cosmochimica Acta 66, 3793–3810. Chen, S.F., Riganti, A., Wyche, S., Greenfield, J.E., Nelson, D.R., 2003. Lithostratigraphy and tectonic evolution of contrasting greenstone successions in the central Yilgarn Craton, Western Australia. Precambrian Research 127, 249–266. Chen, S.F., Libby, J.W., Wyche, S., Riganti, A., 2004. Kinematic nature and origin of regional-scale ductile shear zones in the central Yilgarn Craton, Western Australia. Tectonophysics 394, 139–153. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 dpg15 v.2007/06/04 Prn:5/06/2007; 11:41 F:dpg15ref.tex; VTEX/zk p. 29 aid: dpg15ref pii: S0166-2635(07)15094-5 docsubty: MISC References 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 29 Chen, Y.Q., Yang, C.H., Wan, Y.S., Liu, Z.X, Zhang, X.P., Du, L.L., Zhang, S.G., Wu, J.S., Gao, J.F., 2005. Early Precambrian Geological Characters and Anatectic Reconstruction of Crust in North Part of Middle Taihang Mountain. Geological Publishing House, Beijing, pp. 1–191 (in Chinese). Chin, R.J., Smith, R.A., 1983. Jackson, W.A. Western Australia Geological Survey, 1:250,000 Geological Series Explanatory Notes, 30 pp. Choblet, G., Sotin, C., 2001. Early transient cooling of Mars. Geophysical Research Letters 28, 3035–3038. Choi, S.H., Mukasa, S.B., Andronikov, A.V., Osanai, Y., Harley, S.L., Kelly, N.M., 2006. Lu-Hf systematics of the earliest crust in Antarctica: The ultra-high temperature (UHT) Napier Metamorphic Complex of Enderby Land. Earth and Planetary Science Letters 246, 305–316. Chopin, C., 1984. Coesite and pure pyrope in high-grade blueschists of western Alps: a first record and some consequences. Contributions to Mineralogy and Petrology 86, 107–118. Chopin, C., Henry, C., Michard, A., 1991. Geology and petrology of the coesite-bearing terrain, Dora Maira massif, Western Alps. European Journal of Mineralogy 3, 263–291. Choukroune, P., Bouhallier, H., Arndt, N.T., 1995. Soft lithosphere during periods of Archaean crustal growth or crustal reworking. In: Coward, M.P., Ries, A.C. (Eds.), Early Precambrian Processes. In: Geological Society of London, Special Publication 95, pp. 67–86. Choukroune, P., Ludden, J.N., Chardon, D., Calvert, A.J., Bouhallier, H., 1997. Archaean crustal growth and tectonic processes: a comparison of the Superior Province, Canada and the Dharwar Craton, India. In: Burg, J.-P., Ford, M. (Eds.), Orogeny Through Time. In: Geological Society of London, Special Publication 121, pp. 63–98. Chown, E.H., Harrap, R., Mouksil, A., 2002. The role of granitic intrusions in the evolution of the Abitibi belt, Canada. Precambrian Research 115, 291–310. Chung, S.L., Jahn, B.M., Wu, G.Y., Lo, C.H., Bolin, C. 1998. The Emeishan flood basalts in SW China: a mantle plume initiation model and its connection with continental breakup and mass extinction at the Permian–Triassic boundary. In: American Geophysical Union, Geodynamics Series, vol. 27. Washington, DC, pp. 47–58. Ciesielski, A., 2000. Géologie et lithogéochimie de la partie occidentale de la sousprovince de Bienville et des zones adjacentes dans l’est de la Province du Supérieur, Québec. Commission géologique du Canada, Open File 3550, 90 pp. Class, C., Miller, D.M., Goldstein, S.L., Langmuir, C.H., 2000. Distinguishing melt and fluid subduction components in Umnak Volcanics, Aleutian Arc. Geochemistry Geophysics Geosystems 1, paper number 1999GC000010. Claoué-Long, J.C., Thirlwall, M.F., Nesbitt, R.W., 1984. Revised Sm-Nd systematics of Kambalda greenstones, Western Australia. Nature 307, 697–701. Claoué–Long, J.C., Compston, W., Cowden, A., 1988. The age of the Kambalda greenstones resolved by ion-microprobe – implications for Archaean dating methods. Earth and Planetary Science Letters 89, 239–259. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 dpg15 v.2007/06/04 Prn:5/06/2007; 11:41 F:dpg15ref.tex; VTEX/zk p. 30 aid: dpg15ref pii: S0166-2635(07)15094-5 docsubty: MISC 30 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 References Clayton, R.N., 2003. Oxygen isotopes in meteorites. In: Davis, A.M. (Ed.), Meteorites, Comets and Planets. In: Treatise on Geochemistry, vol. 1. Elsevier-Pergamon, Oxford, pp. 129–142. Clayton, R.N., Mayeda, T.K., 1996. Oxygen isotope studies of achondrites. Geochimica et Cosmochimica Acta 60, 1999-2017. Clayton, R.N., Grossman, L., Mayeda, T.K., 1973. A component of primitive nuclear composition in carbonaceous meteorites. Science 182, 485-488. Clemens, J.D., Yearron, L.M., Stevens, G., 2006. Barberton (South Africa) TTG magmas: Geochemical and experimental constraints on source-rock petrology, pressure of formation and tectonic setting. Precambrian Research 151, 53–78. Cloete, M., 1999. Aspects of Volcanism and Metamorphism of the Onverwacht Group Lavas in the Southwestern Portion of the Barberton Greenstone Belt. Memoir of the Geological Society of South Africa 84, 232 pp. Cloud, P., 1968. Atmospheric and hydrospheric evolution of primitive Earth. Science 160, 729. Cloud, P. 1972. A working model of the primitive Earth. American Journal of Science 272, 537–548. Cloud, P., 1973. Paleoecological significance of the banded iron-formation. Economic Geology 68, 1135–1143. Cody, G.D., Boctor, N.Z., Filley, T.R., Hazen, R.M., Scott, J.H., Sharma, A., Yoder, H.S., 2000. Primordial carbonylated iron-sulfur compounds and the synthesis of pyruvate. Science 289, 1337–1340. Cohen, B.A., Swindle, T.D., King, D.A., 2000. Support for the lunar cataclysm hypothesis from lunar meteorite impact melt ages. Science 290, 1754–1756. Coleman, R.G. 1989. Continental growth of north-west China. Tectonics 8, 621–635. Collerson, K.D., Bridgwater, D., 1979. Metamorphic development of early Archaean tonalitic and trondhjemitic gneisses: Saglek area, Labrador. In: Barker, F. (Ed.), Trondhjemites, Dacites and Related Rocks. Elsevier, Amsterdam, pp. 205–273. Collerson, K.D., Kamber, B.S., 1999. Evolution of the continents and the atmosphere inferred from Th-U-Nb systematics of the depleted mantle. Science 283, 1519–1522. Collerson, K.D., Campbell, L.M., Weaver, B.L., Palacz, Z.A., 1991. Evidence for extreme fractionation in early Archean ultramafic rocks from northern Labrador. Nature 349, 209–214. Collins, W.J., 1983. Geological Evolution of an Archean Batholith. Unpublished PhD thesis. La Trobe University, Melbourne. Collins, W.J., 1989. Polydiapirism of the Archaean Mt. Edgar batholith, Pilbara Block, Western Australia. Precambrian Research 43, 41–62. Collins, W.J., 1993. Melting of Archaean sialic crust under high aH2O conditions: genesis of 3300 Ma Na-rich granitoids in the Mount Edgar Batholith, Pilbara Block, Western Australia. Precambrian Research 60, 151–174. Collins, W.J., 2003. Slab pull, mantle convection, and Pangaean assembly and dispersal. Earth and Planetary Science Letters 205, 225–237. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 dpg15 v.2007/06/04 Prn:5/06/2007; 11:41 F:dpg15ref.tex; VTEX/zk p. 31 aid: dpg15ref pii: S0166-2635(07)15094-5 docsubty: MISC References 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 31 Collins, W.J., Gray, C.M., 1990. Rb-Sr isotopic systematics of an Archaean granite-gneiss terrain: The Mount Edgar batholith, Pilbara Block, Western Australia. Australian Journal of Earth Sciences 37, 9–22. Collins, W.J., Van Kranendonk, M.J., 1999. Model for the development of kyanite during partial convective overturn of Archaean granite-greenstone terranes: the Pilbara Craton, Australia. Journal of Metamorphic Geology 17, 145–156. Collins, W.J., Van Kranendonk, M.J., Teyssier, C., 1998. Partial convective overturn of Archaean crust in the east Pilbara Craton, Western Australia: Driving mechanisms and tectonic implications. Journal of Structural Geology 20, 1405–1424. Compston, W., Kröner, A., 1988. Multiple zircon growth within early Archean Tonalitic gneiss from the Ancient Gneiss complex, Swaziland. Earth and Planetary Sciences Letters 87, 13–28. Compston, W., Pidgeon, R.T., 1986. Jack Hills, evidence of more very old detrital zircons in Western Australia. Nature 321, 766–769. Compston, W., Lovering, J.F., Vernon, M.J., 1965. Rubidium-strontium age of the Bishopville aubrite and its component enstatite and feldspar. Geochimica et Cosmochimica Acta 29, 1085–1099. Compston, W., Williams, I.S., Froude, D.O., Kinny, P.D., Ireland, T.R., 1984a. Zircon U-Pb age determinations by ion microprobe on pre-greenstone rocks from the north-west and central Yilgarn Block, West Australia. In: Terra Cognita, Abstracts. European Union of Geosciences, 4 (2), p. 208. Compston, W., Williams, I.S., Meyer, C., 1984b. U-Pb geochronology of zircons from Lunar breccia 73217 using a sensitive high mass-resolution ion microprobe. Journal of Geophysical Research 89, B525-B534. Compston, W., Kinny, P.D., Williams, I.S., Foster, J.J., 1986a. The age and lead loss behaviour of zircons from the Isua supracrustal belt as determined by ion microprobe. Earth and Planetary Science Letters 80, 71–81. Compston, W., Williams, I.S., Campbell, I.H., Gresham, J.J., 1986b. Zircon xenocrysts from the Kambalda volcanics: age constraints and direct evidence for older continental crust below the Kambalda–Norseman greenstones. Earth and Planetary Science Letters 76, 299–301. Condie, K.C., 1981. Archean Greenstone Belts. Amsterdam, Elsevier. Condie, K.C., 1986. Origin and early growth rate of continents. Precambrian Research 32, 261–278. Condie, K.C., 1989. Geochemical changes in basalts and andesites across the ArcheanProterozoic boundary: Identification and significance. Lithos 23, 1–18. Condie, K., 1993. Chemical composition and evolution of the upper continental crust: Contrasting results from surface samples and shales. Chemical Geology 104, 1–37. Condie, K.C., 1994. Greenstones through time. In: Condie, K.C. (Ed.), Archean Crustal Evolution. Elsevier, Amsterdam, pp. 85–120. Condie, K.C., 1997. Plate Tectonics and Crustal Evolution, 4th ed. Butterworth Heinemann, Oxford, 282 pp. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 dpg15 v.2007/06/04 Prn:5/06/2007; 11:41 F:dpg15ref.tex; VTEX/zk p. 32 aid: dpg15ref pii: S0166-2635(07)15094-5 docsubty: MISC 32 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 References Condie, K.C., 1998. Episodic continental growth and supercontinents: a mantle avalanche connection? Earth and Planetary Science Letters 163, 97–108. Condie, K.C., 2005. Earth as an Evolving Planetary System. Elsevier-Academic Press, Amsterdam, 447 pp. Condie, K.C., 2000. Episodic crustal growth models: afterthoughts and extensions. Tectonophysics 322, 153–162. Condie, K.C., 2001. Mantle Plumes and Their Record in Earth History. Cambridge University Press, Cambridge, 306 pp. Condie, K.C., 2004. Supercontinents and superplume events: distinguishing signals in the geologic record. Physics of the Earth and Planetary Interiors 146, 319–332. Condie, K.C., 2005. High field strength element ratios in Archean basalts: a window to evolving sources of mantle plumes? Lithos 79, 491–504. Condie, K.C., Wronkiewicz, D.J., 1990. The Cr/Th ratio in Precambrian pelites from the Kaapvaal Craton as an index of craton evolution. Earth and Planetary Science Letters 97, 256–267. Condie, K.C., Macke, J.E., Reimer, T.O., 1970. Petrology and geochemistry of early Precambrian graywackes from the Fig Tree Group, South Africa. Bulletin of Geological Society of America 81, 2759–2776. Condie, K.C., Kröner, A., Milisenda, C.C., 1996. Geochemistry and geochronology of the Mkhondo suite, Swaziland: evidence for passive-margin deposition and granulite facies metamorphism in the late Archean of southern Africa. Journal of African Earth Science 21, 483–506. Condie, K.C., Belousova, E., Griffin, W.L., 2007. Granitic Events in Space and Time: Constraints from Igneous and Detrital Zircon Age Spectra. In press Condit, R.H., Hobbins, R.R., Birchenall, C.E., 1974. Self-diffusion of iron and sulfur in ferrous sulfide. Oxidation of Metals 8, 409–455. Coney, P.J., Jones, D.L., Monger, J.W.H., 1980. Cordilleran suspect terranes. Nature 288, 329–333. Conrad, R., 2005. Quantification of methanogenic pathways using stable carbon isotopic signatures: a review and a proposal. Organic Geochemistry 36, 739–752. Coogan, L., Hinton, R.W., 2006. Do the trace element compositions of detrital zircons reuqire Hadean continental crust? Geology 34, 633–636. Cooke, D.R., Hollings, P., Walshe, J.L., 2005. Giant porphyry deposits: characteristics, distribution, and tectonic controls. Economic Geology 100, 801–818. Cooper, G.W., Thiemens, M.H., Jackson, T.L., Chang, S., 1997. Sulfur and hydrogen isotope anomalies in meteorite sulfonic acids. Science 277, 1072–1074. Copp, D.L., Guest, J.E., Stofan, E.R., 1998. New insights into corona evolution: Mapping on Venus. Journal of Geophysical Research 103, 19,401–19,410. Corfu, F., 1988. Differential response of U-Pb systems in coexisting accessory minerals, Winnipeg River Subprovince, Canadian Shield: Implications for Archean growth and stabilization. Contributions to Mineralogy and Petrology 98, 312–325. Corfu, F., 1993. The evolution of the southern Abitibi greenstone belt in light of precise U-Pb geochronology. Economic Geology 88, 1323–1340. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 dpg15 v.2007/06/04 Prn:5/06/2007; 11:41 F:dpg15ref.tex; VTEX/zk p. 33 aid: dpg15ref pii: S0166-2635(07)15094-5 docsubty: MISC References 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 33 Corfu, F., Ayres, L.D., 1991. Unscrambling the stratigraphy of an Archaean greenstone belt: A U-Pb geochronological study of the Favourable Lake belt, northwestern Ontario. Precambrian Research 50, 201–220. Corfu, F., Davis, D.W., 1992. A U-Pb geochronological framework for the western Superior Province. In: Thurston, P.C., Williams, H.R., Sutcliffe, R.H., Stott, G.M. (Eds.), Geology of Ontario. In: Ontario Geological Survey, Special Volume 4, Part 2, pp. 1335– 1346. Corfu, F., Lin, S., 2000. Geology and U-Pb geochronology of the Island Lake greenstone belt, northwestern Superior Province, Manitoba. Canadian Journal of Earth Sciences 37, 1275–1286. Corfu, F., Noble, S.R., 1992. Genesis of the southern Abitibi greenstone belt, Superior Province, Canada: Evidence from zircon Hf isotope analyses using a single filament technique. Geochimica et Cosmochimica Acta 56, 2081–2097. Corfu, F., Stone, D., 1998. Age structure and orogenic significance of the Berens River composite batholiths, western Superior Province. Canadian Journal of Earth Sciences 35, 1089–1109. Corfu, F., Stott, G.M., 1986. U-Pb ages for late magmatism and regional deformation in the Shebandowan belt, Superior Province, Canada. Canadian Journal of Earth Sciences 23, 1075–1082. Corfu, F., Stott, G.M., 1993a. Age and petrogenesis of two late Archean magmatic suites, northwestern Superior Province, Canada: zircon U-Pb and Lu-Hf isotopic relations. Journal of Petrology 34, 817–838. Corfu, F., Stott, G.M., 1993b. U-Pb geochronology of the central Uchi Subprovince, Superior Province. Canadian Journal of Earth Sciences 30, 1179–1196. Corfu, F., Stott, G.M., 1996. Hf isotopic composition and age constraints on the evolution of the Archean central Uchi Subprovince, Ontario, Canada. Precambrian Research 78, 53–63. Corfu, F., Stott, G.M., 1998. Shebandowan greenstone belt, western Superior Province; U-Pb ages, tectonic implications and correlations. Bulletin of Geological Society of America 110, 1467–1484. Corfu, F., Wood, J., 1986. U-Pb zircon ages in supracrustal and plutonic rocks; North Spirit Lake area, northwestern Ontario. Canadian Journal of Earth Sciences 23, 967–977. Corfu, F., Stott, G.M., Breaks, F.W., 1995. U-Pb geochronology and evolution of the English River subprovince, an Archean low P - high T metasedimentary belt in the Superior Province. Tectonics 14, 1220–1233. Corfu, F., Davis, D.W., Stone, D., Moore, M., 1998. Chronostratigraphic constraints on the genesis of Archean greenstone belts, northwestern Superior Province, Ontario, Canada. Precambrian Research 92, 277–295. Corkery, M.T., 1977. Geology of the Waskaiowaka Lake area (part of 64A7,8,9,10). Manitoba Mineral Resources Division, Preliminary Map Series 1977H-4, scale 1:50,000. Corkery, M.T., 1985. Geology of the Lower Nelson River Project area, Manitoba. Manitoba Energy and Mines, Geological Report, Geological Services/Mines Branch, GR82-1, 66 pp. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 dpg15 v.2007/06/04 Prn:5/06/2007; 11:41 F:dpg15ref.tex; VTEX/zk p. 34 aid: dpg15ref pii: S0166-2635(07)15094-5 docsubty: MISC 34 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 References Corkery, M.T., Lenton, P.G., 1990. Geology of the Lower Churchill River region. Manitoba Energy and Mines, Geological Services, Geological Report GR85-1 (including Geological Maps GR85-1-1 to GR85-1-9, scale 1:100,000 and 1:250,000). Corkery, M.T., Böhm, C.O., Heaman, L.M., 1999. Progress report on the northwest Superior Province boundary project. In: Manitoba Industry, Trade and Mines, Geological Services, Report of Activities 1999, pp. 41–43. Corkery, M.T., Cameron, H.D.M., Lin, S., Skulski, T., Whalen, J.B., Stern, R.A., 2000. Geological investigations in the Knee Lake belt (Parts of NTS 53L). In: Report of Activities 2000, Manitoba Industry, Trade and Mines, Manitoba Geological Survey, pp. 129–136. Corliss, J.B., 1990. Hot springs and the origin of life. Nature 347, 624. Corrigan, D, Hajnal, Z., Nemeth, B., Lucas, S.B., 2005. Tectonic framework of a Paleoproterozoic arc-continent to continent-continent collisional zone, Trans-Hudson Orogen, from geological and seismic reflection studies. Canadian Journal of Earth Sciences 42, 421–434. Courtillot, V., Davaille, A., Besse, J., Stock, J., 2003. Three distinct types of hotspots in the Earth’s mantle. Earth and Planetary Science Letters 205, 295–308 Coward, M.P., Lintern, B.C., Wright, L.I., 1976. The pre-cleavage deformation of the sediments and gneisses of the northern part of the Limpopo belt. In: Windley, B.F. (Ed.), The Early History of the Earth. Wiley, London, pp. 323–330. Cox, K.G., Smith, M.R., Beswetherick, S., 1987. Textural studies of garnet lherzolites: evidence of exsolution origin from high-temperature harzburgites. In: Nixon, P.H. (Ed.), Mantle Xenoliths. Wiley, New York, pp. 537–550. Cox, K.G., Bell, J.D., Pankhurst, R.J., 1979. The Interpretation of Igneous Rocks. London, George Allen & Unwin. Coyle, M., Kiss, F., Oneschuk D., 2004. First vertical derivative of the magnetic field and residual total magnetic field, various map sheets, Manitoba. In: Geological Survey of Canada, Open File 4764 to 4785. Manitoba Industry, Economic Development and Mines, Manitoba Geological Survey, Open File Reports OF2004-3 to -24, scale 1:50,000. Craven, J.A., Kurtz, R.D., Boerner, D.E., Skulski, T., Spratt, J., Ferguson, I.J., Wu, X., Bailey, R.C., 2001. Conductivity of western Superior Province upper mantle in northwestern Ontario. Geological Survey of Canada, Current Research 2001-E6, 6 pp. Craven, J.A., Skulski, T., White, D.W., 2004. Lateral and vertical growth of cratons: seismic and magnetotelluric evidence from the western Superior transect. In: Lithoprobe Celebratory Conference. In: Lithoprobe Report 86, Lithoprobe Secretariat, University of British Columbia. Crowley, J.L., 2003. U-Pb geochronology of 3810–3630 Ma granitoid rocks south of the Isua greenstone belt, southern West Greenland. Precambrian Research 126, 235–257. Crowley, J.L., Myers, J.S., Dunning, G.R., 2002. Timing and nature of multiple 3700–3600 Ma tectonic events in intrusive rocks north of the Isua greenstone belt, southern West Greenland. Bulletin of Geological Society of America 114, 1311–1325. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 dpg15 v.2007/06/04 Prn:5/06/2007; 11:41 F:dpg15ref.tex; VTEX/zk p. 35 aid: dpg15ref pii: S0166-2635(07)15094-5 docsubty: MISC References 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 35 Crowley, J.L., Myers, J.S., Sylvester, P.J., Cox, R.A., 2005. Detrital zircons from the Jack Hills and Mount Narryer, Western Australia: Evidence for diverse >4.0 Ga source rocks. Journal of Geology 113, 239–263. Crumpler, L.S., Aubele, J.C., Senske, D.A., Keddie, S.T., Magee, K.P., Head, J.W., 1997. Volcanoes and centers of volcanism on Venus. In: Bouger, S.W., Hunten, D.M., Phillips, R.J. (Eds.), Venus II, Geology, Geophysics, Atmosphere, and Solar Wind Environment. The University of Arizona Press, Tucson, AZ, pp. 697–756. Cuesta, A., Dhamelincourt, P., Laureyns, J., Martinez-Alonso, A., Tascon J.M.D., 1994. Raman microprobe studies on carbon materials. Carbon 32, 1523–1532. Cullers, R.L., Di Marco, M.J., Lowe, D.R., Stone, J., 1993. Geochemistry of a silicified, felsic volcaniclastic suite from the early Archaean Panorama Formation, Pilbara Block, Western Australia: an evaluation of depositional and post-depositional processes with special emphasis on the rare-earth elements. Precambrian Research 60, 99–116. Cumming, G.L., Richards, J.R., 1975. Ore leads in a continuously changing Earth. Earth and Planetary Science Letters 28, 155–171. Dada, S.S., 1998. Crust-forming ages and Proterozoic crustal evolution in Nigeria: a reappraisal of current interpretations. Precambrian Research 87, 65–74. Dahl, P.S., Holm, D.K., Gardner, E.T., Hubacher, F.A., Foland, K.A., 1999. New constraints on the timing of Early Proterozoic tectonism in the Black Hills (South Dakota), with implications for docking of the Wyoming province with Laurentia. Bulletin of Geological Society of America 111 (9), 1335–1349. Dalziel, I.W.D., 1991. Pacific margins of Laurentia and East Antarctica–Australia as a conjugate rift pair: Evidence and implications for an Eocambrian supercontinent. Geology 19, 598–601. Daniel, R.M., Danson, M.J., 1995. Did primitive microorganisms use nonheme iron proteins in place of NAD/P? Journal of Molecular Evolution 40, 559–563. Dann, J.C., 2000. The Komati Formation, Barberton Greenstone Belt, South Africa, Part I: New map and magmatic architecture. South African Journal of Earth Science 103, 47–68. Dann, J.C., 2001. Vesicular komatiites, ca. 3.5 Ga Komati Formation, Barberton Greenstone Belt, South Africa: Inflation of submarine lavas and origin of spinifex zones. Bulletin of Volcanology 63, 462–481. Dann, J.C., 2004. The 1.73 Ga Payson Ophiolite, Arizona USA. In: Kusky, T.M. (Ed.), Precambrian Ophiolites and Related Rocks. In: Developments in Precambrian Geology, vol. 13. Elsevier, Amsterdam, pp. 73–94. Dann, J.C., Wilson, A.H., Cloete, M., 1998. Field excursion C1: Komatiites in the Barberton and Nondweni Greenstone Belts. In: IAVCEI – Magmatic Diversity: Volcanoes and Their Roots. Cape Town, p. 61. Dantas, E.L., Van Schmus, W.R., Hackspacher, P.C., Fetter, A.H., de Brito Neves, B.B., Cordani, U., Nutman, A.P., Williams, I.S., 2004. The 3.4–3.5 Ga Sao do Campestre massif, NE Brazil: remnants of the oldest crust in South America. Precambrian Research 130, 113–138. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 dpg15 v.2007/06/04 Prn:5/06/2007; 11:41 F:dpg15ref.tex; VTEX/zk p. 36 aid: dpg15ref pii: S0166-2635(07)15094-5 docsubty: MISC 36 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 References D’Arcy, K.A. & Mueller, P.A., 1992. Archean metasupracrustal rocks from the western margin of the Wyoming Province. In: 29th International Geological Congress, Abstracts. International Geological Congress, Abstracts – Congres Geologique Internationale, Resumes, vol. 29, p. 590. Dauphas, N., Rouxel, O., 2006. Mass spectrometry and natural variations of iron isotopes. Mass Spectrometry Reviews 25, 515–550. Dauphas, N., Janney, P.E., Mendybaev, R.A., Wadhwa, M., Richter, F.M., Davis, A.M., VanZuillen, M., Hines, R., Foley, C.N., 2004a. Chromatographic separation and multicollection-ICPMS analysis of Iron: investigating mass-dependent and -independent isotope effects. Analytical Chemistry 76, 5855–5863. Dauphas, N., van Zuilen, M., Wadhwa, M., Davis, A.M., Martey, B., Janney, P.E., 2004b. Clues from Fe isotope variations on the origin of early Archean BIFs from Greenland. Science 302, 2077–2080. Dauphas, N., Cates, N.L., Mojzsis, S.J., Busigny, V., 2007. Identification of chemical sedimentary protoliths using iron isotopes in the >3750 Ma Nuvvuagittuq supracrustal belt, Canada. Earth and Planetary Science Letters 254, 358–376 David, J., Parent, M., Stevenson, R., Nadeau, P., Godin, L., 2003. The Porpoise Cove supracrustal sequence, Inukjuak area: a unique example of Paleoarchean crust (ca. 3.8 Ga) in the Superior Province. Geological Association of Canada Program with Abstracts 28 (http://gac.esd.mun.ca/gac_2003/search_abs/sub_program.asp?sess=98&form=10 &abs_no=355) David, J., Godin, L., Berclaz, A., Maurice, C., Parent, M., Francis, D., Stevenson, R.K., 2004. Geology and Geochronology of the Nuvvuagittuq Supracrustal Sequence: An Example of Paleoarchean Crust (ca. 3.8 Ga) in the Northeastern Superior Province. Eos Transactions, American Geophysical Union 85 (17), Abstract V23D-03. David, J., in press. Compilation des données géochronologiques de la partie Nord-Est de la Province du Supérieur. Ministère des Ressources naturelles, Québec, Séries GM 2006. David, J., Parent, M., Stevenson, R., Nadeau, P., Godin, L., 2002. La séquence supracrustale de Porpoise Cove, région d’Inukjuak; un exemple unique de croûte paléo-archéenne (ca. 3.8 Ga) dans la Province du Supérieur. Ministère des Ressources naturelles, Québec, DV 2002-10:17. David, J., Godin, L., Stevenson, R.K., Parent, M., 2007. The 3.8 Ga Nuvvuaggituq sequence, Superior Craton: New insights on the preservation of Eoarchean crust. Geology, in press. Davidek, K., Martin, M.W., Bowring, S.A., Williams, I.S., 1997. Conventional U-Pb geochronology of the Acasta gneisses using single crystal fragmentation technique. In: Abstracts of GAC/MAC Annual Meeting, p. A-75. Davids, C., Wijbrans, J.R., White, S.H., 1997. 40 Ar/39 Ar laserprobe ages of metamorphic hornblendes from the Coongan Belt, Pilbara, Western Australia. Precambrian Research 83, 221–242. Davies, G.F., 1980, Exploratory models of the earth’s thermal regime during segregation of the core. Journal of Geophysical Research 85, 7108–7114. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 dpg15 v.2007/06/04 Prn:5/06/2007; 11:41 F:dpg15ref.tex; VTEX/zk p. 37 aid: dpg15ref pii: S0166-2635(07)15094-5 docsubty: MISC References 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 37 Davies, G.F., 1990. Heat and mass transport in the early earth. In: Newsome, H.E., Jones, J.H. (Eds.), Origin of the Earth. Oxford University Press, pp. 175–194. Davies, G.F., 1992. On the emergence of plate tectonics. Geology 20, 963–966. Davies, G.F., 1993. Cooling the core and mantle by plume and plate flows. Geophysical Journal International 115, 132–146. Davies, G.F., 1995. Punctuated tectonic evolution of the Earth. Earth and Planetary Science Letters 36, 363–380. Davies, G.F., 1999. Dynamic Earth: Plates, Plumes and Mantle Convection. Cambridge University Press, Cambridge, 460 pp. Davies, G.F., 2002. Stirring geochemistry in mantle convection models with stiff plates and slabs. Geochimica et Cosmochimica Acta 66, 3125–3142. Davies, G.F., 2006a. Controls on density stratification in the early Earth. Geochemistry, Geophysics, Geosystems, in press. Davies, G.F., 2006b. Gravitational depletion of the early Earth’s upper mantle and the viability of early plate tectonics. Earth and Planetary Science Letters 243, 376–382. Davies, R., Griffin, W.L., Pearson, N.J., Andrew, A., Doyle, B.J., O’Reilly, S.Y., 1999. Diamonds from the Deep: Pipe DO-27, Slave Craton, Canada. In: Proceedings of the 7th International Kimberlite Conference. Red Roof Design, Cape Town, pp. 148–155. Davis, A.M., Ganapathy, R., Grossman, L., 1977. Pontlyfni: a differentiated meteorite related to the group IAB irons. Earth and Planetary Science Letters 35, 19–24. Davis, D.W., 1996. Provenance and depositional age constraints on sedimentation in the western Superior transect area from U-Pb ages of zircons. In: Harrap, R.M., Helmstaedt, H. (Eds.), Western Superior Transect Second Annual Workshop. In: Lithoprobe Report 53, pp. 18–23. Davis, D.W., 1998. Speculations on the formation and crustal structure of the Superior province from U-Pb geochronology. In: Harrap, R.M., Helmstaedt, H. (Eds.), Western Superior Transect Fourth Annual Workshop. In: Lithoprobe Report 65, pp. 21–28. Davis, D.W., 2002. U-Pb geochronology of Archean metasedimentary rocks in the Pontiac and Abitibi subprovinces, Quebec, constraints on timing, provenance and regional tectonics. Precambrian Research 115, 97–117. Davis, D.W., Amelin, Y., 2000. Constraints on crustal development in the Western Superior Lithoprobe Transect from Hf isotopes in zircons. In: Harrap, R.M., Helmstaedt, H. (Eds.), Western Superior Transect Sixth Annual Workshop. In: Lithoprobe Report 77, pp. 38–44. Davis, D.W., Jackson, M., 1988. Geochronology of the Lumby Lake greenstone belt: a 3 Ga complex within the Wabigoon Subprovince, northwest Ontario. Bulletin of Geological Society of America 100, 818–824. Davis, D.W., Smith, P.M., 1991. Archean gold mineralization in the Wabigoon Subprovince, a product of crustal accretion: evidence from U-Pb geochronology in the Lake of the Woods area, Superior Province, Canada. Journal of Geology 99, 337–353. Davis, D.W., Sutcliffe, R.H., Trowell, N.F., 1988. Geochronological constraints on the tectonic evolution of a late Archean greenstone belt, Wabigoon Subprovince, northern Ontario, Canada. Precambrian Research 39, 171–191. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 dpg15 v.2007/06/04 Prn:5/06/2007; 11:41 F:dpg15ref.tex; VTEX/zk p. 38 aid: dpg15ref pii: S0166-2635(07)15094-5 docsubty: MISC 38 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 References Davis, D.W., Amelin, Y., Nowell, G.M., Parrish, R.R., 2005. Hf isotopes in zircon from the western Superior province, Canada: Implications for Archean crustal development and evolution of the depleted mantle reservoir. Precambrian Research 140 (3–4), 132–156. Davis, W.J., Machado, N., Gariépy, C., Sawyer, E.W., Benn, K., 1995. U-Pb geochronology of the Opatica tonalite-gneiss belt and its relationship to the Abitibi greenstone belt, Superior Province, Quebec. Canadian Journal of Earth Sciences 32, 113–127. Davis, W.J., Gariépy C., van Breeman, O., 1996. Pb isotopic composition of late Archaean granites and the extent of recycling early Archaean crust in the Slave Province, northwest Canada. Chemical Geology 130, 255–269. Davy, R. 1988. Geochemical patterns in granitoids of the Corunna Downs Batholith, Western Australia. In: Geological Survey of Western Australia Professional Paper 23, pp. 51–84. Davy, R., Lewis, J.D., 1986. Geochemistry and petrography of the Mount Edgar Batholith, Pilbara area, Western Australia. Western Australia Geological Survey Report 17. Dawson, A.S., 1941. Assean-Split Lakes area. Manitoba Mines Branch, Publ. 39-1. de Beer, J.H., Stettler, E.H., du Plessis, J.G., Blume, J., 1988. The deep structure of the Barberton greenstone belt: a geophysical study. South African Journal of Geology 91, 184–197. DeDuve, C., 2005. Singularities – Landmarks on the Pathways to Life. Cambridge University Press, Cambridge, UK, 258 pp. Deen, T., Griffin, W.L., Begg, G., O’Reilly, S.Y., Natapov, L.M., 2006. Thermal and compositional structure of the subcontinental lithospheric mantle: Derivation from shearwave seismic tomography. Geochemistry, Geophysics and Geosystems, doi:10.1029/ 2005GC001164. Deines, P., 2003. A note on the intra-elemental isotope effects and the interpretation of non-mass-dependent isotope variations. Chemical Geology 199, 179–182. de Laeter, R.R., Martyn, J.E., 1986. Age of molybdenum-copper mineralization at Coppin Gap, Western Australia. Australian Journal of Earth Sciences 33, 65–72. de Laeter, J.R., Williams, I.R., Rosman, K.J.R., Libby, W.G., 1981a. A definitive 3350 m.y. age from banded gneiss, Mount Narryer area, Western Gneiss Terrain. In: Western Australia Geological Survey Annual Report 1980, pp. 94–98. de Laeter, J.R, Fletcher, I.R., Rosman, K.J.R., Williams, I.R., Gee, R.D., Libby, W.G., 1981b. Early Archaean gneisses from the Yilgarn Block, Western Australia. Nature 292, 322–324. de Laeter, J.R., Fletcher, I.R., Bickle, M.J., Myers, J.S., Libby, W.G., Williams, I.R., 1985. Rb-Sr, Sm-Nd and Pb-Pb geochronology of ancient gneisses from Mount Narryer, Western Australia. Australian Journal of Earth Sciences 32, 349–358. de la Roche, A., Leterrier, J., Grandclaude, P., Marchal, M. 1980. A classification of volcanic and plutonic rocks using R1 −R2 diagram and major elment analyses – its relationships with current nomenclature. Chemical Geology 29, 183–210. DeLaughter, J.E., Jurdy, D.M. 1999. Corona classification by evolutionary stage. Icarus 139, 81–95. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 dpg15 v.2007/06/04 Prn:5/06/2007; 11:41 F:dpg15ref.tex; VTEX/zk p. 39 aid: dpg15ref pii: S0166-2635(07)15094-5 docsubty: MISC References 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 39 Delor, C., Burg, J-P., Clarke, G., 1991. Relations diapirisme-metamorphisme dans la Province du Pilbara (Australie-occidentale): implications pour les régimes thermiques et tectoniques à la Archéen. Comptes Rendus de l’Academie des Sciences Paris 312, 257–263. DePaolo, D.J., 1981. Neodymium isotopes in the Colorado front range and crust-mantle evolution in the Proterozoic. Nature 291, 193–196. DePaolo, D.J., Manton, W.I., Grew, E.S., Halpern, M., 1982. Sm-Nd, Rb-Sr and U-Th-Pb systematics of granulite facies rocks from Fyfe Hills, Enderby Land, Antarctica. Nature 298, 614–618. Derenne, S., Skrzypczak, A., Robert, F., Binet, L., Gourier, D., Rouzaud, J.-N., Clinard, C., 2004. Characterization of the organic matter in an Archaean Chert (Warrawoona, Australia). European geosciences Union. Geophysical Research Abstracts 6, 03612. de Ronde, C.E.J., 1991. Structural and geochronological relationships and fluid/rock interaction in the central part of the ∼3.2–3.5 Ga Barberton greenstone belt, South Africa. Ph.D. thesis. University of Toronto, 370 pp. de Ronde, C.E.J., de Wit M.J., 1994. Tectonic history of the Barberton Greenstone Belt, South Africa: 490 million years of Archean crustal evolution. Tectonics 13, 983–1005. de Ronde, C.E.J., Kamo, S.L., 2000. An Archaean Arc-Arc collisional event: a short-lived (ca 3 Myr) episode, Weltevreden area, Barberton greenstone belt, South Africa. Journal of African Earth Sciences 30 (2), 219–248. de Ronde, C.E.J., Hall, C.M., York, D., Spooner, E.T.C., 1991a. Laser step-heating 40 Ar/39 Ar age spectra from early Archean (∼3.5 Ga) Barberton greenstone belt sediments: a technique for detecting cryptic tectono-thermal events. Geochimica et Cosmochimica Acta 55, 1933–1951. de Ronde, C.E.J., Kamo, S., Davis, D.W., de Wit, M.J., Spooner, E.T.C., 1991b. Field, geochemical and U-Pb isotopic constraints from hypabyssal felsic intrusions within the Barberton greenstone belt, South Africa: implications for tectonics and the timing of gold mineralization. Precambrian Research 49, 261–280. de Ronde, C.E.J., Spooner, E.T.C., de Wit, M.J., Bray, C.J., 1992. Shear zone-related, Au quartz vein deposits in the Barberton greenstone belt, South Africa; field and petrographic characteristics, fluid properties, and light stable isotope geochemistry. Economic Geology 87, 366–402. Des Marais, D.J., Strauss, H., Summons, R.E., Hayes, J.M., 1992. Carbon isotope evidence for the stepwise oxidation of the Proterozoic environment. Nature 359, 605–609. Des Marais, D.J., 2001. Isotopic evolution of the biogeochemical carbon cycle during the Precambrian. In: Valley, J.W., Cole, D.R. (Eds.), Stable Isotope Geochemistry. In: Reviews in Mineralogy and Geochemistry, vol. 43, pp. 555–578. Detmers, J., Bruchert, V., Habicht, K.S., Kuever, J., 2001. Diversity of sulfur isotope fractionations by sulfate-reducing prokaryotes. Applied and Environmental Microbiology 67, 888–894. de Vries, S.T., 2004. Early Archean sedimentary basins: Depositional environment and hydrothermal systems, examples from the Barberton and Coppin Gap greenstone belts. Ph.D. dissertation. University of Utrecht, Netherlands, 160 pp. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 dpg15 v.2007/06/04 Prn:5/06/2007; 11:41 F:dpg15ref.tex; VTEX/zk p. 40 aid: dpg15ref pii: S0166-2635(07)15094-5 docsubty: MISC 40 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 References de Vries, S.T., Nijman, W., Armstrong, R.A., 2006. Growth-fault structure and stratigraphic architecture of the Buck Ridge volcano-sedimentary complex, upper Hooggenoeg Formation, Barberton Greenstone Belt, South Africa. Precambrian Research 149, 77–98. de Wit, M.J., 1982. Gliding and overthrust nappe tectonics in the Barberton greenstone belt. Journal of Structural Geology 4, 117–136. de Wit, M.J., 1983. Notes on a preliminary 1:25,000 geological map of the southern part of the Barberton Greenstone Belt. In: Anhaeusser, C.R. (Ed.), Contributions to the geology of the Barberton Mountain Land. In: Geological Society of South Africa, Special Publication 9, pp. 185–187. de Wit, M.J., 1998. On Archean granites, greenstones, cratons and tectonics: does the evidence demand a verdict? Precambrian Research 91, 181–226. de Wit, M.J., 2004. Archean Greenstone Belts do contain fragments of ophiolites. In: Kusky, T.M. (Ed.), Precambrian Ophiolites and Related Rocks. In: Developments in Precambrian Geology, vol. 13. Elsevier, Amsterdam, 599–614. de Wit, M.J., Ashwal, L.D. (Eds.), 1997. Greenstone Belts. Clarendon Press, Oxford, 809 pp. de Wit, M.J., Ashwall, L.D., 1997. Preface: Convergence towards divergent models of greenstone belts. In: de Wit, M.J., Ashwal, L.D. (Eds.), Greenstone Belts. Oxford University Press, Oxford, UK, pp. i–xvii. de Wit, M.J., Hart, R.A., 1993. Earth’s earliest continental lithosphere, hydrothermal flux and crustal recycling. Lithos 30, 309–335. de Wit, M.J., Hart, R., Martin, A., Abbott, P., 1982. Archean abiogenic and probable biogenic structures associated with mineralized hydrothermal vent systems and regional metasomatism, with implications for greenstone belt studies. Economic Geology 77, 1783–1802. de Wit, M.J., Fripp, R.E.P., Stanistreet, I.G., 1983. Tectonic and stratigraphic implications of new field observations along the southern part of the Barberton greenstone belt. In: Anhaeusser, C.R. (Ed.), Contributions to the Geology of the Barberton Mountain Land. In: Geological Society of South Africa, Special Publication 9, pp. 21–29. de Wit, M.J., Armstrong, R., Hart, R.J., Wilson, A.H., 1987a. Felsic igneous rocks within the 3.3- to 3.5Ga Barberton greenstone belt: high crustal level equivalents of the surrounding tonalite-trondhjemite terrain, emplaced during thrusting. Tectonics 6, 529– 549. de Wit, M.J., Hart, R.A., Hart, R.J., 1987b. The Jamestown ophiolite complex, Barberton mountain belt: a section through 3.5 Ga oceanic crust. Journal of African Earth Science 6, 681–730. de Wit, M.J., Roering, C., Hart, R.J., Armstrong, R.A., de Ronde, C.E.J., Green, R.W.E., Tredoux, M., Peberdy, E., Hart, R.A., 1992. Formation of an Archaean continent. Nature 357, 553–562. Didier, J., Barbarin, B., 1991. Enclaves and Granite Petrology. Amsterdam, Elsevier. Diener, J.F.A., Stevens, G., Kisters, A.F.M., Poujol, M., 2005. Metamorphism and exhumation of the basal parts of the Barberton greenstone belt, South Africa: Constraining the rates of Mesoarchaean tectonism. Precambrian Research 143 (1–4), 87–112. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 dpg15 v.2007/06/04 Prn:5/06/2007; 11:41 F:dpg15ref.tex; VTEX/zk p. 41 aid: dpg15ref pii: S0166-2635(07)15094-5 docsubty: MISC References 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 41 Diener, J.G, Stevens, G., Kisters, A.F.M., 2006. High-pressure, low–temperature metamorphism in the southern Barberton granitoid greenstone terrain, South Africa: a record of overthickening and collapse of Mid-Archean continental crust. In: Benn, K., Mareschal, J.-C., Condie, K.C. (Eds.), Archean Geodynamic Processes. American Geophysical Union, Monograph 164, pp. 239–254. DiMarco, M.J., Lowe, D.R., 1989a. Shallow-water volcaniclastic deposition in the Early Archean Panorama Formation, Warrawoona Group, eastern Pilbara Block, Western Australia. Sedimentary Geology 64, 43–63. DiMarco, M.J., Lowe, D.R., 1989b. Stratigraphy and sedimentology of an Early Archean felsic volcanic sequence, eastern Pilbara Block, Western Australia, with special reference to the Duffer Formation and implications for crustal evolution. Precambrian Research 44, 147–169. Dimroth, E., Kimberley, M.M., 1976. Precambrian atmospheric oxygen – evidence in sedimentary distributions of carbon, sulfur, uranium, and iron. Canadian Journal of Earth Sciences 13, 1161–1185. Ding, T., Valkiers, S., Kipphardt, H., De Bievre, P., Taylor, P.D.P., Gonfiantini, R., Krouse, R., 2001. Calibrated sulfur isotope abundance ratios of three IAEA sulfur isotope reference materials and V-CDT with a reassessment of the atomic weight of sulfur. Geochimica et Cosmochimica Acta 65, 2433–2437. Dirks, P., Jelsma, H.A., 1998. Horizontal accretion and the stabilization of the Archaean Zimbabwe craton. Geology 26, 11–14. Dixon, E.T., Bogard, D.D., Garrison, D.H., 2003. 39 Ar-40 Ar chronology of R chondrites. Meteoritics and Planetary Science 38, 341–355. Dobos, S.K., Jacobsen, S.B., Derry, L.A., Goldstein, S.J., 1986. A Nd and Sr isotopic study of metasediments from the Western Gneiss Belt (WGB) of Western Australia. Eos 67, 1265. Doe, B.R., Delevaux, M.H., 1980. Lead-isotope investigations in the Minnesota River Valley – Late-tectonic and post-tectonic granites. In: Geological Society of America, Special Paper 182, pp. 105–112. Donaldson, J.A., De Kemp, E.A., 1998. Archaean quartz arenites in the Canadian Shield: examples from the Superior and Churchill Provinces. Sedimentary Geology 120, 153– 176. Donskaya, T.V., Salnikova, E.B., Sklyarov, E.V., 2002. Early Proterozoic postcollision magmatism at the southern flank of the Siberian Craton: new geochronological data and geodynamic implication. Doklady Earth Sciences 383 (2), 125–128. Drake, M.J., 2001. The eucrite/Vesta story. Meteoritics and Planetary Science 36, 501–513. Drake M.J., Righter K., 2002. Determining the composition of the Earth. Nature 416, 39– 43. Dreibus, G., Palme, H., Spettel, B., Zipfel, J., Wänke, H., 1995. Sulfur and selenium in chondritic meteorites. Meteoritics 30, 439–445. Drennan, G.R., Robb, L.J., Meyer, F.M., Armstrong, R.A., de Bruiyn, H., 1990. The nature of the Archaean basement in the hinterland of the Witwatersrand Basin: II. A crustal 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 dpg15 v.2007/06/04 Prn:5/06/2007; 11:41 F:dpg15ref.tex; VTEX/zk p. 42 aid: dpg15ref pii: S0166-2635(07)15094-5 docsubty: MISC 42 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 References profile west of the Welkom Goldfield and comparisons with the Vredefort crustal profile. South African Journal of Geology 93, 41–53. Dresselhaus, M.S., Dresselhaus, G., 1981. Intercalation compounds of graphite. Advances In Physics 30, 290–298. Dresselhaus, M.S., Dresselhaus, G., 1982. In: Cardona, M., Guntherodt, G. (Eds.), Light Scattering in Solids, vol. III. Springer, Berlin, 187 pp. Drieberg, S.L., 2004. The magmatic-hydrothermal architecture of the Archean volcanic massive sulfide (VMS) system at Panorama, Pilbara, Western Australia. Unpublished Ph.D. thesis. University of Western Australia, 327 pp. Drummond, B.J., 1988. A review of crust/upper mantle structure in the Precambrian areas of Australia and implications for Precambrian crustal evolution. Precambrian Research 40–41, 101–116. Drummond, M.S., Defant, M.J., 1990. A model for trondhjemite-tonalite-dacite genesis and crustal growth via slab melting: Archean to modern comparisons. Journal of Geophysical Research 95, 21503–21521. Drummond, M.S., Defant, M.J., Kepezhinskas, P.K., 1996. Petrogenesis of slab-derived trondhjemite-tonalite-dacite/adakite magmas. Transactions of the Royal Society of Edinburgh: Earth Sciences 87, 205–215. Drury, S.A., Holt, R.W., 1980. The tectonic framework of the South Indian craton: a reconnaissance involving LANDSAT imagery. Tectonophysics 65, 71–75. Dobretsov, N.L., 2005. 250 Ma large igneous provinces of Asia: Siberian and Emeishan traps (plateau basalts) and associated granitoids. Russian Geology and Geophysics 46 (9), 870–890. Dodson, M.H., Compston, W., Williams, I.S., Wilson, J.F., 1988. A search for ancient detrital zircons in Zibabwean sediments. Journal of the Geological Society of London 145, 977–983. Donahue, T.M. 1999. New analysis of hydrogen and deuterium escape from Venus. Icarus 141–156, 226. Donahue, T.M., Grinspoon, D.H., Hartle, R.E., Hodges, R.R., 1997. Ion/neutral escape of hydrogen and deuterium: Evolution of water. In: Bouger, S.W., Hunten, D.M., Phillips, R.J. (Eds.), Venus II, Geology, Geophysics, Atmosphere, and Solar Wind Environment. University of Arizona Press, Tucson, AZ, pp. 385–414. Donahue, T.M., Russell, C.T., 1997. The Venus atmosphere and ionosphere and their interaction with the solar wind: An overview. In: Bouger, S.W., Hunten, D.M., Phillips, R.J. (Eds.), Venus II, Geology, Geophysics, Atmosphere, and Solar Wind Environment. The University of Arizona Press, Tucson, AZ, pp. 3–31. Downes, H., MacDonald, R., Upton, B.G.J., Cox, K.G., Bodinier, J.L., Mason, P.R.D., James, D., Hill, P.G., Hearn, B.C., Jr., 2004. Ultramafic xenoliths from the Bearpaw Mountains, Montana, USA; evidence for multiple metasomatic events in the lithospheric mantle beneath the Wyoming Craton. Journal of Petrology 45, 1631–1662. Duchac, K.C., Hanor, J.S., 1987, Origin and timing of the metasomatic silicification of an early Archean komatiite sequence, Barberton Mountain Land, South Africa. Precambrian Research 37, 125–146. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 dpg15 v.2007/06/04 Prn:5/06/2007; 11:41 F:dpg15ref.tex; VTEX/zk p. 43 aid: dpg15ref pii: S0166-2635(07)15094-5 docsubty: MISC References 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 43 Dunlop, J.S.R., Muir, M.D., Milne, V.A., Groves, D.I., 1978. A new microfossil assemblage from the Archaean of Western Australia. Nature 274, 676–678. Dunn, S.J., Nemchin, A.A., Cawood, P.A., Pidgeon, R.T., 2005. Provenance record of the Jack Hills Metasedimentary Belt: Source of the Earth’s oldest zircons. Precambrian Research 138, 235–254. Dymek, R.F., Klein, C., 1988. Chemistry, petrology and origin of banded iron-formation lithologies from the 3800 Ma Isua supracrustal belt, West Greenland. Precambrian Research 37, 247–302 Dziggel, A., Stevens, G., Poujol, M., Anhaeusser, C.R., Armstrong, R.A., 2002. Metamorphism of the granite-greenstone terrane south of the Barberton greenstone belt, South Africa: an insight into the tectono-thermal evolution of the ‘lower’ portions of the Onverwacht Group. Precambrian Research 114, 221–247. Dziggel, A., Armstrong, R.A., Stevens, G., Nasdala, L., 2005. Growth of zircon and titanite during metamorphism in the granitoid-gneiss terrane south of the Barberton greenstone belt, South Africa. Mineralogical Magazine 69 (6), 1019–1036. Dziggel, A., Stevens, G., Poujol, M., Armstrong, R.A., 2006a. Contrasting source components of clastic metasedimentary rocks in the lowermost formations of the Barberton greenstone belt. In: Reimold, W.U., Gibson, R.L. (Eds.), Processes on the Earth Earth. In: Geological Society of America, Special Paper 405, pp. 157–172. Dziggel, A., Knipfer, S., Kisters, A.F.M., Meyer, F.M., 2006b. P-T and structural evolution of high-T, medium-P basement rocks in the Barberton Mountain Land, South Africa. Journal of Metamorphic Geology 24, 535–551. Eby, G.N., 1992. Chemical subdivision of the A-type granitoids: petrogenetic and tectonic implications. Geology 20, 641–644. Eggins, S.M., Woodhead, J.D., Kinsley, L.P.J., Mortimer, G.E., Sylvester, P., McCulloch, M.T., Hergt, J.M., Handler, M.R., 1997. A simple method for the precise determination of >40 trace elements in geological samples by ICPMS using enriched isotope internal standardisation. Chemical Geology 134, 311–326. Eglington, B.M., Armstrong, R.A., 2004. The Kaapvaal Craton and adjacent orogens, southern Africa: a geochronological database and overview of the geological development of the craton. South African Journal of Geology 107, 13–32. Eiler, J.M., Farley, K.A., Valley, J.Q., Hauri, E., Craig, H., Hart, S.R., Stolper, E.M., 1997. Oxygen isotope variation in ocean island basalt phenocrysts. Geochimica et Cosmochimica Acta 61, 2281–2293. Elias, M., 1982. Belele, W.A.: Western Australia Geological Survey, 1:250,000 Geological Series Explanatory Notes, 1st ed., 22 pp. Eldridge, C.S., Barton Jr., P.B., Ohmoto, H., 1983. Mineral textures and their bearing on formation of the kuroko orebodies. In: Economic Geology, Monograph 5, pp. 241–281. Elias, M., 1982. Explanatory notes of the Belele geological sheet. In: Geological Survey of Western Australia, Perth, WA, pp. 1–22. Elkins-Tanton, L.T., 2005. Continental mechanism caused by lithosphere delamination. In: Geological Society of America, Special Paper 388, pp. 449–461. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 dpg15 v.2007/06/04 Prn:5/06/2007; 11:41 F:dpg15ref.tex; VTEX/zk p. 44 aid: dpg15ref pii: S0166-2635(07)15094-5 docsubty: MISC 44 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 References Elkins-Tanton, L., Hager, B., 2005. Giant meteoroid impacts can cause volcanism. Earth and Planetary Science Letters 239, 219–232. Elkins-Tanton, L.T., Hager, B.H., Grove, T.L., 2004. Magmatic effects of the lunar late heavy bombardment. Earth and Planetary Science Letters 222, 17–27 Elliot, T.T., Plank, T., Zindler, A., White, W., Bourdon, B., 1997. Element transport from slab to volcanic front at the Mariana arc. Journal of Geophysical Research 102, 14991– 15019. Endress, M., Bischoff, A., 1993. Mineralogy, degree of brecciation, and aqueous alteration of CI chondrites Orgueil, Ivuna and Alais. Meteoritics 28, 345–346. Endress, M., Bischoff, A., 1996. Carbonates in CI chondrites: clues to parent body evolution. Geochimica et Cosmochimica Acta 60, 489–507. Endress, M., Zinner, E., Bischoff, A., 1996. Early aqueous activity on primitive meteorite parent bodies. Nature 379, 701–703. England, P.C., Thompson, B., 1984. Pressure–temperature–time paths of regional metamorphism. Journal of Petrology 25 (4), 894–955. Eriksson, K.A., 1978. Alluvial and destructive beach facies from the Archaean Moodies Group, Barberton Mountain Land, South Africa and Swaziland. In: Miall, A.D. (Ed.), Fluvial Sedimentology. Canadian Society of Petroleum Geologists, Memoir 5, pp. 287– 311. Eriksson, K.A., 1979. Marginal marine depositional processes from the Archean Moodies Group, Barberton Mountain Land, South Africa: Evidence and significance. Precambrian Research 8, 153–182. Eriksson, K.A., 1980. Transitional sedimentation styles in the Moodies and Fig Tree Groups, Barberton Mountain Land, South Africa: evidence favouring an Archaean continental margin. Precambrian Research 12, 141–160. Eriksson, P.G., Catuneanu, O., 2004. In: Eriksson, P.G., Altermann, W., Nelson, D.R., Mueller, W.U., Catuneanu, O. (Eds.), The Precambrian Earth: Tempos and Events. Elsevier, Amsterdam, pp. 161–163 and pp. 267–270 (Chapter 3). Ernst, R.E., Buchan, K.L., 2002. Maximum size and distribution in time and space of mantle plumes: evidence from large igneous provinces. Journal of Geodynamics 34, 309–342. Ernst, R.E., Buchan, K. 2003. Recognising mantle plumes in the geological record. Annual Review Earth and Planetary Sciences 31, 469–523. Ernst, R.E., Grosfils, E.B., Mége, D., 2001. Giant dyke swarms on Earth, Venus and Mars. Annual Review of Earth and Planetary Sciences 29, 489–534. Ernst, R.E., Desnoyers, D.W., Head, J.W., Grosfils, E.B., 2003. Graben-fissure systems in Guinevere Planitia and Beta Regio (264 degrees-312 degrees E, 24 degrees-60 degrees N), Venus, and implications for regional stratigraphy and mantle plumes. Icarus 164, 282–316. Ernst R.E., Buchan, K.L., Campbell, I.H., 2005. Frontiers in large igneous province research. Lithos 79, 271–297. Ernst, W.G., 1988. Tectonic history of subduction zones inferred from retrograde blueschist P-T paths. Geology 16, 1081–1084. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 dpg15 v.2007/06/04 Prn:5/06/2007; 11:41 F:dpg15ref.tex; VTEX/zk p. 45 aid: dpg15ref pii: S0166-2635(07)15094-5 docsubty: MISC References 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 45 Facer, J., Downes, H., 2005. Has the Wyoming craton lost its keel? In: Abstracts of Earthscope in the Northern Rockies Workshop, MSU, Bozeman MT, Sept. 2005. Fanning, C.M., Moore, D.H., Bennett, V.C., Daly, S.J., Menot, R.P., Peucat, J.J., Oliver, R.L., 1999. The “Mawson Continent”: The East Antarctic shield and Gawler Craton, Australia. In: Programme and Abstracts, 8th International Symposium Antarctic Earth Sciences, Wellington, p. 103 (abstract). Farhat, J.S., Wetherilll, G.W., 1975. Interpretation of apparent ages in Minnesota. Nature 257, 721–722. Farmer, G.L., DePaolo, D.J., 1983. Origin of Mesozoic and Tertiary granite in the western United States and implications for the pre-Mesozoic crustal structure 1. Nd and Sr isotopic studies in the geocline of the northern Great Basin. Journal of Geophysical Research 88, 3379–3401. Farquhar, J., Wing, B.A., 2003. Multiple sulfur isotopes and the evolution of the atmosphere. Earth and Planetary Science Letters 213, 1–13. Farquhar, J., Bao, H.M., Thiemens, M., 2000a. Atmospheric influence of Earth’s earliest sulfur cycle. Science 289, 756–758. Farquhar, J., Jackson, T.L., Thiemens, M.H., 2000b. A S-33 enrichment in ureilite meteorites: Evidence for a nebular sulfur component. Geochimica et Cosmochimica Acta 64, 1819–1825. Farquhar, J., Savarino, J., Aireau, S., Thiemens, M.H., 2001. Observation of wavelengthsensitive mass-independent sulfur isotope effects during SO2 photolysis: Implications for the early atmosphere. Journal of Geophysical Research – Planets 106 (E12), 32,829– 32,839. Farquhar, J., Wing, B.A., McKeegan, K.D., Harris, J.W., Cartigny, P., Thiemens, M.H., 2002. Mass-independent sulfur of inclusions in diamond and sulfur recycling on early Earth. Science 298, 2369–2372. Farrell, T., 2006. Geology of the Eastern Creek 1:100,000 sheet. Western Australia Geological Survey, 1:100,000 Geological Series Explanatory Notes, 39 pp. Farrow, D.J., Harmer, R.E., Hunter, D.R., Eglington, B.M., 1990. Rb-Sr and Pb-Pb dating of the Anhalt leucotonalite, northern Natal. South African Journal of Geology 93, 696– 701. Faure, G., 1986. Principles of Isotope Geology. John Wiley and Sons, New York, 589 pp. Fedo, C.M., 2000. Setting and origin of problematic rocks from the >3.7 Ga Isua greenstone belt, southern West Greenland: Earth’s oldest coarse clastic sediments. Precambrian Research 101, 69–78. Fedo, C.M., Whitehouse, M.J., 2002b. Origin and significance of Archean quartzose rocks at Akilia, Greenland. Science 298, 917a. Fedo, C.M., Whitehouse, M.J., 2002a. Metasomatic origin of quartz-pyroxene rock, Akilia, Greenland, and implications for Earth’s earliest life. Science 296, 1449–1452. Fedo, C.M., Eriksson, K.A., Krogstad, E.J., 1996. Geochemistry of shales from Archean (∼3.0 Ga) Buhwa Greenstone Belt, Zimbabwe: Implications for provenance and sourcearea weathering. Geochimica et Cosmochimica Acta 60, 1751–1763. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 dpg15 v.2007/06/04 Prn:5/06/2007; 11:41 F:dpg15ref.tex; VTEX/zk p. 46 aid: dpg15ref pii: S0166-2635(07)15094-5 docsubty: MISC 46 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 References Fedo, C.M., Myers, J.S., Appel, P.W.U., 2001. Depositional setting and paleogeographic implications of Earth’s oldest supracrustal rocks, the >3.7 Ga Isua greenstone belt, West Greenland. Sedimentary Geology 141–142, 61–77. Fedo, C.M., Whitehouse, M.J., Kamber, B.S., 2006. Geological Constraints in Assessing the Earliest Life on Earth: A Perspective from the Early Archaean (>3.7 Ga) of Southwest Greenland. Philosophical Transactions of the Royal Society of London, Ser. B 361, 851–867. Fehr, M.A., Rehkämper, M., Halliday, A.N., Wiechert, U., Hattendorf, B., Gunter, D., Ono, S., Eigenbrode, J.L., Rumble, D., 2005. Tellurium isotopic composition of the early solar system – A search for effects resulting from stellar nucleosynthesis, Sn126 decay, and mass-independent fractionation. Geochimica et Cosmochimica Acta 69, 5099–5112. Feng, R., Kerrich, R., 1990. Geochemistry of fine-grained elastic sediments in the Archean Abitibi greenstone belt, Canada: Implications for provenance and tectonic setting. Geochimica et Cosmochimica Acta 54, 1061–1081. Feng, R., Kerrich, R., 1991. Single zircon age constraints on the tectonic juxtapositon of the Archean Abitibi greenstone belt and Pontiac Subprovince, Quebec, Canada. Geochimica et Cosmochimica Acta 55, 3437–3441. Feng, R., Kerrich, R., 1992. Geochemical evolution of granitoids from the Archean Abitibi southern volcanic zone and the Pontiac subprovince, Superior Province, Canada: implications for tectonic history and source regions. Chemical Geology 98, 23–70. Fergusson, K.M., 1999. Lead, Zinc and Silver Deposits of Western Australia. In: Western Australia Geological Survey, Mineral Resources Bulletin 15, 314 pp. Fergusson, K.M., Ruddock, I., 2001. Mineral occurrences and exploration potential of the East Pilbara. Geological Survey of Western Australia, Report 81, 114 pp. Finucane, K.J., 1936. Marble Bar mining centre, Pilbara goldfield. Aerial Geology and Geophysical Survey of Northern Australia, Western Australia Report 8. Finucane, K.J., 1937. Halley’s Comet centre, Pilbara goldfield. Aerial Geology and Geophysical Survey of Northern Australia, Western Australia Report 10. Fisher, L.B., Stacey, J.S., 1986. Uranium-lead zircon ages and common lead measurements for the Archean gneisses of the Granite Mountains, Wyoming. In: Peterman, Z.E., Schnable, D.C. (Eds.), Shorter Contributions to Isotopic Research. In: U.S. Geological Survey, Bulletin 1622, pp. 13–24. Fisher-Worrell, G.F., 1985. Sedimentology and mineralogy of silicified evaporites in the basal Kromberg Formation, South Africa. Masters thesis. Baton Rouge, Louisiana State University, 152 pp. Fitton, J.G., Saunders, A.D., Norry, M.J., Hardarson B.S., Taylor, R.N., 1997. Thermal and chemical structure of the Iceland plume. Earth and Planetary Science Letters 153, 197–208. Fitzsimons, I.C.W., 2000a. Grenville-age basement provinces in East Antarctica: Evidence for three separate collisional orogens. Geology 28, 879–882. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 dpg15 v.2007/06/04 Prn:5/06/2007; 11:41 F:dpg15ref.tex; VTEX/zk p. 47 aid: dpg15ref pii: S0166-2635(07)15094-5 docsubty: MISC References 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 47 Fitzsimons, I.C.W., 2000b. A review of tectonic events in the East Antarctic Shield and their implications for Gondwana and earlier supercontinents. Journal of African Earth Science 31, 3–23. Fitzsimons, I.C.W., 2003. Proterozoic basement provinces of southern and southwestern Australia, and their correlation with Antarctica. In: Yoshida, M., Windley, B.W., Dasgupta, S., Powell, C.McA. (Eds.), Proterozoic East Gondwana: Supercontinent Assembly and Breakup. In: Geological Society of London, Special Publication 206, pp. 93–130. Fitzsimons, I.C.W., Kinny, P.D., Harley, S.L., 1997. Two stages of zircon and monazite growth in anatectic leucogneiss: SHRIMP constraints on the duration and intensity of Pan-African metamorphism in Prydz Bay, East Antarctica. Terra Nova 9, 47–51. Flasar, F.M., Birch, F., 1973. Energetics of core formation: a correction. Journal of Geophysical Research 78, 6101–6103. Fleet, M.E., 1987. Partition of Ni between olivine and sulfide – the effect of temperature, fO2 and fS2 . Contributions to Mineralogy and Petrology 95, 336–342. Frei, R., Rosing, M.T., 2005. Search for traces of the late heavy bombardment on Earth – Results from high precision chromium isotopes. Earth and Planetary Science Letters 236, 28–40. Fletcher, J.A., 2003. The Geology, Geochemistry and Fluid Inclusion Characteristics of the Wyldsdale Gold-Bearing Pluton, Northwest Swaziland. University of the Witwatersrand, Johannesburg, 215 pp. Fletcher, I.R., Williams, S.J., Gee, R.D., Rosman, K.J.R., 1983. Sm-Nd model ages across the margins of the Archaean Yilgarn Block, Western Australia – northwest transect into the Proterozoic Gascoyne Province. Journal of the Geological Society of Australia 30, 167–174. Fletcher, I.R., Rosman, K.J.R., Libby, W.G., 1988. Sm-Nd, Pb-Pb and Rb-Sr geochronology of the Manfred Complex, Western Australia. Precambrian Research 38, 343–354. Fletcher, I.R., Libby, W.G., Rosman, K.J.R., 1994. Sm–Nd model ages of granitoid rocks in the Yilgarn Craton. In: Western Australia Geological Survey, Report 37, pp. 61–73. Fletcher, I.R., McNaughton, N.J., Pidgeon, R.T., Rosman, K.J.R., 1997. Sequential closure of K-Ca and Rb-Sr isotopic systems in Archaean micas. Chemical Geology 138, 289– 301. Foley, S.F., Barth, M.G., Jenner, G.A., 2000. Rutile/melt partition coefficients for trace elements and an assessment of the influence of rutile on the trace element characteristics of subduction zone magmas. Geochimica et Cosmochimica Acta 64, 933–938 Foley, S.F., Tiepolo, M., Vannucci, R., 2002. Growth of early continental crust controlled by melting of amphibolite in subduction zones. Nature 417, 637–640. Folinsbee, R.E., Baadsgaard, H., Cumming, G.L., Green, D.C., 1968. A very ancient island arc. In: Knopoff, L., Drake, C.L., Hart, P.J. (Eds.), The Crust and Upper Mantle of the Pacific Area. American Geophysical Union, Geophysical Monograph 12, pp. 441–448. Ford, J.P., Plaut, J.J., Weitz, C.M., Farr, T.G., Senske, D.A., Stofan, E.R., Michaels, G., Parker, T.J., 1993. Guide to Magellan Image Interpretation. NASA-JPL Publication, 93–24. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 dpg15 v.2007/06/04 Prn:5/06/2007; 11:41 F:dpg15ref.tex; VTEX/zk p. 48 aid: dpg15ref pii: S0166-2635(07)15094-5 docsubty: MISC 48 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 References Ford, P.G., Pettengill, G.H., 1992. Venus topography and kilometer-scale slopes. Journal of Geophysical Research 97, 13103–13114. Foriel, J. et al., 2004. Biological control of Cl/Br and low sulfate concentration in a 3.5Gyr-old seawater from North Pole, Western Australia. Earth and Planetary Science Letters 228, 451–463. Foster, D., Mueller, P.A., Vogl, J., Mogk, D., Wooden, J.L., Heatherington, A., 2006. Proterozoic evolution of the western margin of the Wyoming craton: implications for the tectonic and magmatic evolution of the northern Rocky Mountains. Canadian Journal of Earth Sciences 43, in press. Foulger, G.R., Natalnd, J.H., Presnell, D.C., Anderson, D.L. (Eds.), 2005. Plates, Plumes and Paradigms. In: Geological Society of America, Special Paper 388, 593 pp. Franck, S., 1998. Evolution of the global mean heat flow over 4.6 Gyr. Tectonophysics 291, 9–18. Francis, D., 2003, Mafic cratonic mantle roots, remnants of a more chondritic Archean mantle? Lithos 71, 135–152. Francis, D., 2004. Mafic magmas of the 3.8 Ga Nuvvuagittuq greenstone belt, Ungava, Québec. American Geophysical Union, Spring Meeting 2004, abstract #V12B-06. Frank, S.L., Head, J.W., 1990. Ridge belts on Venus: Morphology and origin. Earth Moon Planets 50–51, 421–470. Frei, R., Polat, A., 2006. Source heterogeneity for the major components of >3.7 Ga Banded Iron Formations (Isua Greenstone Belt, Western Greenland): Tracing the nature of interacting water masses in BIF formation. Earth and Planetary Science Letters 253, 266–281. Frei, R., Rosing, M.T., 2001. The least radiogenic terrestrial leads: implications for the early Archaean crustal evolution and hydrothermal-metasomatic processes in the Isua Supracrustal Belt (West Greenland). Chemical Geology 181, 47–66. Frei, R., Rosing, M.T., 2005. Search for traces of the late heavy bombardment on Earth – Results from high precision chromium isotopes. Earth and Planetary Science Letters 236 (1–2), 28–40. Frei, R., Bridgwater, D., Rosing, M., Stecher, O., 1999. Controversial Pb-Pb and SmNd isotope results in the early Archean Isua (West Greenland) oxide iron formation: Preservation of primary signatures versus secondary disturbances. Geochimica et Cosmochimica Acta 63, 473–488. Frei, R., Polat, A., Meibom, A., 2004. The Hadean upper mantle conundrum; evidence for source depletion and enrichment from Sm-Nd, Re-Os, and Pb isotopic compositions in 3.71 Gy boninite-like metabasalts from the Isua supracrustal belt, Greenland. Geochimica et Cosmochimica Acta 68, 1645–1660. French, B.M., 1998. Traces of Catastrophe. Lunar Planetary Science Contributions 954. Lunar and Planetary Institute, Houston, TX, 120 pp. Friend, C.R.L., Nutman, A.P., 2005a. New pieces to the Archaean terrane jigsaw puzzle in the Nuuk region, southern West Greenland: Steps in transforming a simple insight into a complex regional tectonothermal model. Journal of the Geological Society London 162, 147–163. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 dpg15 v.2007/06/04 Prn:5/06/2007; 11:41 F:dpg15ref.tex; VTEX/zk p. 49 aid: dpg15ref pii: S0166-2635(07)15094-5 docsubty: MISC References 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 49 Friend, C.R.L., Nutman, A.P. 2005b. Complex 3670–3500 Ma orogenic episodes superimposed on juvenile crust accreted between 3850–3690 Ma, Itsaq Gneiss Complex, southern West Greenland. Journal of Geology 113, 375–398. Friend, C.R.L., Nutman, A.P., McGregor, V.R., 1987. Late Archaean tectonics in the Faeringehavn-Tre Brodre area, south of Buksefjorden, southern west Greenland. Journal of the Geological Society London 144, 369–376. Friend, C.R.L., Nutman, A.P., McGregor, V.R., 1988. Late Archean terrane accretion in the Godthab region, southern West Greenland. Nature 335, 535–538. Friend, C.R.L., Bennett, V.C., Nutman, A.P., 2002a. Abyssal peridotites >3800 Ma from southern West Greenland: field relationships, petrography, geochronology, whole-rock and mineral chemistry of dunite and harzburgite inclusions in the Itsaq Gneiss Complex. Contributions to Mineralogy and Petrology 143, 71–92. Friend, C.R.L., Nutman, A.P., Bennett, V.C., 2002b. Technical comment on: Origin and significance of Archean quartzose rocks at Akilia, Greenland. Science 298, 917a. Friend, C.R.L., Nutman, A.P., Bennett, V.C., 2002c. Origin and significance of Archean quartzose rocks at Akilia, Greenland. Science 298, 917a. Fritts, C.E., 1969. Bedrock geologic map of the Marenisco-Watersmeet area, Gogebic and Ontonagon Counties, Michigan. U.S. Geological Survey, Miscellaneous Geologic Investigations Map I-576, scale 1:48,000. Frost, B.R., Avchenko, O.V., Chamberlain, K.R., Frost, C.D., 1998. Evidence for extensive Proterozoic remobilization of the Aldan shield and implications for Proterozoic plate tectonic reconstructions of Siberia and Laurentia. Precambrian Research 89, 1–23. Frost, B.R., Frost, C.D., Cornia, M.E., Chamberlain, K.R., Kirkwood, R., 2006. The TetonWind River domain: a 2.68–2.67 Ga active margin in the western Wyoming Province. Canadian Journal of Earth Sciences 43, xxx-xxx, in press. Frost, C.D., 1993. Nd isotopic evidence for the antiquity of the Wyoming province. Geology 21, 351–354. Frost, C.D., Fanning, C.M., 2006. Archean geochronological framework of the Bighorn Mountains, Wyoming. Canadian Journal of Earth Sciences 43, xxx-xxx, in press. Frost, C.D., Frost, B.R., 1993. The Archean history of the Wyoming province. In: Snoke, A.W., Steidtmann, J.R., Roberts, S.M. (Eds.), Geology of Wyoming. In: Geologic Survey of Wyoming Memoir 5, pp. 58–77. Frost, C.D., Frost, B.R., Chamberlain, K.R., Hulsebosch, T.P., 1998. The Late Archean history of the Wyoming province as recorded by granitic magmatism in the Wind River Range, Wyoming. Precambrian Research 89, 145–173. Frost, C.D., Frost, B.R., Kirkwood, R., Chamberlain, K.R., 2006a. The tonalite-trondhjemitegrandiorite (TTG) to granodiorite-granite (GG) transition in the Late Archean plutonic rocks of the central Wyoming province. Canadian Journal of Earth Sciences 43, 1419– 1444. Frost, C.D., Fruchey, B.L., Chamberlain, K.R., Frost, B.R., 2006b. Archean crustal growth by lateral accretion of juvenile supracrustal belts in the southern Wyoming province. Canadian Journal of Earth Sciences 43, in press. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 dpg15 v.2007/06/04 Prn:5/06/2007; 11:41 F:dpg15ref.tex; VTEX/zk p. 50 aid: dpg15ref pii: S0166-2635(07)15094-5 docsubty: MISC 50 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 References Froude, C.F., Ireland, T.R., Kinny, P.D., Williams, I.S., Compston, W., Williams, I.R., Myers, J.S., 1983. Ion-microprobe identification of 4100–4200 Myr old terrestrial zircons. Nature 304, 616–618. Froude, D.O., Compston, W., Williams, I.S., 1983. Early Archaean zircon analyses from the central Yilgarn Block. In: Australian National University, Canberra, Research School of Earth Sciences (RSES), Annual Report 1983, pp. 124–126. Fruchey, B.L., 2002. Archean supracrustal sequences of contrasting origin: the Archean history of the Barlow Gap area, northern Granite Mountains, Wyoming. Unpublished M.Sc. thesis. University of Wyoming, Laramie, 178 pp. Fryer, B.J., 1977. Rare earth evidence in iron-formations for changing Precambrian oxidation states. Geochimica et Cosmochimica Acta 41, 361–367. Fryer, B.J., Fyfe, W.S., Kerrich, R., 1979. Archaean volcanogenic oceans. Chemical Geology 24, 25–33. Fu, B., Page, F.Z., Cavosie, A.J., Clechenko, C.C., Fournelle, J., Kita, N.T., Lackey, J.S., Wilde, S.A., Valley, J.W., in press. Ti-in-zircon thermometry. Contributions to Mineralogy and Petrology. Fuchs, G., Thauer, R., Ziegler, H., Stichler, W., 1979. Carbon isotope fractionation by Methanobacterium thermoautotrophicum. Archives of Microbiology 120, 135–139. Furnes, H., Banerjee, N.R., Muehlenbachs, K., Staudigal, H., de Wit, M., 2004. Early life recorded in Archean pillow lavas. Science 304, 578–581. Furnes. H., Banerjee, N.R., Staudigel, H., Muehlenbachs, K., de Wit, M., Van Kranendonk, M., in press. Bioalteration textures in Recent to Paleoarchean pillow lavas: A petrographic signature of subsurface life on Earth. Precambrian Research. Gafarov, R.A., Leites, A.M., Fedorovsky, V.S., Prozorov, I.P., Savinskaya, M.S., Savinsky, K.A., 1978. Tectonic zones in the basement of the Siberian craton and its continental crust formation stages. Geotectonics 1, 43–58. Ganapathy, R., Anders, E., 1974. Bulk compositions of the Moon and Earth, estimated from meteorites. In: Proceedings of the 5th Lunar Science Conference, pp. 1181–1206. Gao, L.Z., Zhao, T., Wan, Y.S., Zhao, X., Ma, Y.S., Yang, S.Z., 2006. Report on 3.4 Ga SHRIMP zircon age from the Yuntaishan Geopark in Jiaozuo, Henan Province. Acta Geologica Sinica 80, 52–57. Gao, X., Thiemens, M.H., 1989. Multi-isotope sulfur isotope ratios (δ 33 S, δ 34 S, δ 36 S) in meteorites. Meteoritics 24, 269. Gao, X., Thiemens, M.H., 1993a. Isotopic composition and concentration of sulfur in carbonaceous chondrites. Geochimica et Cosmochimica Acta 57, 3159–3169. Gao, X., Thiemens, M.H., 1993b. Variations of the isotopic composition of sulfur in enstatite and ordinary chondrites. Geochimica et Cosmochimica Acta 57, 3171–3176. Gao, Y.Q., Marcus, R.A., 2001. Strange and unconventional isotope effects in ozone formation. Science 293, 259–263. Garcia-Ruiz, J.M., Hyde, S.T., Carnerup, A.M., Christy, A.G., Van Kranendonk, M.J., Welham, N.J., 2003. Self-assembled silica-carbonate structures and detection of ancient microfossils. Science 302, 1194–1197. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 dpg15 v.2007/06/04 Prn:5/06/2007; 11:41 F:dpg15ref.tex; VTEX/zk p. 51 aid: dpg15ref pii: S0166-2635(07)15094-5 docsubty: MISC References 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 51 Gardien, V., Thompson, A.B., Grujic, D., Ulmer, P. 1995. Experimental melting of biotite + plagioclase + quartz + or − muscovite assemblages and implications for crustal melting. Journal of Geophysical Research, B, Solid Earth and Planets 100 (8), 15,581– 15,591. Gauthier, L., Hagemann, S., Robert, F., Pickens, G., 2004. New constraints on the architecture and timing of the giant Golden Mile gold deposit, Kalgoorlie, Western Australia. In: Muhling, J., et al. (Eds.), SEG Extended abstracts, Perth, pp. 353–356. Gay, N.C., 1969. The analysis of strain in the Barberton Mountain Land, eastern Transvaal, using deformed pebbles. Journal of Geology 77, 377–396. Gee, R.D., 1982. Southern Cross, W.A. Western Australia Geological Survey, 1:250,000 Geological Series Explanatory Notes, 25 pp. Gee, R.D., Baxter, J.L., Wilde, S.A., Williams, I.R., 1981. Crustal development in the Archaean Yilgarn Block, Western Australia. In: Glover, J.A., Groves, D.I. (Eds,), Archaean Geology. In: Geological Society of Australia, Special Publication 7, pp. 43–56. Geng, Y.S., Yang, C.H., Wan, Y.S., 2006. Palaeoproterozoic granitic magmatism in the Luliang area, NCC: constraints from isotopic geochronology. Acta Petrologica Sinica 22, 305–314 (in Chinese with English abstract). Genshaft, N.S., 1996. Intrinsic factors of the tectonic mobility of cratons. Geotectonics 4, 13–24. Geological Map of Swaziland, 1:250,000, 1982. Geol. Surv. Mines Dept., Swaziland. German, C.R., von Damm, K.L., 2003. Hydrothermal processes. Treatise on Geochemistry 6, pp. 181–222. Ghent, R.R., Hansen, V.L., 1999. Structural and kinematic analysis of eastern Ovda Regio, Venus: Implications for crustal plateau formation. Icarus 139, 116–136. Ghent, R.R., Phillips, R.J., Hansen, V.L., Nunes, D.C., 2005. Finite element modeling of short-wavelength folding on Venus: Implications for the plume hypothesis for crustal plateau formation. Journal of Geophysical Research, 110, doi:10.1029/2005JE002522. Ghent, R.R., Tibuleac, I.M., 2000. Ribbon spacing in Venusian tessera: Implications for layer thickness and thermal state. Geophysical Research Letters 29, 994–997. Gibbs, A.K., Payne, B., Setzer, T., Brown, L.D., Oliver, J.E., Kaufman, S., 1984. Seismic Reflection Study of the Precambrian Crust of Central Minnesota. Bulletin of Geological Society of America 95, 280–294. Gibson, H.L., Watkinson, D.H., Comba, C.D.A., 1983. Silicification: Hydrothermal alteration in an Archean geothermal system within the Amulet Rhyolite Formation, Noranda, Quebec. Economic Geology 78, 954–971. Gilbert, G.K., 1886. Inculcation of the scientific method. American Journal of Science 31, 284–299. Giles, C.W., Hallberg, J.A., 1982. The genesis of the Archaean Welcome Wells volcanic province, Western Australia. Contributions to Mineralogy and Petrology 80, 307–318. Gilmour, J.D., Saxton, J.M., 2001. A time-scale for the formation of the first solids. Philosophical Transactions of the Royal Society of London A359, 2037–2048. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 dpg15 v.2007/06/04 Prn:5/06/2007; 11:41 F:dpg15ref.tex; VTEX/zk p. 52 aid: dpg15ref pii: S0166-2635(07)15094-5 docsubty: MISC 52 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 References Gilmour, J.D., Whitby, J.A., Turner, G., Bridges, J.C., Hutchison, R., 2000. The iodinexenon system in clasts and chondrules from ordinary chondrites: Implications for early solar system chronology. Meteoritics and Planetary Science 35, 445–455. Gilmore, M.S., Collins, G.C., Ivanov, M.A., Marinangeli, L., Head, J.W., 1998. Style and sequence of extensional structures in tessera terrain, Venus. Journal of Geophysical Research 103, 16813–16840. Gladkochub, D.P., Donskaya, T.V., Mazukabzov, A.M., Salnikova, E.B., Sklyarov, E.V., Yakovleva, S.Z., 2005. The age and geodynamic interpretation of the Kitoi granitoid complex (southern Siberian craton). Russian Geology and Geophysics 46 (11), 1121– 1133. Gladkochub, D.P., Sklyarov, E.V., Menshagin, Yu.V., Mazukabzov, A.M., 2001. Geochemistry of ancient ophiolites of the Sharyzhalgay uplift. Geochemistry International 39 (10), 947–958. ???? Glass, B.P., Burns, C.A., 1988. Microkrystites: a new term for impact-produced glassy spherules containing primary crystallites. In: Proceedings Lunar and Planetary Science 18th, pp. 455–458. Glavin, D.P., Kubny, A., Jagoutz, G.W., Lugmair, G.W., 2004. Mn-Cr isotope systematics of the D’Orbigny angrite. Meteoritics and Planetary Science 39, 693–700. Glikson, A.Y., 1970. Geosynclinal evolution and geochemical affinities of early Precambrian systems. Tectonophysics 9, 397–433. Glikson, A.Y., 1972. Early Precambrian evidence of a primitive ocean crust and island arc nuclei of sodic granite. Bulletin of Geological Society of America 83, 3323–3344. Glikson, A.Y., 1976. Stratigraphy and evolution of primary and secondary greenstones: significance of data from Shields of the southern hemisphere. In: Windley, B.F. (Ed.), The Early History of the Earth. Wiley, London, pp. 257–277. Glikson, A.Y., 1979. Early Precambrian tonalite-trondhjemite sialic nuclei. Earth Science Reviews 15, 1–73. Glikson, A.Y., 1980. Uniformitarian assumptions, plate tectonics and the Precambrian Earth. In: Kröner, A. (Ed.), Precambrian Plate Tectonics. Elsevier, Amsterdam, pp. 91– 104. Glikson, A.Y., 2001. The astronomical connection of terrestrial evolution: crustal effects of post-3.8 Ga mega-impact clusters and evidence for major 3.2±0.1 Ga bombardment of the Earth–Moon system. Journal of Geodynamics 32, 205–229. Glikson, A.Y., 2005a. Asteroid/comet impact clusters, flood basalts and mass extinctions: significance of isotopic age overlaps. Earth and Planetary Science Letters 236, 933–937. Glikson, A.Y., 2005b. Geochemical and isotopic signatures of Archaean to Palaeoproterozoic extraterrestrial impact ejecta/fallout units. Australian Journal of Earth Science 52 (4–5), 785–798. Glikson A.Y., 2005c. Geochemical signatures of Archean to Early Proterozoic mare-scale oceanic impact basins. Geology 133, 125–128. Glikson, A.Y, 2006. Asteroid impact ejecta units overlain by iron-rich sediments in 3.5– 2.4 Ga terrains, Pilbara and Kaapvaal cratons: accidental or cause-effect relationships? Earth and Planetary Science Letters 246, 149–160. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 dpg15 v.2007/06/04 Prn:5/06/2007; 11:41 F:dpg15ref.tex; VTEX/zk p. 53 aid: dpg15ref pii: S0166-2635(07)15094-5 docsubty: MISC References 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 53 Glikson, A., 2006. Comment on “Zircon thermometer reveals minimum melting conditions on earliest Earth” I. Science, 311(5762). Glikson, A.Y., Allen, C., 2004. Iridium anomalies and fractionated siderophile element patterns in impact ejecta, Brockman Iron-formation, Hamersley Basin, Western Australia: evidence for a major asteroid impact in simatic crustal regions of the early Proterozoic earth. Earth and Planetary Science Letters 220, 247–264 Glikson, A.Y., Hickman, A.H., 1981. Geochemistry of Archaean volcanic successions, eastern Pilbara Block, Western Australia. Australian Bureau of Mineral Resources, Geology and Geophysics, Record 1981/36, 56 pp. Glikson, A.Y., Vickers, J., 2005. The 3.26–3.24 Ga Barberton asteroid impact cluster: tests of tectonic and magmatic consequences, Pilbara Craton, Western Australia. Earth and Planetary Science Letters 241, 11–20. Glikson, A.Y., Davy, R., Hickman, A.H., Pride, C., Jahn, B., 1987. Trace elements geochemistry and petrogenesis of Archaean felsic igneous units, Pilbara Block, Western Australia. Bureau of Mineral Resources, Record 1987/30, 63 pp. Glikson, A.Y., Ivanov, B., Melosh, H.J., 2004. Impacts do not initiate volcanic eruptions close to the crater: comment and reply. Geology Online Forum, e47-e48. Glukhovsky, M.Z., Moralev, V.M., 2001. Reconstruction of the tectonic evolution of the Gonam enderbite dome in the Aldan shield. Geotectonics 5, 10–25. Goddéris Y., Veizer J., 2000 Tectonic control of chemical and isotopic composition of ancient oceans: the impact of continental growth. American Journal of Science 300, 434–461. Goellnicht, N.M., Groves, I.M., Groves, D.I., Ho, S.E., McNaughton, N.J., 1988. A comparison between mesothermal gold deposits of the Yilgarn Block and gold mineralization at Telfer and Miralga Creek, Western Australia: indirect evidence for a nonmagmatic origin for greenstone-hosted gold deposits. In: Geology Department and Extension Service, University of Western Australia, Publication No. 12, pp. 23–40. Goldfarb, R.J., Groves, D.I., Gardoll, S., 2001. Orogenic gold and geologic time: a global synthesis. Ore Geology Reviews 18, 1–75. Goldfarb, R.J., Baker, T., Dube, B., Groves, D.I., Hart, C.J.R., Gosselin, P., 2005. Distribution, character, and genesis of gold deposits in metamorphic terranes. Economic Geology, 100th Anniversary Volume, 407–450. Goldich, S.S., Hedge, C.E., 1974. 3,800-Myr granitic gneisses in south-western Minnesota. Nature 252, 467–468. Goldich, S.S., Wooden, J.L., 1980. Origin of the Morton gneiss, southwestern Minnesota: Part 3. Geochronology. In: Geological Society of America, Special Paper 182, pp. 77– 94. Goldich, S.S., Nier, A.O., Baadsgaard, H., Hoffman, J.H., Krueger, H.W., 1961. The Precambrian Geology and Geochronology of Minnesota. Minnesota Geological Survey, Bulletin 41, 193 pp. Goldich, S.S., Hedge, C.E., Stern, T.W., 1970. Age of the Morton and Montevideo Gneisses and related rocks, southwestern Minnesota. Bulletin of Geological Society of America 81, 3671–3696. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 dpg15 v.2007/06/04 Prn:5/06/2007; 11:41 F:dpg15ref.tex; VTEX/zk p. 54 aid: dpg15ref pii: S0166-2635(07)15094-5 docsubty: MISC 54 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 References Goldich, S.S., Hedge, C.E., Stern, T.W., Wooden, J.L., Bodkin, J.B., North, R.M., 1980. Archean rocks of the Granite Falls area, southwestern Minnesota. In: Geological Society of America, Special Paper 182, pp. 19–43. Goldich, S.S., Wooden, J.L., Ankenbauer, G.A., Levy, T.M., Suda, R.U., 1984. Origin of the Morton Gneiss, southwestern Minnesota; Part I, Lithology. In: Morey, G.B., Hanson, G.N. (Eds.), Selected Studies of Archean Gneisses and Lower Proterozoic Rocks, Southern Canadian Shield. In: Geological Society of America, Special Paper 182, pp. 45–50. Golding, L.Y., Walter, M.R., 1979. Evidence of evaporite minerals in the Archaean Black Flag beds, Kalgoorlie, Western Australia. BMR Journal of Geology and Geophysics 4, 67–71. Golding, S.D., Young, E., 2005. Multiple sulfur isotope evidence for dual sulfur sources in the 3.24 Ga Sulphur Springs VHMS deposit. Geochimica et Cosmochimica Acta 69 (Suppl.), A449. Goldschmidt, V.M., 1954. Geochemistry. Clarendon Press, Oxford, UK, 730 pp. Goldstein, S.J., Jacobsen, S.B., 1988. Nd and Sm isotopic systematics of rivers water suspended material: implications for crustal evolution. Earth and Planetary Science Letters 87, 249–265. Goldstein, S.L., 1988. Decoupled evolution of Sr and Nd isotopes in the continental crust and mantle. Nature 336, 733–738. Goldstein, S.L., O’Nions, R.K., Hamilton, P.J., 1984. A Sm-Nd isotopic study of atmospheric dusts and particulates from major river systems. Earth and Planetary Science Letters 70, 221–236. Goodge, J.W., Fanning, C.M., 1995. 2.5 b.y. of punctuated earth history as recorded in a single rock. Geology 27, 1007–1010. Goodge, J.W., Fanning, C.M., Bennett, V.C., 2001. U-Pb evidence of ∼ 1.7 Ga crustal tectonism during the Nimrod Orogeny in the Transantarctic Mountains, Antarctica: implications for Proterozoic plate reconstructions. Precambrian Research 112, 261–288. Goodrich, C.A., 1992. Ureilites, a critical overview. Meteoritics 27, 227–252. Goodwin, A.M., 1968. Archean protocontinental growth and early crustal history of the Canadian shield. In: 23rd International Geological Congress, Prague, vol. 1, pp. 69–89. Goodwin, A.M., 1981. Precambrian perspectives. Science 213, 55–61. Goodwin, A.M., Ridler, R.H., 1970. The Abitibi orogenic belt. In: Baer, A.J. (Ed.) Symposium on Basins and Geosynclines of the Canadian Shield. Geological Survey of Canada, Paper 70–40, pp. 1–30. Göpel, C., Manhes, G., Allegre, C.J., 1992. U-Pb study of the Acapulco meteorite. Meteoritics 27, 226. Göpel, C., Manhes, G., Allegre, C.J., 1994. U-Pb systematics of phosphates from equilibrated ordinary chondrites. Earth and Planetary Science Letters 121, 153–171. Gorman, A.R., Clowes, R.M., Ellis, R.M., Henstock, T.J., Spence, G.D., Keller, G.R., Levander, A., Snelson, C.M., Burianyk, M.J.A., Kanasewich, E.R., Asuden, I., Hajnal, Z., Miller, K.C., 2002. Deep Probe: imaging the roots of western North America. Canadian Journal of Earth Sciences 39 (3), 375–398. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 dpg15 v.2007/06/04 Prn:5/06/2007; 11:41 F:dpg15ref.tex; VTEX/zk p. 55 aid: dpg15ref pii: S0166-2635(07)15094-5 docsubty: MISC References 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 55 Gornostayev, S.S., Walker, R.J., Hanski, E.J., Popovchenko, S.E., 2004. Evidence for the emplacement of ca. 3.0 Ga mantle-derived mafic-ultramafic bodies in the Ukrainian Shield. Precambrian Research 132 (4), 349–362. Gosselin, C., Simard, M., 2001. Geology of the Lac Gayot Area (NTS 23M). Ministère des Ressources naturelles, Québec, RG 2000-03, 28 pp. Goswami, J.N., Misra, S., Wiedenback, M., Ray. S.L., Saha, A.K., 1995. 3.55 Ga old zircon from Singhbhum-Orissa iron Ore craton, eastern India. Current Science 6, 1008–1011. Gounelle, M., Zolensky, M.E., 2001. A terrestrial origin for sulfate veins in CI1 chondrites. Meteoritics and Planetary Science 36, 1321–1329. Gounelle, M., Spurny, P., Bland, P.A., 2006. The orbit and atmospheric trajectory of the Orgueil meteorite from historical records. Meteoritics and Planetary Science 41, 135– 150. Goutier, J., Dion, C., 2004. Géologie et minéralisation de la Sous-province de La Grande, Baie-James. Québec Exploration 2004. Ministère des Ressources naturelles, de la Faune et des Parcs, Québec, DV 2004-06, p. 21. Govindaraju, K., 1994. 1994 compilation of working values and sample description for 383 geostandards. Geostandards Newsletter 18, 1–158. Grace, R.L.B., 2004. The oldest fragments of the central Wyoming province: evidence from the Beulah Belle Lake area, northern Granite Mountains. Unpublished M.Sc. thesis. University of Wyoming, Laramie, Wyo., 172 pp. Grace, R.L.B., Rashmi L.B., Chamberlain, Kevin R., Frost, B.R., Frost, C.D., 2006. Tectonic histories of the Paleo- to Mesoarchean Sacawee Block and Neoarchean Oregon Trail structural belt of the south-central Wyoming province. Canadian Journal of Earth Sciences 43, 1445–1466. Gradstein, F.M., Ogg, J.G., Smith, A.G., Agterberg, F.P., Bleeker, W., Cooper, R.A., Davydov, V., Gibbard, P., Hinnov, L.A., House, M.R., Lourens, L., Luterbacher, H.P., McArthur, J., Melchin, M.J., Robb, L.J., Shergold, J., Villeneuve, M., Wardlaw, B.R., Ali, J., Brinkhuis, H., Hilgen, F.J., Hooker, J., Howarth, R.J., Knoll, A.H., Laskar, J., Monechi, S., Plumb, K.A., Powell, J., Raffi, I., Röhl, U., Sadler, P., Sanfilippo, A., Schmitz, B., Shackleton, N.J., Shields, G.A., Strauss, H., Van Dam, J., van Kolfschoten, T., Veizer, J., Wilson, D., 2004. A Geologic Time Scale 2004. Cambridge University Press, 589p. Graf Jr., J.L., 1978. Rare earth elements, iron formations and sea water. Geochimica et Cosmochimica Acta 42, 1845–1850. Graham, C.M., Powell, R., 1984. A garnet-hornblende geothermometer: calibration, testing, and application to the Pelona Schist, Southern California. Journal of Metamorphic Geology 3, 13–21. Graham, S., Pearson, N., Jackson, S., Griffin, W., O’Reilly, S.Y., 2004. Tracing Cu and Fe from source to porphyry: in situ determination of Cu and Fe isotope ratios in sulfides from the Grasberg Cu–Au deposit. Chemical Geology 207, 147–169. Grand, S.P., van der Hilst, R.D., Widjyantoro, S., 1997. Global seismic tomography: a snapshot of convection in the Earth. GSA Today 7, 1–7. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 dpg15 v.2007/06/04 Prn:5/06/2007; 11:41 F:dpg15ref.tex; VTEX/zk p. 56 aid: dpg15ref pii: S0166-2635(07)15094-5 docsubty: MISC 56 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 References Grant, J.A., 1972. Minnesota River Valley, southwestern Minnesota. In: Sims, P.K., Morey, G.B. (Eds.), Geology of Minnesota – A centennial volume. Minnesota Geological Survey, pp. 177–196. Grant, J.A. 1986. The isocon diagram: a simple solution to Gresen’s equation for metasomatic alteration. Economic Geology 81, 1976–1982 Grant, J.A., 2005. Isocon analysis: A brief review of the method and applications. Physics and Chemistry of the Earth 30, 997–1004. Grant, J.A., Weiblen, P.W., 1971. Retrograde zoning in garnet near the second sillimanite isograd. American Journal of Science 270, 281–296. Grantham, G.H., Jackson, C., Moyes, A.B., Harris, P.D., Groenewald, P.B., Ferrar and G., Krynauw, J.R., 1995. P-T evolution of the H.U. Sverdrupfjella and Kirwanveggan, Dronning Maud Land, Antarctica. Precambrian Research 75, 209–229. Gray, C.M., Compston, W., 1974. Excess 26 Mg in the Allende meteorite. Nature 251, 495– 497. Greeley, R., 1987. Planetary Landscapes. Allen & Unwin, London. Green, A.G., Hajnal, Z., Weber, W., 1985. An evolutionary model of the western Churchill Province and the western margin of the Superior Province in Canada and north-central United States. Tectonophysics 116, 281–322. Green, D.H., 1972. Archaean greenstone belts may include terrestrial equivalents of lunar mare? Earth and Planetary Science Letters 15, 263–270. Green, D.H., 1976. Experimental testing of equilibrium partial melting of peridotite under water-saturated, high pressure conditions. Canadian Mineralogist 14, 255–268. Green, D.H., 1981. Petrogenesis of Archaean ultramafic magmas and implications for Archaean tectonics. In: A. Kröner (Ed.), Precambrian Plate Tectonics. Elsevier, Amsterdam, pp. 469–489. Green, M.G., Sylvester, P.J., Buick, R., 2000. Growth and recycling of early Archaean continental crust: geochemical evidence from the Coonterunah and Warrawoona Groups, Pilbara Craton, Australia. Tectonophysics 322, 69–88. Green, T.H., Pearson, N.J., 1986. Ti-rich accessory phase saturation in hydrous mafic felsic compositions at high P, T. Chemical Geology 54, 185–201. Green, T.H., Ringwood, A.E., 1977. Genesis of the calc-alkaline igneous rock suite. Contribution to Mineralogy and Petrology 18, 105–162. Greenwood, J.P., Mojzsis, S.J., Coath, C.D., 2000a. Sulfur isotopic compositions of individual sulfides in martian meteorites ALH84001 and Nakhla: Implications for crustregolith exchange on Mars. Earth and Planetary Science Letters 184, 23–35. Greenwood, J.P., Rubin, A E., Wasson, J.T., 2000. Oxygen isotopes in R chondrite magnetite and olivine; links between R chondrites and ordinary chondrites. Geochimica et Cosmochimica Acta 64, 3897–3911. Gregg, T.K.P., Greeley, R., 1993. Formation of Venusian canali: Consideration of lava types and their thermal behaviors. Journal Geophysical Research 98, 10,873–10,882. Grégoire, M., Cottin, J.Y., Giret, A., Mattielli, N., Weis, D., 1998, The meta-igneous granulite xenoliths from Kerguelen Archipelago: evidence of a continent nucleation in an oceanic setting. Contributions to Mineralogy and Petrology 133, 259–283. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 dpg15 v.2007/06/04 Prn:5/06/2007; 11:41 F:dpg15ref.tex; VTEX/zk p. 57 aid: dpg15ref pii: S0166-2635(07)15094-5 docsubty: MISC References 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 57 Gregory, R.T., 1991. Oxygen isotope history of seawater revisited: composition of seawater. In: Taylor, H.P., Jr., O’Neil, J.R., Kaplan, I.R. (Eds.), Stable Isotope Geochemistry: A Tribute to Samuel Epstein. In: Geochemical Society, Special Publication 3. Mineralogical Society of America, Washington, DC, pp. 65–76. Grew, E.S., 1998. Boron and beryllium minerals in granulite-facies pegmatites and implications of beryllium pegmatites for the origin and evolution of the Archaean Napier Complex of East Antarctica. In: Motoyoshi, Y., Shiraishi, K. (Eds.), Origin and Evolution of Continents. In: Memoir National Institute of Polar Research, Special Issue 53, pp. 74–92. Grew, E.S., Manton, W., 1979. Archaean rocks in Antarctica: 2.5 billion year uranium-lead ages of pegmatites in Enderby Land. Science 206, 443–445. Grieve, R.A.F., 1980. Impact bombardment and its role in proto-continental growth of the early Earth. Precambrian Research 10, 217–248. Grieve, R.A.F., 1998. Extraterrestrial impacts on Earth – The evidence and the consequences. In: Grady, M.M. et al. (Eds.), Meteorites: Flux with Time and Impact Effects. In: Geological Society of London, Special Publication 140, pp. 105–131. Grieve, R.A.F., Pesonen, L.J., 1996. Terrestrial impact craters: their spatial and temporal distribution and impacting bodies. Earth, Moon and Planets 72, 357–376. Grieve, R.A.F., Pilkington, M., 1996. The signature of terrestrial impacts. Australian Geological Survey Organisation Journal, Australian Geology and Geophysics 16, 399–420. Grieve, R.A.F., Shoemaker, E.M., 1994. The Record of Past Impacts on Earth. The University of Arizona Press, Tucson, AZ, pp. 417–462. Griffin, W.L., Brueckner, H.K., 1980: Caledonian Sm-Nd ages and a crustal origin for Norwegian eclogites. Nature 285, 319–320. Griffin, W.L., O’Reilly, S.Y., 1987. Is the continental Moho the crust-mantle boundary? Geology 15, 241–244. Griffin, W.L., McGregor, V.R., Nutman, A.P., Taylor, P.N., Bridgwater, D., 1980. Early Archaean granulite-facies metamorphism south of Ameralik. Earth and Planetary Science Letters 50, 59–74. Griffin, W.L., O’Reilly, S.Y., Ryan, C.G., Gaul, O., Ionov, D., 1998a. Secular variation in the composition of subcontinental lithospheric mantle. In: Braun, J., Dooley, J.C., Goleby, B.R., van der Hilst, R.D., Klootwijk, C.T. (Eds.), Structure and Evolution of the Australian Continent. In: American Geophysical Union, Geodynamics Series, vol. 26. Washington, DC, pp. 1–26. Griffin, W.L., Zhang, A.D., O’Reilly, S.Y., Ryan, G., 1998b. Phanerozoic evolution of the lithosphere beneath the Sino-Korean Craton. In: Flower, M., Chang, S.L., Lo, C.H., Lee, T.Y. (Eds.), Mantle Dynamics and Plate Interactions in East Asia. In: American Geophysical Union, Geodynamics Series, vol. 27. Washington, DC, pp. 107–126. Griffin, W.L., O’Reilly, S.Y., Ryan, C.G., 1999a. The composition and origin of subcontinental lithospheric mantle. In: Fei, Y., Bertka, C.M., Mysen, B.O. (Eds.), Mantle Petrology: Field Observations and High Pressure Experimentation: A Tribute to Francis F. (Joe) Boyd. The Geochemical Society, pp. 13–45. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 dpg15 v.2007/06/04 Prn:5/06/2007; 11:41 F:dpg15ref.tex; VTEX/zk p. 58 aid: dpg15ref pii: S0166-2635(07)15094-5 docsubty: MISC 58 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 References Griffin, W.L., Ryan, C.G., Kaminsky, F.V., O’Reilly, S.Y., Natapov, L.M., Win, T.T., Kinny, P.D., Ilupin, I.P., 1999b. The Siberian lithosphere traverse: mantle terranes and the assembly of the Siberian Craton. Tectonophysics 310, 1–35. Griffin, W.L., Doyle, B.J., Ryan, C.G., Pearson, N.J., O’Reilly, S.Y., Davies, R.M., Kivi, K., van Achterbergh, E., Natapov, L.M., 1999c. Layered mantle lithosphere in the Lac de Gras Area, Slave Craton: Composition, structure and origin. Journal of Petrology 40, 705–727. Griffin, W.L., O’Reilly, S.Y., Abe, N., Aulbach, S., Davies, R.M., Pearson, N.J., Doyle, B.J., Kivi, K., 2003a. The origin and evolution of Archean lithospheric mantle. Precambrian Research 127, 19–41 Griffin, W.L., O’Reilly, S.Y., Natapov, L.M., Ryan, C.G., 2003b. The evolution of lithospheric mantle beneath the Kalahari Craton and its margins. Lithos 71, 215–242. Griffin, W.L., Belousova, E.A., Shee, S.R., Pearson, N.J., O’Reilly, S.Y.O., 2004a. Archean crustal evolution in the northern Yilgarn Craton: U-Pb and Hf-isotope evidence from detrital zircons. Precambrian Research 131, 231–282. Griffin, W.L., Graham, S., O’Reilly, S.Y., Pearson, N.J., 2004. Lithosphere evolution beneath the Kaapvaal Craton. Re-Os systematics of sulfides in mantle-derived peridotites. Chemical Geology 208, 89–118. Griffiths, R.W., Campbell, I.H., 1990. Stirring and structure in mantle plumes. Earth and Planetary Science Letters 99, 66–78. Griffiths, R.W., Campbell, I.H., 1991. Interaction of mantle plume heads with the Earth’s surface and onset of small-scale convection. Journal of Geophysical Research 96, 18,295–18,310. Grimm, R.E., 1994. The deep structure of Venusian plateau highlands. Icarus 112, 89–103. Grimm, R.E., Hess, P.C., 1997. The crust of Venus. In: Bouger, S.W., Hunten, D.M., Phillips, R.J. (Eds.), Venus II, Geology, Geophysics, Atmosphere, and Solar Wind Environment. The University of Arizona Press, Tucson, AZ, pp. 1205–1244. Grimm, R.E., Solomon, S.C., 1988. Viscous relaxation of impact crater relief on Venus: Constraints on crustal thickness and thermal gradient. Journal of Geophysical Research 93, 11911–11929. Grinenko, V.A., Thode, H.G., 1970. Sulfur isotope effects in volcanic gas mixtures. Canadian Journal of Earth Sciences 7, 1402–1409. Gromet, L.P., Silver, L.T., 1983. Rare earth element distributions among minerals in a granodiorite and their petrogenetic implications. Geochimica et Cosmochimica Acta 47 (5), 925–939. Gromet, L.P., Silver, L.T., 1987. REE variations across the Peninsular Ranges Batholith: implications for batholithic petrogenesis and crustal growth in magmatic arcs. Journal of Petrology, 28, 75–125. Gross, G.A., 1965. Geology of iron deposits in Canada. I. General geology and evaluation of iron deposits. Geological Survey of Canada, Economic Geology Report 22, 181 pp. Gross, G.A., 1980. A classification of iron formations based on depositional environments. Canadian Mineralogist 18, 215–222. Gross, G.M., 1983. Ocean sciences review and forecast. Sea Technology 24, 21. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 dpg15 v.2007/06/04 Prn:5/06/2007; 11:41 F:dpg15ref.tex; VTEX/zk p. 59 aid: dpg15ref pii: S0166-2635(07)15094-5 docsubty: MISC References 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 59 Grotzinger, J.P., Rothman, D.H., 1996. An abiotic model for stromatolite morphogenesis. Nature 383, 423–425. Grove, D.I., Barrett, F.M., Binns, R.A., McQueen, K.G., 1977. Spinel phases associated with metamorphosed volcanic-type iron-nickel sulphide ores from Western Australia. Economic Geology 72, 1224–1244. Grove, T.L., de Wit, M.J., Dann, J.C., 1997. Komatiites from the Komati Type Section, South Africa. In: de Wit, M.J., Ashwal, L.D. (Eds.), Greenstone Belts. Oxford University Press, Oxford, UK, pp. 438–456. Grove, T.L., Elkins, L.T., Parman, S.W., Chatterjee, N., Müntener, O., Gaetani, G.A., 2003. Fractional crystallization and mantle-melting controls on calc-alkaline differentiation trends. Contribution to Mineralogy and Petrology 145, 515–533. Groves, D.I., Dunlop, J.S.R., Buick, R., 1981. An early habitat of life. Scientific American 245, 64–73. Groves, D.I., Goldfarb, R.J., Gebre-Mariam, H., Hagemann, S.G., Robert, F., 1998. Orogenic gold deposits: a proposed classification in the context of their crustal distribution and relationship to other ore deposit type. Ore Geology Reviews 13, 7–27. Groves, D.I., Goldfarb, R.J., Robert, F., Hart, C.J.R., 2003. Gold deposits in metamorphic belts: overview of current understanding, outstanding problems, future research, and exploration significance. Economic Geology 98, 1–29. Groves, D.I., Vielreicher, R.M., Goldfarb, R.J., Condie, K.C., 2005. Controls on the heterogeneous distribution of mineral deposits through time. In: Geological Society of London, Special Publication 248, pp. 71–101. Groves, I.M., 1987. Epithermal/porphyry style base- and precious-metal mineralization in the Miralga Creek area, eastern Pilbara Block. Unpublished B.Sc. Honours thesis. University of Western Australia, 82 pp. Gruau, G., Jahn, B., Glikson, A.Y., Davy, R., Hickman, A.H., Chauvel, C., 1987. Age of the Archaean Talga-Talga Subgroup, Pilbara Block, Western Australia, and early evolution of the mantle: new Sm-Nd evidence. Earth and Planetary Science Letters 85, 105–116. GSWA, 2006. Compilation of geochronology data, June 2006 update. Geological Survey of Western Australia, on compact disc. Guan, H., Sun, M., Wilde, S.A., Zhou, X.H., Zhai, M.G., 2002. SHRIMP U-Pb zircon geochronology of the Fuping Complex: Implications for formation and assembly of the NCC. Precambrian Research 113, 1–18. Guest, J.E., Bulmer, M.H., Aubele, J.C., Beratan, K., Greeley, R., Head, J.W., Micheals, G., Weitz, C., Wiles, C., 1992. Small volcanic edifices and volcanism in the plains on Venus. Journal of Geophysical Research 97, 15,949–15,966. Guillot, T., Stevenson, D.J., Hubbard, W.B., Saumon, D., 2004. The interior of Jupiter. In: Bagenal, F., Dowling, T.E., McKinnon, W.B. (Eds.), Jupiter. Cambridge University Press, pp. 35–57. Guimon, R.K., Symes, S.J.K., Sears, D.W.G., Beniot, P.H., 1995. Chemical and Physical studies of type 3 chondrites XII: the metamorphic history of CV chondrites and their components. Meteoritics 30, 704–714. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 dpg15 v.2007/06/04 Prn:5/06/2007; 11:41 F:dpg15ref.tex; VTEX/zk p. 60 aid: dpg15ref pii: S0166-2635(07)15094-5 docsubty: MISC 60 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 References Guo, J.H., Sun, M., Chen, F.K., Zhai, M.G., 2005. Sm–Nd and SHRIMP zircon geochronology of high-pressure granulites in the Sanggan area. North China Craton: timing of Paleoproterozoic continental collision. Journal of Asian Earth Sciences 24, 629–642. Gupta, N.S., Briggs, D.E.G., Collinson, M.E., Evershed, R.P., Michels, R., Pancost, R.D., 2004. In situ polymerisation of labile lipids as a source for the aliphatic component of recalcitrant macromolecules in sedimentary materials. Geochimica et Cosmochimica Acta 68, A241–A241 suppl. Gurnis, M., 1998. Large scale mantle convection and the aggregation and dispersal of supercontinents. Nature 332, 695–699. Gutscher, M.A., Maury, R., Eissen, J-P., Bourdon, R., 2000a. Can slab melting be caused by flat subduction? Geology 28, 535–538 Gutscher, M.-A., Spakman, W., Bijwaard, H., Engdahl, E.R., 2000. Geodynamics of flat subduction: seismicity and tomographic constraints from the Andean margin. Tectonics 19, 814–833. Habicht, K.S., Canfield, D.E., 2001. Isotope fractionation by sulfate-reducing natural populations and the isotopic composition of sulfide in marine sediments. Geology 29, 555–558. Habicht, K.S., Gade, M., Thamdrup, B., Berg, P., Canfield, D.E., 2002. Calibration of sulfate levels in the Archean ocean. Science 298, 2372–2374. Habing, H.J., Dominik, C., de Muizon, M.J., Laureijs, R.J., Kessler, M.F., Leech, K., Metcalfe, L., Salama, A., Siebenmorgen, R., Trams, N., Bouchet, P., 2001. Incidence and survival of remnant disks around main-sequence stars. Astronomy and Astrophysics 365, 545–561. Hacker, B.R., Abers, G.A., 2004. Subduction Factory 3: An Excel worksheet and macro for calculating the densities, seismic waver speeds and H2 O contents of minerals and rocks at pressure and temperature. Geochemistry, Geophysics, Geosystems, doi: 10.1029/2003GC000614. Haisch, K.E., Lada, E.A., Lada, C.J., 2001. Disk frequencies and lifetimes in young clusters. Astrophysical Journal 533, L131-L136. Hall, A.L., 1918. The Geology of the Barberton Gold Mining District. Geological Survey of South Africa, Memoir 9, 347 pp. Halliday, A.N., 2000. Terrestrial accretion rates and the origin of the Moon. Earth and Planetary Science Letters 176, 17–30. Halliday, A.N., 2003. The origin and earliest history of the Earth. In: Davis, A.M. (Ed.), Meteorites, Comets and Planets. In: Treatise on Geochemistry, vol. 1. ElsevierPergamon, Oxford, pp. 509–557. Halliday, A.N., Lee, D-C., 1999. Tungsten isotopes and the early development of the Earth and Moon. Geochimica et Cosmochimica Acta 63, 4157–4179. Halliday, A.N., Porcelli, D., 2001. In search of lost planets – the palaeocosmochemistry of the inner solar system. Earth and Planetary Science Letters 192, 545–559. Halliday, A.N., Lee, D-C., Jacobsen, S.B., 2000. Tungsten isotopes, the timing of metalsilicate fractionation, and the origin of the Earth 1and Moon. In: Canup, R., Righter, K. (Eds.), Origin of the Earth and Moon. Arizona University Press, Tucson AZ, pp. 45–62. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 dpg15 v.2007/06/04 Prn:5/06/2007; 11:41 F:dpg15ref.tex; VTEX/zk p. 61 aid: dpg15ref pii: S0166-2635(07)15094-5 docsubty: MISC References 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 61 Halpin, J.A., Geratikeys, C.L., Clarke, G.L., Belousova, E.A., Griffin, W.L., 2005. In-situ U-Pb geochronology and Hf isotope analyses of the Rayner Complex, east Antarctica. Contributions to Mineralogy and Petrology 148, 689–706. Hamilton, P.J., Evensen, N.M., O’Nions, R.K., 1979. Sm-Nd dating of Onverwacht Group volcanics, southern Africa. Nature 279, 298–300. Hamilton, P.J., O’Nions, R.K., Bridgwater, D., Nutman, A., 1983. Sm-Nd studies of Archaean metasediments and metavolcanics from West Greenland and their implications for the Earth’s early history. Earth and Planetary Science Letters 62, 263–272. Hamilton, V.E., Stofan, E.R., 1996. The Geomorphology and Evolution of Hecate Chasma, Venus. Icarus 121, 171–189. Hamilton, W.B., 1993. Evolution of Archean mantle and crust. In: Reed, J.C., Jr., et al. (Eds.), Precambrian – Conterminous United States. In: Geological Society of America, Geology of North America, vol. C-2, pp. 597–614, 630–636. Hamilton, W.B., 1998. Archean magmatism and deformation were not the products of plate tectonics. Precambrian Research 91, 143–180. Hamilton, W.B., 2003. An alternative Earth. GSA Today 13, 4–12. Hamilton, W.B., 2005. Plumeless Venus has ancient impact-accretionary surface. In: Foulger, G.R., Natland, J.H., Presnall, D.C., Anderson, D.L. (Eds.), Plates, Plumes, and Paradigms. In: Geological Society of America, Special Paper 388, pp. 781–814. Han B-F, Wang, S-H., Jahn, B-M., Hong, D-W., Kagami, H., Sun, Y-L., 1997. Depletedmantle source for the Ulungur River A-type granites from North Xinjiang, China: Geochemistry and Nd-Sr isotopic evidence, and implications for Phanerozoic crustal growth. Chemical Geology 138, 135–59. Hanmer, S., Greene, D.C., 2002. A modern structural regime in the Paleoarchean (∼ 3.64 Ga); Isua Greenstone Belt, southern West Greenland. Tectonophysics 346, 201–222. Hanor, J.S., Duchac, K., 1990. Isovolumetric silicification of Early Archean komatiites: geochemical mass balances and constraints on origin. Journal of Geology 98, 863–877. Hansen, V.L., 2000. Geologic mapping of tectonic planets. Earth and Planetary Science Letters 176, 527–542. Hansen, V.L., 2002. Artemis: signature of a deep Venusian mantle plume. Bulletin of Geological Society of America 114, 839–848. Hansen, V.L., 2003. Venus diapirs: thermal or compositional? Bulletin of Geological Society of America 115, 1040–1052. Hansen, V.L., 2005. Venus’s shield-terrain. Bulletin of Geological Society of America 117, 808–822. Hansen, V.L., 2006. Geologic constraints on crustal plateau surface histories, Venus: The lava pond and bolide impact hypotheses. Journal of Geophysical Research, 111: doi:10.1029/2006JE002714. Hansen, V.L., Banks, B.K., Ghent, R.R., 1999. Tessera terrain and crustal plateaus, Venus. Geology 27, 1071–1074. Hansen, V.L., DeShon, H.R., 2002. Geologic map of the Diana Chasma quadrangle (V-37). Venus U.S. Geological Survey Geologic Investigations Series I-2752, U.S. Geological Survey, 1:5,000,000. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 dpg15 v.2007/06/04 Prn:5/06/2007; 11:41 F:dpg15ref.tex; VTEX/zk p. 62 aid: dpg15ref pii: S0166-2635(07)15094-5 docsubty: MISC 62 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 References Hansen, V.L., Phillips, R.J., Willis, J.J., Ghent, R.R., 2000. Structures in tessera terrain, Venus: Issues and answers. Journal of Geophysical Research 105, 4135–4152. Hansen, V.L., Willis, J.J., 1996. Structural analysis of a sampling of tesserae: Implications for Venus geodynamics. Icarus 123, 296–312. Hansen, V.L., Willis, J.J., 1998. Ribbon terrain formation, southwestern Fortuna Tessera, Venus: Implications for lithosphere evolution. Icarus 132, 321–343. Hansen, V.L., Willis, J.J., Banerdt, W.B., 1997. Tectonic overview and synthesis. In: Bouger, S.W., Hunten, D.M., Phillips, R.J. (Eds.), Venus II. University of Arizona Press, Tucson, AZ, pp. 797–844. Hansen, V.L., Young, D.A., 2007. Venus’s evolution: A synthesis. In: Cloos, M., Carlson, W., Gilbert, M.C., Liou, J.G., Sorenson, S.S. (Eds.), Convergent Margin Terranes and 6 Associated Regions. In: Geological Society of America, Special Paper 419, in press. Hanson, G.N., Himmelberg, G.R., 1967. Ages of mafic dikes near Granite Falls, Minnesota. Bulletin of Geological Society of America 78, 1429–1432. Harley, S.L., 1986. A sapphirine-cordierite-garnet-sillimanite granulite from Enderby Land, Antarctica: implications for FMAS petrogenetic grids in the granulite facies. Contributions to Mineralogy and Petrology 94, 452–460. Harley, S.L., 1993. Sapphrine granulites from the Vestfold Hills, East Antarctica: geochemical and metamorphic evolution. Antarctic Science 5, 349–402. Harley, S.L., 1998. On the occurrence and characterisation of ultrahigh temperature crustal metamorphism. In: Treloar, P.J., O’Brien, P. (Eds.), What Drives Metamorphism and Metamorphic Reactions? In: Geological Society of London, Special Publication 138, pp. 75–101. Harley, S.L., 2003. Archaean to Pan-African crustal development and assembly of East Antarctica: metamorphic characteristics and tectonic implications. In: Yoshida, M., Windley, B.F. (Eds.), Proterozoic East Gondwana: Supercontinent Assembly and Breakup. In: Geological Society of London, Special Publication 206, pp. 203–230. Harley, S.L., Black, L.P., 1997. A revised Archaean chronology for the Napier Complex, Enderby Land, from SHRIMP ion-microprobe studies. Antarctic Science 9, 74–91. Harley, S.L., Fitzsimons, I.C.W., Buick, I.S., Watt, G., 1992. The significance of reworking, fluids and partial melting in granulite metamorphism, East Prydz Bay, Antarctica. In: Yoshida, Y. Kaminuma, K., Shiraishi, K. (Eds,), Recent Progress in Antarctic Earth Science. Terrapub, Tokyo, pp. 119–127. Harley, S.L., Snape, I., Black, L.P., 1998. The early evolution of a layered metaigneous complex in the Rauer Group, East Antarctica: evidence for a distinct Archaean terrane. Precambrian Research 89, 175–205. Harper, C.L., Jacobsen, S.B., 1992. Evidence from coupled 147Sm-143Nd and 146Sm142Nd systematics for very early (4.5 Ga) differentiation of the Earth’s mantle. Nature 360, 728–732. Harper, K.M., 1997. U-Pb age constraints on the timing and duration of Proterozoic and Archean metamorphism along the southern margin of the Archean Wyoming craton. Unpublished Ph.D thesis. University of Wyoming, Laramie, 176 pp. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 dpg15 v.2007/06/04 Prn:5/06/2007; 11:41 F:dpg15ref.tex; VTEX/zk p. 63 aid: dpg15ref pii: S0166-2635(07)15094-5 docsubty: MISC References 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 63 Harris, P.D., Smith, C.B., Hart, R.J., Robb, L.J., 1993. Sm-Nd and Rb-Sr isotope systematics of rare-element pegmatites from the New Consort gold mines, Barberton Mountain Land, South Africa. Information Circular, Economic Geology Research Unit, University of the Witwatersrand, Johannesburg, 265, 20 pp. Harris, P.D., Robb, L.J., Tomkinson, M.J., 1995. The nature and structural setting of rareelement pegmatites along the northern flank of the Barberton greenstone belt, South Africa. South African Journal of Geology 98, 82–94. Harrison, T.M., Blichert-Toft, J., Müller, W., Albarede, F., Holden, P., Mojzsis, S.J., 2005. Heterogeneous Hadean hafnium: evidence of continental crust at 4.4 to 4.5 Ga. Science 310, 1947–1950. Harrison, T.M., Blichert-Toft, J., Müller, W., Albarède, F., Holden, P., Mojzsis, S.J., 2006. Response to Comment on “Heterogeneous Hadean hafnium: Evidence of continental crust at 4.4 to 4.5 Ga”. Science 312, doi:10.1126/science.1123408. Harrison, T.M., McCulloch, M.T., Blichert-Toft, J., Albarede, F., Holden, P., Mojzsis, S.J., 2006. Further Hf isotope evidence for Hadean continental crust. Geochimica et Cosmochimica Acta 70 (18) Suppl. 1, A234. Hart, R., Moser, D., Andreoli, M., 1999. Archaean age for the granulite facies metamorphism near the center of the Vredefort structure, South Africa. Geology 27 (12), 1091–1094. Harte, B., Harris, J.W., Hutchinson, M.T., Watt, G.R., Wilding, M.C., 1999. Lower mantle mineral associations in diamonds from Sao Luiz, Brazil. In: Fei, Y., Bertka, C.M., Mysen, B.O. (Eds.), Mantle Petrology: Field Observations and High Pressure Experimentation: A Tribute to Francis F. (Joe) Boyd. In: Geochemical Society Special Publication #6. The Geochemical Society, Houston, pp. 125–154. Hartlaub, R.P., Heaman, L.M., Böhm, C.O., Corkery, M.T., 2003. The Split Lake Block revisited: new geological constraints from the Birthday to Gull rapids corridor of the Lower Nelson River (NTS 54D5 and 6). In: Report of Activities 2003, Manitoba Industry, Trade and Mines, Manitoba Geological Survey, pp. 114–117. Hartlaub, R.P., Heaman, L.M., Ashton, K.E., Chacko, T., 2004. The Archean Murmac Bay group: evidence for a giant Archean rift in the Rae Province, Canada. Precambrian Research 131, 345–372. Hartlaub, R.P., Böhm, C.O., Kuiper, Y.D., Bowerman, M.S., Heaman, L.M., 2004. Archean and Paleoproterozoic Geology of the northwestern Split Lake Block, Superior Province, Manitoba (parts of NTS54D4, 5, 6 and NTS64A1). In: Report of Activities 2004, Manitoba Industry, Economic Development and Mines, Manitoba Geological Survey, pp. 187–194. Hartlaub, R.P., Böhm, C.O., Heaman, L.M., Simonetti, A., 2005. Northwestern Superior craton margin, Manitoba: an overview of Archean and Proterozoic episodes of crustal growth, erosion and orogenesis (parts of NTS 54D and 64A). In: Report of Activities 2004, Manitoba Industry, Economic Development and Mines, Manitoba Geological Survey, pp. 54–60. Hartlaub, R.P., Heaman, L.M., Simonetti, A., Boehm, C.O., 2006. Relicts of Earth’s earliest crust: U-Pb, Lu-Hf , and morphological characteristics of >3.7 Ga detrital zircon of the 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 dpg15 v.2007/06/04 Prn:5/06/2007; 11:41 F:dpg15ref.tex; VTEX/zk p. 64 aid: dpg15ref pii: S0166-2635(07)15094-5 docsubty: MISC 64 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 References western Canadian Shield. In: Reimold, W.U., Gibson, R.L. (Eds.), Processes on the Early Earth. In: Geological Society of America, Special Paper 405, pp. 75–90. Hartmann, W.K., 1998. Moons and Planets. Brooks Cole, 528 pp. Hartmann, W.K., Ryder, G., Dones, L., Grinspoon, D., 2000. The time-dependent intense bombardment of the primordial Earth–Moon system. In: Canup, R.M., Righter, K. (Eds.), Origin of the Earth and Moon. University of Arizona Press, Tucson, AZ, pp. 493–512. Hattori, K., Cameron, E.M., 1986. Archean magmatic sulphate. Nature 319, 45–47. Hauck, S.A., Phillips, R.J., Price, M.H., 1998. Venus: Crater distribution and plains resurfacing models. Journal of Geophysical Research 103, 13,635–13,642. Haugh, I., 1969: Geology of the Split Lake area. In: Manitoba Mines and Natural Resources, Mines Branch, Publication 65-2, p. 87. Haugh, I., Elphick, S.C., 1968. Kettle Rapids–Moose Lake area. Summary of Geological Fieldwork 1968. In: Manitoba Mines and Natural Resources, Mines Branch, Geological Paper 68-3, pp. 29–37. Hayes, J.M., Kaplan, I.R., Wedekling, K.W., 1983. Precambrian organic geochemistry, preservation of the record. In: Schopf, J.W. (Ed.), Earth’s Earliest Biosphere: Its Origin and Evolution. Princeton University Press, Princeton, pp. 93–134. Hayes, J.M., Waldbauer, J.R., 2006. The carbon cycles and associated redox processes through time. Philosophical Transactions of the Royal Society of London 361, 931– 950. Head, J.W., Crumpler, L.S., Aubele, J.C., Guest, J.E., Saunders, R.S., 1992. Venus Volcanism: Classification of Volcanic Features and Structures, Associations, and Global Distribution from Magellan Data. Journal of Geophysical Research 97, 13153–13198. Heaman, L.M., Corkery, M.T., 1996. U-Pb geochronology of the Split Lake Block, Manitoba: preliminary results. In: 1996 Trans-Hudson Orogen, Lithoprobe Report 55, pp. 60–68. Heaman, L.M., Machado, N., Krogh, T.E., Weber, W., 1986. Preliminary U-Pb zircon results from the Pikwitonei granulite domain, In: Manitoba. Geological Association of Canada – Mineralogical Association of Canada, Joint Annual Meeting, Program and Abstracts, 11, p. 79. Hedderich, R., Klimmek, O., Kroger, A., Dirmeier, R., Keller, M., Stetter, K.O., 1998. Anaerobic respiration with elemental sulfur and with disulfides. FEMS Microbiology Reviews 22, 353–381. Heinrichs, T.K., 1980. Lithostratigraphische Untersuchungen in der Fig Tree Gruppe des Barberton Greenstone Belt zwischen Umsoli und Lomati (Sudafrika). Gottinger Arbeiten zur Geologie und Palaontologie 22, 118 pp. Heinrichs, T.K., 1984. The Umsoli Chert, turbidite testament for a major phreatoplinian event at the Onverwacht/Fig Tree transition (Swaziland Supergroup, Archaean, South Africa). Precambrian Research 24, 237–283. Heinrichs, T.K., Reimer, T.O., 1977. A sedimentary barite deposit from the Archean Fig Tree Group of the Barberton Mountain Land (South Africa). Economic Geology 72, 1426–1441. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 dpg15 v.2007/06/04 Prn:5/06/2007; 11:41 F:dpg15ref.tex; VTEX/zk p. 65 aid: dpg15ref pii: S0166-2635(07)15094-5 docsubty: MISC References 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 65 Helmstaedt, H.H., Gurney, J.J., 1995. Geotectonic controls of primary diamond deposits: implications for area selection. Journal of Geochemical Exploration 53, 125–140. Henry, D.J., Mueller, P.A., Wooden, J.L., Warner, J.L., Lee-Berman, R., 1982. Granulite grade supracrustal assemblages of the Quad Creek area, eastern Beartooth Mountains, Montana. In: Montana Bureau of Mines and Geology, Special Publication 84, pp. 147– 159. Henry, P., Stevenson, R., Gariepy, C., 1998. Late Archean mantle composition and crustal growth in the western Superior Province of Canada: Neodymium and lead isotopic evidence from the Wawa, Quetico, and Wabigoon subprovinces. Geochimica et Cosmochimica Acta 62, 143–157. Henry, P., Stevenson, R., Larbi, Y., Gariepy, C., 2000. Nd isotopic evidence for Early to Late Archean (3.4–2.7 Ga) crustal growth in the Western Superior Province (Ontario, Canada). Tectonophysics 322, 135–151. Hensen, B.J., Zhou, B., 1995. A Pan-African granulite facies metamorphic episode in Prydz Bay, Antarctica: evidence from Sm-Nd garnet dating. Australian Journal of Earth Sciences 42, 249–258. Herd, R.K., 1978. Notes on metamorphism in New Québec. In: Fraserand, J.A., Heywood, W.W. (Eds.) Metamorphism in the Canadian Shield. In: Geological Survey of Canada, Paper 78-10, pp. 78–83. Hertogen, J., Janssens, M.J., Palme, H., 1980. Trace elements in ocean ridge basalt glasses: Implications for fractionations during mantle evolution and petrogenesis. Geochimica et Cosmochimica Acta 44, 2125–2143. Herzberg, C., 1992. Depth and degree of melting of komatiite. Journal of Geophysical Research 97, 4521–4540. Herzberg C., 1999. Phase equilibrium constraints on the formation of cratonic mantle. In: Fei, Y., Bertka, C.M., Mysen, B.O. (Eds.), Mantle Petrology: Field Observations and High-Pressure Axperimentation: A Tribute to Francis R. (Joe) Boyd. In: Geochemical Society Special Publication #6. The Geochemical Society, Houston, pp. 241–258. Heubeck, C., Lowe, D.R., 1994a. Depositional and tectonic setting of the Archean Moodies Group, Barberton Greenstone Belt, South Africa. Precambrian Research 68, 257–290. Heubeck, C., Lowe, D.R., 1994b. Late syndepositional deformation and detachment tectonics in the Barberton Greenstone Belt, South Africa. Tectonics 13, 1514–1536. Heubeck, C., Lowe, D.R., 1999. Sedimentary petrography and provenance of the Archean Moodies Group, Barberton Greenstone Belt. In: Lowe, D.R., Byerly, G.R. (Eds.), Geologic Evolution of the Barberton Greenstone Belt, South Africa. In: Geological Society of America, Special Paper 329, pp. 259–286. Heymann, D., 1967. On the origin of hypersthene chondrites: Ages and shock effects of black meteorites. Icarus 6, 189–221. Hickman, A.H., 1973. The North Pole barite deposits, Pilbara Goldfield. In: Annual Report of Geological Survey of Western Australia for 1972, pp. 57–60. Hickman, A.H., 1975. Precambrian structural geology of part of the Pilbara region. In: Annual Report, 1974. Western Australia Geological Survey, pp. 68–73. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 dpg15 v.2007/06/04 Prn:5/06/2007; 11:41 F:dpg15ref.tex; VTEX/zk p. 66 aid: dpg15ref pii: S0166-2635(07)15094-5 docsubty: MISC 66 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 References Hickman, A.H., 1983. Geology of the Pilbara Block and Its Environs. Bulletin 127. Western Australia Geological Survey, 268 pp. Hickman, A.H., 1984. Archaean diapirism in the Pilbara Block, Western Australia. In: Kröner, A., Greiling, R. (Eds.), Precambrian Tectonics Illustrated. E. Schweizerbarts’che Verlagsbuchhandlung, Stuttgart, pp. 113–127. Hickman, A.H., 1997. A revision of the stratigraphy of Archaean greenstone successions in the Roebourne-Whundo area – west Pilbara. In: Annual Review 1996-97. Western Australia Geological Survey, pp. 76–81. Hickman, A.H., 2004. Two contrasting granite−greenstones terranes in the Pilbara Craton, Australia: evidence for vertical and horizontal tectonic regimes prior to 2900 Ma. Precambrian Research 131, 153–172. Hickman, A.H., Van Kranendonk, M.J., 2004. Diapiric processes in the formation of Archaean continental crust, East Pilbara Granite-Greenstone Terrane, Australia. In: Eriksson, P.G., Altermann, W., Nelson, D.R., Mueller, W.U., Catuneau, O. (Eds.), The Precambrian Earth: Tempos and Events. Elsevier, Amsterdam, pp. 54–75. Hildreth W., Moorbath S., 1988, Crustal contributions to arc magmatism in the Andes of Central Chile. Contributions to Mineralogy and Petrology 98, 455–489. Hill, R.E.T., 2001. Komatiite volcanology, volcanological setting and primary geochemical properties of komatiite-associated nickel deposits. Geochemistry: Exploration, Environment, Analysis 1, 365–381. Hill, R.E.T., Barnes, S.J., Gole, M.J., Dowling, S.E., 1995. The volcanology of komatiites as deduced from field relationships in the Norseman-Wiluna greenstone belt, Western Australia. Lithos 34, 159–188. Hill, R.I., Campbell, I.H., Compston, W., 1989. Age and origin of granitic rocks in the Kalgoorlie–Norseman region of Western Australia – Implications for the origin of Archaean crust. Geochimica et Cosmochimica Acta 53, 1259–1275. Hill, R.M., 1997. Stratigraphy, structure and alteration of hanging wall sedimentary rocks at the Sulphur Springs volcanogenic massive sulphide (VMS) prospect, east Pilbara Craton, Western Australia. B.Sc. Hon. thesis. University of Western Australia, 67 pp. Himmelberg, G.R., 1968. Geology of Precambrian rocks, Granite Falls-Montevideo area, southwestern Minnesota. In: Minnesota Geological Survey, Special Publication Series, SP-5, 33 pp. Himmelberg, G.R., Phinney, W.C., 1967. Granulite-facies metamorphism, Granite FallsMontevideo area, Minnesota. Journal of Petrology 8, 325–348. Hirner, A., 2001. Geology and Gold Mineralization in the Madibe Greenstone Belt, Eastern part of the Kraaipan Terrain, Kaapvaal Craton, South Africa. University of the Witwatersrand, Johannesburg, 220 pp. Hirose, K., Fei, Y., Ma, Y., Mao, H.-K., 1999. The fate of subducted basaltic crust in the Earth’s lower mantle. Nature 397, 53–56. Hoatson, D.M., Jaireth, S., Jaques, A.L., 2006. Nickel sulfide deposits in Australia: Characteristics, resources and potential. Ore Geology Reviews 29, 177–241. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 dpg15 v.2007/06/04 Prn:5/06/2007; 11:41 F:dpg15ref.tex; VTEX/zk p. 67 aid: dpg15ref pii: S0166-2635(07)15094-5 docsubty: MISC References 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 67 Hodges, K.V., Bowring, S.A., Coleman, D.S., Hawkins, D.P., Davidek, K.L., 1995. Multistage thermal history of the ca. 4.0 Ga Acasta gneisses. In: American Geophysical Union Fall Meeting, pp. F708. Hoefs, J., 1997. Stable Isotope Geochemistry. Springer-Verlag, Berlin, 201 pp. Hoering, T.C., 1989. The isotopic composition of bedded barites from the Archean of southern India. Journal of the Geological Society of India 34, 461–466. Hofmann, A., Bolhar, R., Dirks, P., Jelsma, H., 2003. The geochemistry of Archaean shales derived from a mafic volcanic sequence, Belingwe greenstone belt, Zimbabwe: provenance, source area unroofing and submarine versus subaerial weathering. Geochimica et Cosmochimica Acta 67, 421–440. Hofmann, A., 2005a. Silica alteration zones in the Barberton greenstone belt: a window into subseafloor processes 3.5–3.3 Ga ago. In: GEO2005, Abstracts Volume. University of KwaZulu-Natal, Durban, South Africa, pp. 111–112. Hofmann, A., 2005b. The geochemistry of sedimentary rocks from the Fig Tree Group, Barberton greenstone belt: Implications for tectonic, hydrothermal and surface processes during mid-Archaean times. Precambrian Research 143, 23–49. Hofmann, A., Bolhar, R., 2007. Field relationships of carbonaceous cherts in the Barberton greenstone belt and their significance for the study of early life in mid-Archaean rocks. Astrobiology, in press. Hofmann, A., Bolhar, R., Harris, C., Orberger, B., 2006. Silica alteration zones and cherts as a record of hydrothermal processes on the Archaean seafloor. Geochimica et Cosmochimica Acta 70, Suppl. 1, A257. Hofmann, A., Bolhar, R., Dirks, P.H.G.M., Jelsma, H.A., 2003. The geochemistry of Archaean shales derived from a mafic volcanic sequence, Belingwe greenstone belt, Zimbabwe: provenance, source area unroofing and submarine vs subaerial weathering. Geochimica et Cosmochimica Acta 67, 421–440. Hofmann, A.W., 1988. Chemical differentiation of the Earth: The relationship between mantle, continental crust and oceanic crust. Earth and Planetary Science Letters 90, 297–314. Hofmann A.W., 1997. Mantle geochemistry: the message from oceanic volcanism. Nature 385, 219–229. Hofmann, A.W., 1997. Early evolution of continents. Science 275, 498–499. Hoffman, A.W., 2005. Sampling mantle heterogeneity through oceanic basalts: Isotopes and trace elements. In: Holland, H.D., Turekian, K.K. (Eds.), Treatise on Geochemistry, vol. 2. Elsevier, Amsterdam, pp. 61–101 (Chapter 2.03). Hoffman, H.J., Grey, K., Hickman, A., Thorpe, R., 1999. Origin of 3.45 Ga coniform stromatolites in Warrawoona Group, Western Australia. Bulletin of Geological Society of America 111, 1256–1262. Hoffman, P.F. 1989. Precambrian geology and tectonic history of North America, In: Bally, A.W., A.R Palmer (Eds.), The Geology of North America – An Overview. In: The Geology of North America, A. Geological Society of America, pp. 447–512. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 dpg15 v.2007/06/04 Prn:5/06/2007; 11:41 F:dpg15ref.tex; VTEX/zk p. 68 aid: dpg15ref pii: S0166-2635(07)15094-5 docsubty: MISC 68 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 References Hoffman, P., 1990. Subdivision of the Churchill province and extent of the Trans-Hudson orogen. In: Lewry, J., Stauffer, M. (Eds.), The Early Proterozoic Trans-Hudson Orogen of North America. In: Geologic Association of Canada Special Paper 37, pp. 15–39. Hoffman, P.F., 1988. United plates of America, the birth of a craton: Early Proterozoic Assembly and Growth of Laurentia. Annual Review of Earth and Planetary Sciences 16, 543–603. Hoffman, P.F., 1989. Precambrian geology and tectonic history of North America. In: Bally, A.W., Palmer, A.R. (Eds.), The Geology of North America – An overview. Geological Society of America, Boulder, CO, pp. 447–512. Hohenberg, C.M., Brazzle, R.H., Pravdivtseva, O.V., Meshik, A.P., 1998. Iodine-xenon chronometry: The verdict. Meteoritics and Planetary Science 33 (Supplement), A69–70 (abstract). Hohenberg, C M., Pravdivtseva, O.V., Meshik, A.P., 2000. Reexamination of anomalous I-Xe ages: Orgueil and Murchison magnetites and Allegan feldspar. Geochimica et Cosmochimica Acta 64, 4257–4262. Hokada, T., Misawa, K., Shiraishi, K., Suzuki, S., 2003. Mid to late Archaean (3.3–2.5 Ga) tonalitic crustal formation and high-grade metamorphism at Mt Riiser-Larsen, Napier Complex, East Antarctica. Precambrian Research 127, 215–228. Hokada, T., Harley, S.L., 2004. Zircon growth in UHT leucosome: constraints from zircongarnet rare earth element (REE) relations in the Napier Complex, Antarctica. Journal of Mineralogical and Petrological Science 99, 180–190. Holdaway, M.J., 2000. Application of new experimental and garnet margules data to the garnet-biotite geothermometer. American Mineralogist 85, 881–892. Holland, H.D., 1984. The Chemical Evolution of the Atmospheres and Oceans. Princeton University Press, Princeton, 582 pp. Holland, H.D., 1994. Early Proterozoic atmosphere change. In: Bengston, S. (Ed.), Nobel Symposium 84, Early Life on Earth. Columbia University Press, New York, pp. 237– 244. Holland, H.D., 2005. Sedimentary mineral deposits and the evolution of Earth’s near surface environments. Economic Geology 100, 1489–1500. Holland, T.J.B., Blundy, J., 1994. Non-ideal interactions in calcic amphiboles and their bearing on amphibole-plagioclase thermometry. Contributions to Mineralogy and Petrology 116, 433–447. Holland, T.J.B., Powell, R., 1998. An internally consistent thermodynamic dataset for phases of petrological interest. Journal of Metamorphic Geology 16, 309–343. Hollings, P., 2002. Archean Nb-enriched basalts in the northern Superior Province. Lithos 64, 1–14. Hollings, P., Kerrich, R., 1999. Trace element systematics of ultramafic and mafic volcanic rocks from the 3 Ga North Caribou greenstone belt, northwestern Superior Province. Precambrian Research 93, 257–279. Hollings, P., Kerrich, R., 2000. An Archean arc basalt-Nb-enriched basalt – adakite association: the 2.7 Ga Confederation assemblage of the Birch-Uchi greenstone belt, Superior Province. Contributions to Mineralogy and Petrology 139, 208–226. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 dpg15 v.2007/06/04 Prn:5/06/2007; 11:41 F:dpg15ref.tex; VTEX/zk p. 69 aid: dpg15ref pii: S0166-2635(07)15094-5 docsubty: MISC References 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 69 Hollings, P., Wyman, D.A., 1999. Trace element and Sm-Nd systematics of volcanic and intrusive rocks from the 3 Ga Lumby Lake greenstone belt, Superior Province; evidence for Archean plume-arc interaction. Lithos 46, 189–213. Hollings, P., Wyman, D.A., Kerrich, R., 1999. Komatiite-basalt-rhyolite associations in northern Superior Province greenstone belts: significance of plume-arc interaction in the generation of the protocontinental Superior Province. Lithos 46, 137–161. Hollings, P., Stott, G.M., Wyman, D.A., 2000. Trace element geochemistry of the MeenDempster greenstone belt, Uchi subprovince, Superior Province, Canada: back-arc development on the margins of an Archean protocontinent. Canadian Journal of Earth Sciences 37, 1021–1038. Holm, N.G., 1989. The 13 C/12 C ratios of siderite and organic matter of a modern metalliferous hydrothermal sediment and their implications for banded iron formations. Chemical Geology 77, 41–45. Holm, N.G., Charlou, J.L., 2001. Initial indications of abiotic formation of hydrocarbons in the Rainbow ultramafic hydrothermal system, Mid-Atlantic Ridge. Earth and Planetary Science Letters 191, 1–8. Holser, W.T., Schidlowski, M., Mackenzie, F.T., Maynard, J.B., 1988. Geochemical cycles of carbon and sulfur. In: Gregor, C.B., Garrels, R.M., Mackenzie, F.T., Maynard, J.B. (Eds.), Chemical Cycles in the Evolution of the Earth. John Wiley and Sons, New York, pp. 105–173. Hon, K., Kauahikaua, J., Denlinger, R., Mackay, K., 1994. Emplacement and inflation of pahoehoe sheet flows: Observations and measurements of active lava flows on Kilauea Volcanoe, Hawaii. Bulletin of Geological Society of America 106, 351–370. Hong, D., Wang, S-G., Han, B-F., Jin, M-Y., 1996. Post-orogenic alkaline granites from China and comparisons with anorogenic alkaline granites elsewhere. Journal of Southeast Asian Earth Sciences 13, 13–27. Hong, D., Zhang, J-S., Wang, T., Wang, S-G., Xie, X-L., 2004. Continental crust growth and the supercontinental cycle: evidence from the Central Asian orogenic Belt. Journal of Asian Earth Sciences 23, 799–813. Hoogenboom, T., Houseman, G.A., 2006. Rayleigh–Taylor instability as a mechanism for corona formation on Venus. Icarus 180, 292–307. Hopfe, W.D., Goldstein, J.I., 2001. The metallographic cooling rate method revisited: application to iron meteorites and mesosiderites. Meteoritics and Planetary Science 36, 135–154. Horan, M.F., Smoliar, M.I., Walker, R.J. 1998. 182 W and 187 Re-187 Os systematics of iron meteorites: chronology for melting differentiation, and crystallization in asteroids. Geochimica et Cosmochimica Acta 62, 545–554. Horita, J., Berndt, M.E., 1999. Abiogenic methane formation and isotopic fractionation under hydrothermal conditions. Science 285, 1055–1057. Horn, I., von Blanckenburg, F., Schoenberg, R., Steinhoefel, G., Markl, G., 2006. In situ iron isotope ratio determination using UV-femtosecond laser ablation with application to hydrothermal ore formation processes. Geochimica et Cosmochimica Acta 70, 3677– 3688. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 dpg15 v.2007/06/04 Prn:5/06/2007; 11:41 F:dpg15ref.tex; VTEX/zk p. 70 aid: dpg15ref pii: S0166-2635(07)15094-5 docsubty: MISC 70 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 References Horstwood, M.S.A., Nesbitt, R.W., Noble, S.R., Wilson, J.F., 1999. U-Pb zircon evidence for an extensive early Archean craton in Zimbabwe: A reassessment of the timing of craton formation, stabilization, and growth. Geology 27, 707–710. Horwitz, R., Pidgeon, R.T., 1993. 3.1 Ga tuff from the Scholl Belt in the west Pilbara: further evidence for diachronous volcanism in the Pilbara Craton. Precambrian Research 60, 175–183. Hoskin, P.W.O., Ireland, T.R., 2000. Rare earth element chemistry of zircon and its use as a provenance indicator. Geology 28, 627–630. Hoskin, P.W.O., Schaltegger, U., 2003. The composition of zircon and igneous and metamorphic petrogenesis. In: Hanchar, J.M., Hoskin, P.W.O. (Eds.), Zircon. In: Reviews in Mineralogy and Geochemistry, vol. 53, pp. 27–62. Hou, Z.-Q., Qu, X-M., Wang, S-X., Du, A., Gao, Y-F., Huang, W., 2004 Re-Os age for molybdenite from the Gangdese porphyry copper belt on Tibetan plateau: implication for geodynamic setting and duration of the Cu mineralization. Science in China, Series D 47, 221–231. Hou, Z-Q., Ma, H-W., Zaw, K., Zhang, Y-Q., Wang, M-J., Wang, Z., Pan, G-T., Tang, R-L., 2003, The Himalayan Yuolong porphyry copper belt: product of large sacle strike-slip faulting in eastern Tibet. Economic Geology 98, 125–145. House, C.H., Schopf, J.W., McKeegan, K.D., Coath, C.D., Harrison, T.M., Stetter, K., 2000. Carbon isotopic composition of individual Precambrian micro-fossils. Geology 28, 707–710. House, C.H., Schopf, J.W., Stetter, K.O., 2003. Carbon isotopic fractionation by Archaeans and other thermophilic prokaryotes. Organic Geochemistry 34, 345–356. Howell, D.G., 1995. Principles of Terrane Analysis – New Applicatons for Global Tectonics. Chapman & Hall, London, 245 pp. Hsu, W., Huss, G.R., Wasserburg, G.J., 1997. Mn-Cr systematics of differentiated meteorites. Lunar and Planetary Science XXVIII, 609–610. Hu, G.X., Rumble, D., Wang, P.L., 2003. An ultraviolet laser microprobe for the in situ analysis of multisulfur isotopes and its use in measuring Archean sulfur isotope massindependent anomalies. Geochimica et Cosmochimica Acta 67, 3101–3118. Hubregtse, J.J.M.W., 1980. The Archean Pikwitonei Granulite Domain and its position at the margin of the northwestern Superior Province (central Manitoba). In: Manitoba Department of Energy and Mines, Mineral Resources Division, Geological Paper GP803, p. 16. Hulbert, L.J., Hamilton, M.A., Horan, M.F., Scoates, R.F., 2005. U-Pb zircon and Re-Os isotope geochronology of mineralized ultramafic intrusions and associated nickel ores from the Thompson Nickel Belt, Manitoba, Canada. Economic Geology 100, 29–41. Hulston, J.R., Thode, H.G., 1965. Variations in the 33 S, 34 S, and 36 S contents of meteorites and their relation to chemical and nuclear effects. Journal of Geophysical Research 70, 3475–3484. Humphris, S.E., Tivey, M.K., 2000. A synthesis of geological and geochemical investigations of the TAG hydrothermal field: Insights into fluid-flow and mixing processes in a hydrothermal system. In: Dilek, Y., Moores, E.M., Elthon, D., Nicolas, A. (Eds.), 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 dpg15 v.2007/06/04 Prn:5/06/2007; 11:41 F:dpg15ref.tex; VTEX/zk p. 71 aid: dpg15ref pii: S0166-2635(07)15094-5 docsubty: MISC References 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 71 Ophiolites and Oceanic Crust: New Insights from Field Studies and the Ocean Drilling Program. In: Geological Society of America, Special Paper 349, pp. 213–235. Hunt, J.M., 1996. Petroleum Geochemistry and Geology, second ed. W.H. Freeman and Company, New York, 389 pp. Hunten, D.M., 2002. Exospheres and planetary escape. In: Mendillo, M., Nagy, A., Waite, J.H. (Eds.), Atmospheres in the Solar System: Comparative Aeronomy. In: AGU Geophysical Monograph, 130, pp. 191–202. Hunter, D.R., 1979. The role of tonalitic to trondhjemitic rocks in the cxrustal development of Swaziland and the eastern Trasvaal, South Africa. In: Barker, F. (Ed.) Trondhjemites, Dacites and Related Rocks. Elsevier, Amsterdam, pp. 301–322. Hunter, D.R., 1991. Crustal processes during Archaean evolution of the southeastern Kaapvaal province. Journal of African Earth Science 13, 13–25. Hunter, D.R., 1993. The Ancient Gneiss Complex. In: Kröner, A. (Ed.) The Anciet Gneiss Complex: Overview Papers and Guidebook for Excursion. In: Swaziland Geological Survey Mines Department, Bulletin 11, pp. 1–14. Hunter, D.R., Wilson, A.H., 1988. A continuous record of Archaean evolution from 3.5 Ga to 2.6 Ga in Swaziland and northern Natal. South African Journal of Geology 91, 57–74. Hunter, D.R., Barker, F., Millard, H.T., Jr., 1978. The geochemical nature of the Archean Ancient Gneiss Complex and Granodiorite Suite, Swaziland: a preliminary study. Precambrian Research 7, 105–127. Hunter, D.R., Allen, A.R., Millin, P., 1983. A preliminary note on Archaean supracrustal and granitoid rocks west of Piet Retief. Transactions of the Geological Society of South Africa 86, 301–306. Hunter, D.R., Barker, F., Millard, H.T., 1984. Geochemical investigation of Archaean bimodal and Dwalile metamorphic suites, Ancient Gneiss Complex, Swaziland. Precambrian Research 24, 131–155. Hunter, D.R., Smith, R.G., Sleigh, D.W.W., 1992. Geochemical studies of Archaean granitoid rocks in the southeastern Kaapvaal Province: implications for crustal development. Journal of African Earth Sciences 15 (1), 127–151. Huss, G.R., McPherson, G.J., Wasserburg, G.J., Russell, S.S., Srinivasan, G., 2001. Aluminium-26 in calcium-aluminium-rich inclusions and chondrules from unequilibrated ordinary chondrites. Meteoritics and Planetary Science 36, 975–997. Huston, D.L., 1999. Stable isotopes and their significance for understanding the genesis of volcanic-hosted massive sulfide deposits: a review. Reviews in Economic Geology 10, 151–180. Huston, D.L., Large, R.R., 1987. Genetic and exploration significance of the zinc ratio (100Zn/[Zn+Pb]) in massive sulfide systems. Economic Geology 82, 1521–1539. Huston, D.L., Logan, G.A., 2004. Barite, BIFs and bugs: evidence for the evolution of the Earth’s early hydrosphere. Earth and Planetary Science Letters 220, 41–55. Huston, D.L., Brauhart, C.W., Dreiberg, S.L., Davidson, G.J., Groves, D.I., 2001a. Metal leaching and inorganic sulphate reduction in volcanic-hosted massive sulphide mineral 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 dpg15 v.2007/06/04 Prn:5/06/2007; 11:41 F:dpg15ref.tex; VTEX/zk p. 72 aid: dpg15ref pii: S0166-2635(07)15094-5 docsubty: MISC 72 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 References systems: Evidence from the paleo-Archean Panorama district, Western Australia. Geology 29, 687–690. Huston, D.L., Blewett, R.S., Mernagh, T.P., Sun, S-S., Kamprad, J., 2001b. Gold deposits of the Pilbara Craton: Results of AGSO Research, 1998–2000. Australian Geological Survey Organisation, Record 2001/10, 86 pp. Huston, D.L., Sun, S.-S., Blewett, R.S., Hickman, A.H., Van Kranendonk, M., Phillips, D., Baker, D., Brauhart, C.W., 2002. The timing of mineralization in the Archean Pilbara Craton, Western Australia. Economic Geology 97, 733–756. Huston, D.L., Champion, D.C., Cassidy, K.F., 2005. Tectonic controls on the endowment of Archean cratons in VHMS deposits: Evidence from Pb and Nd isotopes. In: Mao, J.W., Bierlein, F.P. (Eds.), Mineral Deposit Research: Meeting the Global Challenge. Berlin, Springer, pp. 15–18. Hutcheon, I.D., Olsen, E., 1991. Cr isotopic composition of differentiated meteorites: A search for 53 Mn. Lunar and Planetary Science XXII, 605–606. Hutcheon. I.D., Phinney, D.L., 1996. Radiogenic 53Cr in Orgueil carbonates: chronology of aqueous activity on the CI parent body. Lunar and Planetary Science XXVII, 577– 578. Hutcheon, I.D., Krot, A.N., Keil, K., Phinney, D.L., Scott, E.R.D., 1998. 53Mn-53Cr dating of fayalite formation in the CV3 chondrite, Mokoia: evidence for asteroidal alteration. Science 282, 1865–1867. Hutcheon, I.D., Weisberg, M.K., Phinney, D.L., Zolensky, M.E., Prinz, M., Ivanov, A.V., 1999. Radiogenic 53 Cr in Kaidun carbonates: evidence for very early aqueous activity. Lunar and Planetary Science XXX, abstract 1722. Hutchison, R., 2004. Meteorites: A Petrologic, Chemical and Isotopic Synthesis. Cambridge University Press, 506 pp. Hutchison, R., Alexander, C.M.O’D., Barber, D.J., 1987. The Semarkona meteorite: First recorded occurrence of smectite in an ordinary chondrite, and its implications. Geochimica et Cosmochimica Acta 51, 1875–1882. Hutchison, R., Alexander, C.M.O’D., Bridges, J.C., 1998. Elemental redistribution in Tieschitz and the origin of white matrix. Meteoritics and Planetary Science 33, 1169– 1179. Hutchison, R., Williams, C.T., Din, V.K., Clayton, R.N., Kirschbaum, C., Paul, R.L., Lipschutz, M.E., 1988. A planetary H-group pebble in the Barwell L6, unshocked ordinary chondrite. Earth and Planetary Science Letters 90, 105–118. Hutton, J., 1785. Theory of the Earth. Abstract from his book published in 1795. Hynes, A., Skulski, T., 2005. Archean plate tectonics – similarities and differences. Geological Association of Canada Program with Abstracts, 30, p. 92. Iizuka, T., Hirata, T., 2005. Improvements of precision and accuracy in in situ Hf isotope microanalysis of zircon using the laser ablation-MC-ICPMS technique. Chemical Geology 220, 121–137. Iizuka, T., Horie, K., Komiya, T., Maruyama, S., Hirata, T., Hidaka, H., Windley, B.F., 2006. 4.2 Ga zircon xenocryst in an Acasta gneiss from northwestern Canada: evidence for early continental crust. Geology 34, 245–248. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 dpg15 v.2007/06/04 Prn:5/06/2007; 11:41 F:dpg15ref.tex; VTEX/zk p. 73 aid: dpg15ref pii: S0166-2635(07)15094-5 docsubty: MISC References 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 73 Iizuka, T., Komiya, T., Ueno, Y., Katayama, I., Uehara, Y., Maruyama, S., Hirata, T., Johnson, S.P., Dunkley, D., 2007. Geology and zircon geochronology of the Acasta gneiss complex, northwestern Canada: new constraints on its tectonothermal history. Precambrian Research, in press. Iizuka, T., Komiya, T., Maruyama, S., Hirata, T., Johnson, S.P., submitted. In situ LuHf isotopic analysis of zircon from the Acasta Gneiss Complex, northwestern Canada: Implications for extensive reworking of Hadean continental crust. Earth and Planetary Science Letters. Ingle, S., Coffin, M.F., 2004. Impact origin for the greater Ontong Java Plateau? Earth and Planetary Science Letters 218, 123–134. Ingram, P.A.J., 1977. A summary of the geology of a portion of the Pilbara Goldfield, Western Australian. In: McCall, G.J.H. (Ed.), The Archaean, Search for the Beginning. Dowden, Hutchinson and Ross, Stroudsburg, PA, pp. 208–216. Ireland, T.R., Wlotzka, F., 1992. The oldest zircons in the Solar System. Earth and Planetary Science Letters 109, 1–10. Irvine, T.N., Baragar, W.R.A., 1971. A guide to the chemical classification of the common volcanic rocks. Canadian Journal of Earth Sciences 8, 523–548. Irving, E., Woodsworth, G.J., Wynne, P.J., Morrison, A., 1985. Paleomagnetic evidence for displacement from the south of the Coast Plutonic Complex, British Columbia. Canadian Journal of Earth Sciences 22, 584–598. Isley, A.E., Abbot, D.H., 1999. Plume-related mafic volcanism and the deposition of banded iron formation. Journal of Geophysical Research 104, 15461–15477. Isnard, H., Gariepy, C., 2004. Sm-Nd, Lu-Hf and Pb-Pb signatures of gneisses and granitoids from the La Grande Belt; extent of late Archean crustal recycling in the northeastern Superior Province, Canada. Geochimica et Cosmochimica Acta 68, 1099–1113. Isozaki, Y. et al., 1997. Early Archean mid-oceanic ridge rocks and early life in the Pilbara Craton, W. Australia. Eos 78, 399. Ivanov, B.A., Melosh, H.J., 2003. Impacts do not initiate volcanic eruptions. Geology 31, 869–872. Ivanov, M.A., Head, J.W. 1996. Tessera terrain on Venus: A survey of the global distribution, characteristics, and relation to surrounding units from Magellan data. Journal of Geophysical Research 101, 14861–14908. Izenberg, N.R., Arvidson, R.E., Phillips, R.J., 1994. Impact crater degradation on Venusian plains. Geophysical Research Letters 21, 289–292. Jackson, I.N.S., Rigden, S.M., 1998. Composition and temperature of the mantle: seismologial models interpreted through experimental studies of mantle minerals. In: Jackson, I.N.S. (Ed.), The Earth’s Mantle: Composition, Structure and Evolution. Cambridge University Press, Cambridge, pp. 405–460. Jackson, M.P.A., 1984. Archaean structural styles in the Ancient Gneiss Complex of Swaziland, southern Africa. In: Kröner, A., Greiling, R. (Eds.)., Precambrian Tectonics Illustrated. E. Schweizerbart`sche Verlagsbuchhandlung, Stuttgart, pp. 1–18. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 dpg15 v.2007/06/04 Prn:5/06/2007; 11:41 F:dpg15ref.tex; VTEX/zk p. 74 aid: dpg15ref pii: S0166-2635(07)15094-5 docsubty: MISC 74 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 References Jackson, M.P.A., Robertson, D.I., 1983. Regional implications of Early-Precambrian strains in the Onverwacht Group adjacent to the Lochiel granite, north-west Swaziland. In: Geological Society of South Africa, Special Publication 9, pp. 45–62. Jackson, M.P.A., Eriksson, K.A., Harris, C.W., 1987. Early Archean foredeep sedimentation related to crustal shortening: a reinterpretation of the Barberton Sequence, southern Africa. Tectonophysics 136, 197–221. Jacobs, J., Bauer, W., Spaeth, G., Thomas, R.J., Weber, K., 1996. Lithology and structure of the Grenville-aged (∼1.1 Ga) basement of Heimefrontfjella (East Antarctica). Geologische Rundschau 85, 800–821. Jacobs, J., Fanning, C.M., Henjes-Kunst, F., Olesch, M., Paech, H.-J., 1998. Continuation of the Mozambique Belt into East Antarctica: Grenville-age metamorphism and polyphase Pan-African high-grade events in central Dronning Maud Land. Journal of Geology 106, 385–406. Jacobs, J., Fanning, C.M., Bauer, W., 2003. Timing of Grenville-age vs. Pan-African medium- to high-grade metamorphism in western Dronning Maud Land (East Antarctica) and significance for correlations in Rodinia and Gondwana. Precambrian Research 125, 1–20. Jacobsen, S.B., 2005. The Hf-W isotopic system and the origin of the Earth and Moon. Annual Reviews of Earth and Planetary Science 33, 531–570. Jacobsen, S.B., Pimentel-Close, M., 1988. A Nd isotopic study of the Hamersley and Michipicoten banded iron formations: The source of REE and F in Archean oceans. Earth and Planetary Science Letters 87, 29–44. Jacobsen, S.B., Wasserburg, G.J., 1984. Sm-Nd evolution of chondrites and achondrites. Earth and Planetary Science Letters 67, 137–150. Jaffrés, J.B.D., 2005. Development of a model to evaluate seawater oxygen isotope composition over the past 3.4 billion years. Unpublished honours thesis. James Cook University, North Queensland, Australia. Jagoutz, E., Jotter, R., Kubny, A., Varela M.E., Zartman, R., Kurat, G., Lugmair, G.W., 2003. CM?-U-Th-Pb isotopic evolution of the D’Orbigny angrite. Meteoritics and Planetary Science 38 (Supplement), A81 (abstract). Jahn, B.-M., 1994. Géochimie des granitoïdes archéens et de la croûte primitive. In: Hagemann, R., Jouzel, J., Treuil, M., Turpin, L. (Eds.), La géochimie de la Terre. CEAMasson. Jahn, B-M., 2004. The Central Asian Orogenic Belt and growth of the continental crust in the Phanerozoic. In: Geological Society London, Special Publication 226, pp. 73–100. Jahn, B.-M., Zhang, Z.Q., 1984. Archaean granulite gneisses from eastern Hebei Province, China; rare earth geochemistry and tectonic implications. Contributions to Mineralogy and Petrology 85, 224–243. Jahn, B.-M., Auvray, B., Blais, S., Capdevila, R., Cornichet, J., Vidal F., Hammeurt, J., 1980. Trace elements geochemistry and petrogenesis of Finnish greenstone belts. Journal of Petrology 21, 201–244. Jahn, B.-M., Glikson, A.Y., Peucat, J.J., Hickman, A.H., 1981. REE geochemistry and isotopic data of Archean silicic volcanics and granitoids from the Pilbara Block, Western 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 dpg15 v.2007/06/04 Prn:5/06/2007; 11:41 F:dpg15ref.tex; VTEX/zk p. 75 aid: dpg15ref pii: S0166-2635(07)15094-5 docsubty: MISC References 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 75 Australia: implications for the early crustal evolution. Geochimica et Cosmochimica Acta 45, 1633–1652. Jahn, B., Gruau, G., Glikson, A.Y., 1982. Komatiites of the Onverwacht Group, S. Africa: REE geochemistry, Sm/Nd age and mantle evolution. Contributions to Mineralogy and Petrology 80, 25–40. Jahn, B.-M., Vidal, P., Kröner, A., 1984. Multi-chronometric ages and origin of Archaean tonalitic gneisses in finnish Lapland: a case for long crustal residence time. Contribution to Mineralogy and Petrology 86, 398–408. Jahn, B.-M., Auvray, B., Cornichet, J., Bai, Y.L., Dhen, Q.H., Liu, D.Y., 1987. 3.5Ga old amphibolites from eastern Hebei Province, China: Field occurrence, petrology, Sm-Nd isochron age and REE geochemistry. Precambrian Research 34, 311–346. Jahn, B.-M., Auvray, B., Shen, Q.H., Liu, D.Y., Zhang, Z.Q., Dong, Y.J., Ye, X.J., Zhang, Z.Q., Comichet, J., Mace, J., 1988. Archaean crustal evolution in China: The Taishan complex, and evidence for juvenile crustal addition from long-term depleted mantle. Precambrian Research 38, 381–403. Jahn, B.-M., Gruau, G., Capdevila, R., Cornichet, J., Nemchin, A., Pidgeon, R., Rudnik, V.A., 1998. Archean crustal evolution of the Aldan Shield, Siberia: geochemical and isotopic constraints. Precambrian Research 91, 333–363 Jahn, ,-O., Gruau, G., Bernard-Griffiths, J., Cornichet, J., Kröner, A., Wendt, I., 1990. The Aldan Shield, Siberia: geochemical characterization, ages, petrogenesis and comparison with the Sino-Korean craton. In: Golver, J.E., Ho, S. (Eds.), Third International Archean Symposium, Extended abstract volume. Geoconferences WA Inc., Perth, Australia, pp. 179–181. Janes, D.M., Squyres, S.W., 1995. Viscoelastic relaxation of topographic highs on Venus to produce coronae. Journal of Geophysical Research 100, 21,173–21,187. Janes, D.M., Squyres, S.W., Bindschadler, D.L., Baer, G., Schubert, G., Sharpton, V.L., Stofan, E.R., 1992. Geophysical models for the formation and evolution of coronae on Venus. Journal of Geophysical Research 97, 16055–16068. Javoy, M., 1995. The integral enstatite chondrite model of the Earth. Geophysical Research Letters 22, 2219–2222. Jawhari, T., Roid, A., Casado, J., 1995. Raman spectroscopic characterization of some commercially available carbon black materials. Carbon 33, 1561–1565. Jeffery, P.M., Reynolds, J.H., 1961. Origin of excess Xe129 in stone meteorites. Journal of Geophysical Research 66, 3582–3583. Jehlicka, J., Urban, O., Pokorny, J., 2003. Raman spectroscopy of carbon and solid bitumens in sedimentary and metamorphic rocks. Spectrochimica Acta, Part A 59, 2341– 2352. Jenner, F.J., Bennett, V.C., Nutman, A.P., 2006. 3.8 Ga arc related basalts from Southwest Greenland. Geochimica et Cosmochimica Acta 70, A291. Jérbak, M., Harnois, L.,. 1991. Two-stage evolution in an Archean tonalite suite: the Taschereau stock, Abitibi (Quebec, Canada). Canadian Journal of Earth Science 28, 172–183. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 dpg15 v.2007/06/04 Prn:5/06/2007; 11:41 F:dpg15ref.tex; VTEX/zk p. 76 aid: dpg15ref pii: S0166-2635(07)15094-5 docsubty: MISC 76 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 References Ji, Z.Y., 1993. New data of isotope age of the Proterozoic metamorphic rocks from northern Jiaodong and its geological significance. Geology of Shandong 9, 40–51 (in Chinese with English abstract). Jian, P., Zhang, Q., Liu, D.Y., Jin, W.J., Jia, X.Q., Qian, Q., 2005. SHRIMP dating and geological significance of Late Archaean high-Mg diorite (sanukite) and hornblendegranite at Guyang of Inner Mongolia. Acta Petrologica Sinica 21, 151–157 (in Chinese with English abstract). Jin, K., Xu, W.L., Wang, Q.H., Gao, S., Liu, X.C., 2003. Formation time and sources of the Huaiguang migmatitic granodiorite in the Bangbu, Anhui Province: Evidence from SHRIMP zircon U-Pb geochronology. Acta Geologica Sinica 24, 331–336 (in Chinese with English abstract). Johannesson, K.H., Hawkins, D.L., Cortes, A., 2006. Do Archean chemical sediments record ancient seawater rare earth element patterns? Geochimica et Cosmochimica Acta 70, 871–890. Johnson, C.M., Beard, B.L., Beukes, N.J., Klein, C., O’Leary, J.M., 2003. Ancient geochemical cycling in the Earth as inferred from Fe isotope studies of banded iron formations from the Transvaal Craton. Contributions to Mineralogy and Petrology 144, 523–547. Johnson, R.C., Hills, F.A., 1976. Precambrian geochronology and geology of the Box Elder Canyon area, northern Laramie Range, Wyoming. Bulletin of Geological Society of America 87, 809–817. Johnston, S.T., 2001. The Great Alaskan Terrane Wreck: reconciliation of paleomagnetic and geological data in the northern Cordillera. Earth and Planetary Science Letters 193, 259–272. Johnson, T.M., Bullen, T.D., 2004. Mass-dependent fractionation of selenium and chromium isotopes in low-temperatures environments. Reviews in Mineralogy and Geochemistry 55, 289–317. Johnson, W.J., Goldstein, R.H., 1993. Cambrian seawater preserved as inclusions in marine low-magnesium calcite cement. Nature 362, 335–337. Johnston, A.D., Wyllie, P.J., 1988. Constraints on the origin of Archean trondhjemites based on phase relationships of Nuk Gneiss with H2 O at 15 kbar. Contributions to Mineralogy and Petrology 100, 35–46. Jones, A.P., Pickering, K.T., 2003. Evidence for aqueous fluid-sediment transport and erosional processes on Venus. Journal Geological Society London 160, 319–327. Jones, A.P., Price, G.D., Price, N.J., DeCarli, P.S., Clegg, R.A., 2002. Impact-induced melting and development of large igneous provinces. Earth and Planetary Science Letters 202, 551–561. Jones, A.P., Wunemann, K., Price, D., 2005. Impact volcanism as a possible origin for the Ontong Java Plateau (OJP). In: Foulger, G.R., Natland, J.H., Presnall, D.C., Anderson, D.L. (Eds.), Plates, Plumes, and Paradigms. In: Geological Society of America, Special Paper 388, pp. 711–720. Jones, C.B, 1990. Coppin Gap copper-molybdenum deposit. In: Australasian Institute of Mining and Metallurgy, Monograph 14, pp. 1xx-1yy ???. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 dpg15 v.2007/06/04 Prn:5/06/2007; 11:41 F:dpg15ref.tex; VTEX/zk p. 77 aid: dpg15ref pii: S0166-2635(07)15094-5 docsubty: MISC References 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 77 Jordan, T.H., 1975. The continental tectosphere. Geophysics and Space Physics 13, 1–12. Jordan, T.H., 1978. Composition and development of the continental tectosphere. Nature 274, 544–548. Kah, L.C., 2000. Depositional δ 18 O signatures in Proterozoic dolostones: constraints on seawater chemistry and early diagenesis. In: James, N., Grotzinger, J.P. (Eds.), Carbonate Sedimentation and Diagenesis in the Evolving Precambrian World. In: SEPM Special Publication, vol. 67, pp. 345–360. Kaiser, T., Wasserburg, G.J., 1983. The isotopic composition and concentration of Ag in iron meteorites. Geochimica et Cosmochimica Acta 47, 43–58. Kallemeyn, G.W., Wasson, J.T., 1985. The compositional classification of chondrites: IV. Ungrouped chondritic meteorites and clasts. Geochimica et Cosmochimica Acta 49, 261–270. Kallemeyn, G.W., Rubin, A.E., Wasson, J.T., 1996. The compositional classification of chondrites: VII. The R chondrite group. Geochimica et Cosmochimica Acta 60, 2243– 2256. Kamber, B.S., Moorbath, S., 1998. Initial Pb of the Amîtsoq gneissrevisited: implication for the timing of early Archaean crustal evolution in West Greenland. Chemical Geology 150, 19–41. Kamber, B.S., Webb, G.E., 2001. The geochemistry of Late Archaean microbial carbonate: implications for ocean chemistry and continental erosion history. Geochimica et Cosmochimica Acta 65, 2509–2525. Kamber, B.S., Moorbath, S., Whitehouse, M.J., 2001. The oldest rocks on Earth: time constraints and geological controversies. In: Lewis, C.L.E., Knell, S.J., (Eds.), The Age of the Earth: From 4004BC to AD 2002. In: Geological Society of London, Special Publication 190, pp. 177–203. Kamber, B.S., Ewart, A., Collerson, K.D., Bruce, M.C., McDonald, G.D., 2002. Fluidmobile trace element constraints on the role of slab melting and implications for Archaean crustal growth models. Contributions to Mineralogy and Petrology 144, 38–56. Kamber, B.S., Collerson, K.D., Moorbath, S., Whitehouse, M.J., 2003. Inheritance of early Archaean Pb-isotope variability from long-lived Hadean protocrust. Contributions to Mineralogy and Petrology 145, 25–46. Kamber, B S., Whitehouse, M.J., Bolhar, R., Moorbath, S., 2005a. Volcanic resurfacing and the early terrestrial crust: Zircon U-Pb and REE constraints from the Isua Greenstone Belt, southern West Greenland. Earth and Planetary Science Letters 240 (2), 276–290. Kamber, B.S., Greig, A., Collerson, K.D., 2005b. A new estimate for the composition of weathered young upper continental crust from alluvial sediments, Queensland, Australia. Geochimica et Cosmochimica Acta 69, 1041–1058. Kambers, B., Ewart, A., Collerson, K.D., Bruce, M.C., McDonald, G.D., 2002. Fluidmobile trace elements constraints on the role of slab melting and implications for Archaean crustal growth models. Contribution to Mineralogy and Petrology 144, 38–56. Kamo, S.L., Davis. D.W., 1994. Reassessment of Archean crust development in the Barberton Mountain Land, South Africa, based on U-Pb dating. Tectonics 13, 167–192. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 dpg15 v.2007/06/04 Prn:5/06/2007; 11:41 F:dpg15ref.tex; VTEX/zk p. 78 aid: dpg15ref pii: S0166-2635(07)15094-5 docsubty: MISC 78 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 References Kamo, S.L., Davis, D.W., De Wit, M.J., 1990. U-Pb geochronology of Archean plutonism in the Barberton region, S. Africa: 800 Ma of crustal evolution. In: 7th International Geocongress on Geochemistry, Canberra, p. 53. Kamo, S.L., Reimold, W.U., Krogh, T.E., Colliston, W.P., 1996. A 2.023 Ga age for the Vredefort impact event and a first report of shock metamorphosed zircons in pseudotachylitic breccias and granophyre. Earth and Planetary Sciences Letters 144, 369–387. Kappler, A., Pasquero, C., Konhauser, K.O., Newman, D.K., 2005. Deposition of banded iron formations by photoautotrophic Fe(II)-oxidizing bacteria. Geology 33, 865–868. Kareem, K.M., Byerly, G.R., 2002. Observed and predicted crystallization sequence in Barberton komatiite. In: Geological Society of America, Abstracts with Programs, vol. 34, p. 62. Kareem, K.M., Byerly, G.R., 2003. Petrology and geochemistry of 3.3 Ga komatiites – Weltevreden Formation, Barberton Greenstone Belt. In: Lunar and Planetary Science Conference XXXIV, #2071. Karlstrom, K.E., Houston, R.S., 1984. The Cheyenne Belt: Analysis of a Proterozoic suture in southern Wyoming. Precambrian Research 25, 415–446. Kasting, J.F., 1992. Models related to Proterozoic atmospheric and ocean chemistry. In: Schopf, J.W., Klein, C. (Eds.), The Proterozoic Biosphere: A Multidisciplinary Study. Cambridge University Press, pp. 1185–1187. Kasting, J.F., 1993. Earths early atmosphere. Science 259, 920–926. Kasting, J.F., 2005. Methane and climate during the Precambrian era. Precambrian Research 137, 119–129. Kasting, J.F., Ono, S., 2006. Palaeoclimates: the first two billion years. Philosophical Transactions of the Royal Society of London Ser. B 361, 917–929. Kasting, J.F., Zahnle, K.J., Pinto, J.P., Young, A.T., 1989. Sulfur, ultraviolet-radiation, and the early evolution of life. Origins of Life and Evolution of the Biosphere 19, 95–108. Kasting, J.F., Howard, M.T., Wallmann, K., Veizer, J., Shields, G.A., Jaffrés, J., 2006. Paleoclimates, ocean depth, and the oxygen isotopic composition of seawater. Earth and Planetary Science Letters, available online. Katagiri, G., Ishida, H., Ishitani, A., 1988. Raman spectra of graphite edge planes. Carbon 26, 565–571. Kato, Y., Nakamura, K., 2003. Origin and global tectonic significance of Early Archean cherts from the Marble Bar greenstone belt, Pilbara craton, Western Australia. Precambrian Research 125, 191–243. Kaula, W.M., 1990. Venus: A contrast in evolution to Earth. Science 247, 1191–1196. Kay, I., Sol, S., Kendall, J.M., Thomson, C., White, D., Asudeh, I., Roberts, B., Francis, D., 1999a. Shear wave splitting observations in the Archean craton of western Superior. Geophysical Research Letters 26, 2669–2672. Kay, I., Musacchio, G., White, D., Asudeh, I., Roberts, B., Forsyth, D., Hajnal, Z., Koperwhats, B., Farrell, D., 1999b. Imaging the Moho and Vp/Vs ratio in the western Superior Archean craton with wide-angle reflections. Geophysical Research Letters 26, 2585– 2588. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 dpg15 v.2007/06/04 Prn:5/06/2007; 11:41 F:dpg15ref.tex; VTEX/zk p. 79 aid: dpg15ref pii: S0166-2635(07)15094-5 docsubty: MISC References 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 79 Kay, R.W., Kay, S.M., 1991. Creation and destruction of lower continental crust. Geologische Rundschau 80, 259–278. Keil, K., 2000. Thermal alteration of asteroids: evidence from meteorites. Planetary and Space Science 48, 887–903. Keil, K., Stöffler, D., Love, S.G., Scott, E.R.D., 1997. Constraints on the role of impact heating and melting in asteroids. Meteoritics and Planetary Science 32, 349–363. Kelemen, P.B., 1995. Genesis of high Mg# andesites and the continental crust. Contribution to Mineralogy and Petrology 120 (1), 1–19. Kelemen, P.B., 2003. One View of the Geochemistry of Subduction-related Magmatic Arcs, with Emphasis on Primitive Andesite and Lower Crust. In: Rudnick, R.L. (Ed.), Treatise on Geochemistry, vol. 3: The Crust. Amsterdam, Elsevier B.V. Keller, G., 2005. Impacts, volcanism and mass extinction: random coincidence or cause and effect? Australian Journal of Earth Science 52 (4–5), 725–758. Kellogg, L.H., Hager, B.H., van der Hilst, R.D., 1999. Compositional stratification in the deep mantle. Science 283, 1881–1884. Kelly, N.M., Clarke, G.L., Carson, C.J., White, R.W., 2000. Thrusting in the lower crust: evidence from the Oygarden Islands, Kemp Land, East Antarctica. Geological Magazine 137, 219–234. Kelly, N.M., Clarke, G.L., Fanning, C.M., 2002. A two-stage evolution of the Neoproterozoic Rayner Structural Episode: new U-Pb SHRIMP constraints from the Oygarden Group, Kemp Land, East Antarctica. Precambrian Research 116, 307–330. Kelly, N.M., Clarke, G.L., Fanning, C.M., 2004. Archaean crust in the Rayner Complex of east Antarctica: Oygarden Group of Islands, Kemp Land. Transactions of the Royal Society of Edinburgh: Earth and Environmental Science 95, 491–510. Kelly, N.M., Harley, S.L., 2005. An integrated microtextural and chemical approach to zircon geochronology: refining the Archaean history of the Napier Complex, east Antarctica. Contributions to Mineralogy and Petrology 149, 57–84. Kelly, W.R., Wasserburg, G.J., 1978. Evidence for the existence of 107 Pd in the early solar system. Geophysical Research Letters 5, 1079–1082. Kelsey, D.E., White, R.W., Powell, R., Wilson, C.J.L., Quinn, C.D., 2003. New constraints on metamorphism in the Rauer Group, Prydz Bay, east Antarctica. Journal of Metamorphic Geology 21, 739–759. Kendall, J.M., Sol, S., Thomson, C.J., White, D.J., Asudeh, I., Snell, C.S., Sutherland, F.H., 2002. Seismic heterogeneity and anisotropy in the western Superior Province, Canada: insights into the evolution of an Archean craton. In: Fowler, C.M.R., Ebinger, C.J., Hawkesworth, C.J. (Eds.), The Early Earth: Physical, Chemical and Biological Development. In: Geological Society of London, Special Publication 199, pp. 27–44. Kent, R.W., Hardarson, B.S., Saunders, A.D., Storey, M., 1996. Plateaux ancient and modern: geochemical and sedimentological perspectives on Archaean oceanic magmatism. Lithos 37, 129–142. Kenyon, S.J., Bromley, B.C., 2005. Prospects for detection of catastrophic collisions in debris disks. Astronomical Journal 130, 269–279. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 dpg15 v.2007/06/04 Prn:5/06/2007; 11:41 F:dpg15ref.tex; VTEX/zk p. 80 aid: dpg15ref pii: S0166-2635(07)15094-5 docsubty: MISC 80 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 References Kerrich, R., Polat, A., 2006. Archean greenstone-tonalite duality: thermochemical mantle convection models or plate tectonics in the early Earth global dynamics? Tectonophysics 415, 141–165. Kerrich, R., Wyman, D., Fan, J., Bleeker, W., 1998. Boninite series: Low Ti-tholeiite associations from the 2.7 Ga Abitibi Greenstone Belt. Earth and Planetary Science Letters 164, 303–316. Kerrich, R., Polat, A., Wyman, D.A., Hollings, P., 1999. Trace element systematics of Mgto Fe tholeiitic basalt suites of the Superior province: implications for Archean mantle reservoirs and greenstone belt genesis. Lithos 46, 163–187. Kerrich, R., Goldfarb, R., Groves, D., Garwin, S., 2000. The geodynamics of world-class gold deposits: characteristics, space-time distribution, and origins. In: Hagemann, S.G., Brown, P.E. (Eds.), Gold in 2000. In: Reviews in Economic Geology, vol. 13, pp. 501– 551. Kerrich, R., Goldfarb, R.J., Richards, J.P., 2005. Metallogenic processes in an evolving geodynamic framework. Economic Geology, 100th Anniversary Volume, 1097–1136. Kerridge, J.F., Mackay, A.L., Boynton, W.V., 1979. Magnetite in CI carbonaceous chondrites: Origin by aqueous activity on a planetesimal surface. Science 205, 395–397. Keszthelyi, L., Self, S., 1998. Some physical requirement for the emplacement of long basaltic lava flows. Journal of Geophysical Research 103, B11, 27,447–27,464. Ketchum, J., Ayer, J., Van Breemen, O., Pearson, N.J., Becker, J.K., Pericratonic crustal growth of the southwestern Abitibi subprovince, Canada – U-Pb, Hf, and Nd isotopic evidence. Economic Geology, submitted. Khain, V.E., 2001. Tectonics of the Continents and Oceans. Nauchnyi Mir, Moscow, 604 pp. (in Russian). Khoreva, B.Ya. (Ed.), 1987. Map of the Metamorphic and Granitic Rock Associations of the USSR. Scale 1:10,000,000. Kartfabrika Vsesoyuzn. Geol. Inst., Leningrad (in Russian). Kidder, J.G., Phillips, R.J., 1996. Convection-driven subsolidus crustal thickening on Venus. Journal Geophysical Research 101, 23,181–23,194. Kinny, P.D., 1987. An ion microprobe study of uranium-lead and hafnium isotopes in natural zircon. Ph.D. thesis. Australian National University, Canberra, ACT, pp. 160 (unpublished). Kinny, P.D., 1990. Age spectrum of detrital zircons in the Windmill Hill Quartzite. In: Ho, S.E., Glover, J.E., Myers, J.S., Muhling, J.R. (Eds.), Third International Archaean Symposium, Excursion Guidebook. Geology Department and University Extension, University of Western Australia, Publication no. 21, pp. 116–117. Kinny, P.D., Nutman, A.P., 1996. Zirconology of the Meeberrie gneiss, Yilgarn Craton, Western Australia: an early Archaean migmatite. Precambrian Research 78, 165–178. Kinny, P.D., Williams, I.S., Froude, D.O., Ireland, T.R., Compston, W., 1988. Early Archaean zircon ages from orthogneisses and anorthosites at Mount Narryer, Western Australia. Precambrian Research 38, 325–341. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 dpg15 v.2007/06/04 Prn:5/06/2007; 11:41 F:dpg15ref.tex; VTEX/zk p. 81 aid: dpg15ref pii: S0166-2635(07)15094-5 docsubty: MISC References 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 81 Kinny, P.D., Wijbrans, J.R., Froude, D.O., Williams, I.S., Compston, W., 1990. Age constraints on the geological evolution of the Narryer Gneiss Complex, Western Australia. Australian Journal of Earth Sciences 37, 51–69. Kinny, P.D., Black, L.P., Sheraton, J.W., 1993. Zircon ages and the distribution of Archaean and Proterozoic rocks in the Rauer Islands. Antarctic Science 5, 193–206. Kirk, R., Soderblom, L., Lee, E., 1992. Enhanced visualization for interpretation of Magellan radar data: Supplement to the Magellan special issue. Journal of Geophysical Research 97, 16371–16380. Kirkwood, R., 2000. Geology, geochronology and economic potential of the Archean rocks in the western Owl Creek Mountains, Wyoming. Unpublished M.Sc. thesis. University of Wyoming, Laramie, 99 pp. Kissel, J., Brownless, D.E., Buchler, K., Clarke, B.C., Fechtig, H., Grun, E., HOrnung, K., Igenbergs, E.B., Jessberger, E.K., Krueger, F.R., Kuczera, H., McDonnell, J.A.M., Morfill, G.M., Rahe, J., Schwehm, G.H., Sekanina, Z., Utterback, N.G., Volk, H.J., Zook, H.A., 1986. Composition of comet Halley dust particples from Giotto observations. Nature 321, 336–337. Kisters, A.F.M., Anhaeusser, C.R., 1995a. Emplacement features of Archaean TTG plutons along the southern margin of the Barberton greenstone belt, South Africa. Precambrian Research 75, 1–15. Kisters, A.F.M., Anhaeusser, C.R., 1995b. The structural significance of the Steynsdorp pluton and anticline within the tectono-magmatic framework of the Barberton Mountain Land. South African Journal of Geology 98, 43–51. Kisters, A.F.M., Stevens, G., Dziggel, A., Armstrong, R.A., 2003. Extensional detachment faulting and core-complex formation in the southern Barberton granite-greenstone terrain, South Africa: evidence for a 3.2 Ga orogenic collapse. Precambrian Research 127, 355–378. Kisters, A.F.M., Stevens, G., Van Reenen, D., 2004. Excursion Field Guide: The Kaapvaal Traverse. 17–23 July 2004. Geoscience Africa, University of Witswaterrand, Johannesbourg. Kisters, A., Belcher, R., Poujol, M., Stevens, G., Moyen, J.F., 2006. A 3.2 Ga magmatic arc preserving 50 Ma of crustal convergence in the Barberton terrain, South Africa. In: AGU Fall Meeting, 11–15 December 2006, San Francisco, USA. Kitajima, K., Maruyama, S., Utsunomiya, S., Liou, J.G., 2001. Seafloor hydrothermal alteration at an Archaean mid-ocean ridge. Journal of Metamorphic Geology 19, 581–597. Kitsul, V.I., Dook, V.L., 1985. Endogenic formation regimes and evolution stages of the Early Precambrian lithosphere in the Vitim-Aldan Shield. In: Endogenic Formation Regimes of the Earth’s Crust and Ore Deposits in the Early Precambrian. Nauka, Leningrad, pp. 217–235 (in Russian). Kiyokawa, S., Ito, T., Ikehara, M., Kitajima, F., 2006. Middle Archean volcano-hydrothermal sequence: bacterial microfossil-bearing 3.2 Ga Dixon Island Formation, coastal Pilbara terrane, Australia. Bulletin of Geological Society of America 118, 3–22. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 dpg15 v.2007/06/04 Prn:5/06/2007; 11:41 F:dpg15ref.tex; VTEX/zk p. 82 aid: dpg15ref pii: S0166-2635(07)15094-5 docsubty: MISC 82 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 References Kleikemper, J., Schroth, M.H., Bernasconi, S.M., Brunner, B., Zeyer, J., 2004. Sulfur isotope fractionation during growth of sulfate-reducing bacteria on various carbon sources. Geochimica et Cosmochimica Acta 68, 4891–4904. Klein, M., Stosch, H-.G., Seck, H.A., 1997. Partitioning of high-field strength and rareearth elements between amphibole and quartz-dioritic to tonalitic melts: and experimental study. Chemical Geology 138, 257–271. Klein, M., Stosch, H.-G., Seck, H.A., Shimizu, N., 2000. Experimental partitioning of high field strength and rare earth elements between clinopyroxene and garnet in andesitic to tonalitic systems. Geochimica et Cosmochimica Acta 64, 99–115. Klein, M., Friedrich, M., Roger, A.J., Hugenholtz, P., Fishbain, S., Abicht, H., Blackall, L.L., Stahl, D.A., Wagner, M., 2001. Multiple lateral transfers of dissimilatory sulfite reductase genes between major lineages of sulfate-reducing prokaryotes. Journal of Bacteriology 183, 6028–6035. Kleine, T., Münker, C., Mezger, K., Palme, H., 2002. Rapid accretion and early core formation on asteroids and the terrestrial planets from Hf-W chronometry. Nature 418, 952–955. Kleine, T., Mezger, K., Münker, C., Palme, H., Bischoff, A., 2004. 182 Hf-182 W isotope systematics of chondrites, eucrites and martian meteorites: Chronology of core formation and early mantle differentiation in Vesta and Mars. Geochimica et Cosmochimica Acta 68, 2935–2946. Kleine, T., Mezger, K., Palme, H., Scherer, E., Munker, C., 2005a. Early core formation in asteroids and late accretion of chondrite parent bodies: Evidence from 182 Hf-182 W in CAIs, metal rich chondrites and iron meteorites. Geochimica et Cosmochimica Acta 69, 5805–5818. Kleine, T., Palme, H., Mezger. K., Halliday, A.N., 2005b. Hf-W chronometry of lunar metals and the age and early differentiation of the Moon. Science 370, 1671–1674. Kleine, T., Halliday, A.N., Palme, H., Mezger, K., Markowski, A., 2006. Hf-W chronometry of the accretion and thermal metamorphism of ordinary chondrite parent bodies. Lunar and Planetary Science XXXVII, abstract 188 Kleinhanns, I.C., Kramers, J.D., Kamber, B.S., 2003. Importance of water for Archaean granitoid petrology: a comparative study of TTG and potassic granitoids from Barberton Mountain Land, South Africa. Contribution to Mineralogy and Petrology 145, 377–389. Klemme, S., Blundy, J.D., Wood, B., 2002. Experimental constraints on major and trace element partitioning during partial melting of eclogite. Geochimica Cosmochimica Acta 66, 3109–3123. Kloppenburg, A., White, S.H., Zegers, T.E., 2001. Structural evolution of the Warrawoona Greenstone Belt and adjoining granitoid complexes, Pilbara Craton, Australia: implications for Archaean tectonic processes. Precambrian Research 112, 107–147. Knauth, L.P., 2005. Temperature and salinity history of the Precambrian ocean: implications for the course of microbial evolution. Palaeogeography Palaeoclimetology Palaeoecology 219, 53–69. Knauth, L.P., Epstein, S., 1976. Hydrogen and oxygen isotope ratios in nodular and bedded cherts. Geochimica et Cosmochima Acta 40, 1095–1108. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 dpg15 v.2007/06/04 Prn:5/06/2007; 11:41 F:dpg15ref.tex; VTEX/zk p. 83 aid: dpg15ref pii: S0166-2635(07)15094-5 docsubty: MISC References 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 83 Knauth, L.P., Lowe, R.L., 1978. Oxygen isotope geochemistry of cherts from the Onvervacht Group (3.4 billion years) Transvaal, South Africa, with implications for secular variations in the isotopic composition of cherts. Earth and Planetary Science Letters 41, 209–222. Knauth, L.P., Lowe, D.R., 2003. High Archean climatic temperatures inferred from oxygen isotope geochemistry of cherts in the 3.5 Ga Swaziland Supergroup, South Africa. Bulletin of Geological Society of America 115, 566–580. Köber, B., Pidgeon, R.T., Lippolt, H.J., 1989. Single-zircon dating by stepwise Pbevaporation constrains the Archaean history of detrital zircons from the Jack Hills, Western Australia. Earth and Planetary Science Letters 91, 286–296. Koch, D.M., Manga, M., 1996. Neutrally buoyant diapirs: A model for Venus coronae. Geophysical Research Letters 23, 225–228. Koeberl, C., 2003. The late heavy bombardment in the inner solar system: Is there any connection to Kuiper belt objects? Earth, Moon, and Planets 92, 79–87. Koeberl, C., 2006. Impact processes on the early Earth. Elements 2, 211–216. Koeberl, C., Sharpton, V.L., 1988. Giant impacts and their influence on the early Earth. In: Papers Presented to the Conference on the Origin of the Earth. Lunar and Planetary Institute, Houston, TX, pp. 47–48. Koeberl, C., Reimold, W.U., McDonal, I., Rosing, M., 1998. The late heavy bombardment on Earth? A shock petrographic and geochemical survey of some of the world’s oldest rocks. In: Origin of the Earth and Moon. LPI Contribution No. 957, Lunar and Planetary Institute, Houston, TX, pp. 19–20. Koeberl, C., Reimold, W.U., McDonald, I., Rosing, M., 2000. Search for petrographical and geochemical evidence for the late heavy bombardment on Earth in Early Archean rocks from Isua, Greenland. In: Gilmour, I., Koeberl, C. (Eds.), Impacts and the Early Earth. In: Lecture Notes in Earth Sciences, vol. 91. Springer-Verlag, Heidelberg, pp. 73–97. Koenig, E., Aydin, A., 1998. Evidence for large-scale strike-slip faulting on Venus. Geology 26, 551–554. Kohler, E.A., Anhaeusser, C.R., Isachsen, C., 1993. The Bien Venue Formation: a proposed new unit in the northeastern sector of the Barberton greenstone belt. In: Swaziland, G.S.M.D. (Ed.), 16th International Colloquium on Africa Geology, Ezulwini, Swaziland, pp. 186–188. Komatsu, G., Baker, V.R., 1994. Meander properties of Venusian channels. Geology 22, 67–70. Komiya, T., Maruyama, S., Masuda, T., Nohda, S., Hayashi, M., Okamoto, K., 1999. Plate tectonics at 3.8–3.7 Ga: field evidence from the Isua accretionary complex, southern West Greenland. Journal of Geology 107, 515–554. Konhauser, K., 2007. Introduction to Geomicrobiology. Blackwell Publishing, Oxford, 425 pp. Konhauser, K.O., Hamade, T., Morris, R.C., Ferris, F.G., Southam, G., Raiswell, R., Canfield, D., 2002. Could bacteria have formed the Precambrian banded iron formations? Geology 30, 1079–1082. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 dpg15 v.2007/06/04 Prn:5/06/2007; 11:41 F:dpg15ref.tex; VTEX/zk p. 84 aid: dpg15ref pii: S0166-2635(07)15094-5 docsubty: MISC 84 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 References Konopliv, A.S., Sjorgren, W.L., 1994. Venus spherical harmonic gravity model to degree and order 60. Icarus 112, 42–54. Kotov, A.B., 2003. Confines on geodynamic models of formation of continental crust of the Aldan shield. Dissertation thesis. Institute of Geology and Geochronology of the Precambrian, St.-Petersburg, 78 pp. (in Russian). Kotov, A.B., Glebovitsky, V.A., Kazansky, V.I., Salnikova, E.B., Pertsev, N.N., Kovach, V.P., Yakovleva, S.Z., 2005. Age formation confines of the main structures in the central Aldan shield. Doklady Earth Sciences 404 (6), 798–801. Kotov, A.B., Kovach, V.P., Salnikova, E.B., Glebovitsky, V.A., Yakovleva, S.Z., Berezhnaya, N.G., Myskova, T.A., 1995. Continental crust age and formation stages in the Central Aldan granulite-gneiss terrane – U-Pb and Sm-Nd isotopic data for granitoids. Petrology 3 (1), 87–97. Kotov, A.B., Morozova, I.M., Salnikova, E.B., Bogomolov, E.S., Belyatsky, B.V., Berezhnaya, N.G. 1993. Early Proterozoic granitoids of NW part of the Aldan granulite-gneiss province: U-Pb and Sm-Nd data. Russian Geology and Geophysics 34 (2), 15–21 (in Russian). Kouamelan, A.N., Delor, C., Peucat, J.J., 1997. Geochronological evidence for reworking of Archean terrains during the Early Proterozoic (2.1 Ga) in the western Cote d’Ivoire (Man Rise-West African craton). Precambrian Research 86, 177–199. Kovach, V.P., Kotov, A.B., Salnikova, E.B., Berezkin, V.I., Smelov, A.P., 1996. Sm-Nd isotopic systematics of the Kurumkan Subgroup, the Iengra Group of Aldan Shield. Stratigraphy and Geological Correlation 4 (3), 3–10. Kovach, V.P., Kotov, A.B., Salnikova, E.B., Bogomolov, E.S., Belyatsky, 1995a. Age of formation confines of high metamorphic supracrustal complexes in the Aldan shield. In: Earth Crust and Mantle. Abstracts of the Russian Foundation for Basic Research Conference, vol. 2. Institute of the Earth Crust, Irkutsk, pp. 58–57 (in Russian). Kovach, V.P., Kotov, A.B., Salnikova, E.B., Yakovleva, S.Z., Berezhnaya, N.G., 1995b. Sm-Nd isotope systematic of high metamorphic complexes in the Aldan shield. In: Main Age Confines in the Precambrian Earth Evolution and Their Basis in the IsotopeGeochronology. Conference Abstract Volume. Institute of Geology and Geochronology of the Precambrian, St.-Petersburg, p. 31 (in Russian). Kramers, J.D., 2007. Hierarchical Earth accretion and the Hadean Eon. Journal of the Geological Society London 165, 3–18. Kramers, J.D., Kreissig, K., Jones, M.Q.W., 2001. Crustal heat production and style of metamorphism: a comparison between two Archaean high grade provinces in the Limpopo Belt, southern Africa. Precambrian Research 112, 149–163. Kramers, J.D., Tolstikhin, I.N., 1997. Two terrestrial lead isotope paradoxes, forward transport modelling, core formation and the history of the continental crust. Chemical Geology 139, 75–110. Krapež, B., Brown, S.J.A., Hand, J., Barley, M.E., Cas, R.A.F., 2000. Age constraints on recycled crustal and supracrustal sources of Archaean metasedimentary sequences, Eastern Goldfields Province, Western Australia: evidence from SHRIMP zircon dating. Tectonophysics 322, 89–133. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 dpg15 v.2007/06/04 Prn:5/06/2007; 11:41 F:dpg15ref.tex; VTEX/zk p. 85 aid: dpg15ref pii: S0166-2635(07)15094-5 docsubty: MISC References 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 85 Kretz, R., 1983. Symbols for rock-forming minerals. American Mineralogist 68, 277–279. Kring, D.A., Cohen, B.A., 2002. Cataclysmic bombardment throughout the inner solar system 3.9–4.0 Ga. Journal of Geophysical Research – Planets 107, Art. No. 5009. Krogh, T.E., Moser, D.E., 1994. U-Pb zircon and monazite ages from the Kapuskasing uplift: age constraints on deformation within the Ivanhoe Lake fault zone. Canadian Journal of Earth Sciences 31, 1096–1103. Krogh, T.E., Ermanovics, I.F., Davis, G.L., 1974. Two episodes of metamorphism and deformation in the Archean rocks of the Canadian shield. In: Carnegie Institution of Washington, Geophysical Laboratory Yearbook, pp. 573–575. Krogh, T.E., Harris, N.B.W., Davis, G.L., 1976. Archean rocks from the eastern Lac Seul region of the English River gneiss belt, northwestern Ontario. Canadian Journal of Earth Sciences 13, 1212–1215. Krogh, T.E., Kamo, S., Hess, D.F., 1997. Wyoming province 3300+ gneiss with 2400 Ma metamorphism, northwestern Tobacco Root Mountains, Madison Co., Montana. Geological Society of America Abstracts with Programs 29 (6), A-408. Kröner, A.M., 1981. Precambrian plate tectonics. In: Kröner, A. (Ed.), Precambrian Plate Tectonics. In: Developments in Precambrian Geology, vol. 4. Amsterdam, Elsevier, pp. 56–90. Kröner, A., 1985. Archean crustal evolution. Annual Reviews of Earth and Planetary Science 13, 264–302. Kröner, A., Compston, W., 1988. Ion microprobe ages of zircons from early Archaean granite pebbles and greywacke, Barberton greenstone belt, Southern Africa. Precambrian Research 38, 367–380. Kröner, A., Greiling, R. (Eds.), 1984. Precambrian Tectonics Illustrated. E. Schweizerbart Verlagsbuchhandlung, Stuttgart, 419 pp. Kröner, A., Tegtmeyer, A., 1994. Gneiss-greenstone relationships in the Ancient Gneiss Complex of southwestern Swaziland, southern Africa, and implications for early crustal evolution. Precambrian Research 67 (1–2), 109–139. Kröner, A., Todt, W., 1988. Single zircon dating contraining the maximum age of the Barberton greenstone belt, Southern Africa. Journal of Geophysical Research 93, 15329– 15337. Kröner, A., Compston, W., Zhang, G.W., Guo, A.L., Todt, W., 1988. Age and tectonic setting of Late Archaean greenstone-gneiss terrain in Henan Province, China, as revealed by single grain zircon dating. Geology 16, 211–215. Kröner, A., Compston, W., Williams, I.S., 1989. Growth of early Archaean crust in the Ancient Gneiss Complex of Swaziland as revealed by single zircon dating. Tectonophysics 161, 271–298. Kröner, A., Byerly, G.R., Lowe, D.R., 1991a. Chronology of early Archean granitegreenstone evolution in the Barberton Moutain Land, South Africa, based on precise dating by single grain zircon evaporation. Earth and Planetary Sciences Letters 103, 41–54. Kröner, A., Wendt, J.I., Tegtmeyer, A.R., Milisenda, C., Compston, W., 1991b. Geochronology of the Ancient Gneiss Complex, Swaziland, and implications for crustal evolution. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 dpg15 v.2007/06/04 Prn:5/06/2007; 11:41 F:dpg15ref.tex; VTEX/zk p. 86 aid: dpg15ref pii: S0166-2635(07)15094-5 docsubty: MISC 86 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 References In: Ashwal, L.D. (Ed.), Two Cratons and an Orogen – Excursion Guidebook and Review Articles for a Field Workshop Through Selected Archaean Terranes of Swaziland, South Africa, and Zimbabwe. IGCP Project 280, Department of Geology, University of the Witwatersrand, Johannesburg, pp. 8–31. Kröner, A., Hegner, E., Byerly, G.R., Lowe, D.R., 1992. Possible terrane identification in the early Archaean Barberton greenstone belt, South Africa, using single zircon geochronology. Eos Transactions AGU, Fall Meeting suppl. 73 (43), 616. Kröner, A., Wendt, J.I., Milisenda, C., Compston, W., Maphalala, R., 1993. Zircon geochronology and Nd isotopic systematics of the Ancient Gneiss Complex, Swaziland, and implications for crustal evolution. In: Kröner, A. (Ed.) The Ancient Gneiss Complex: Overview Papers and Guidebook for Excursion. In: Swaziland Geological Survey, Mines Department, Bulletin 11, pp. 15–37. Kröner, A., Hegner, E., Wendt, J.I., Byerly, G.R., 1996. The oldest part of the Barberton granitoid-greenstone terrain, South Africa: evidence for crust formation between 3.5 and 3.7 Ga. Precambrian Research 78, 105–124. Kröner, A., Cui, W.Y., Wang, S.Q., Nemchin, A.A., 1998. Single zircon ages from highgrade rocks of the Jianping Complex, Liaoning Province, NE China. Journal of Asian Earth Sciences 16, 519–532. Kröner, A., Jaeckel, P., Brandl, G., 2000. Single zircon ages for felsic to intermediate rocks from the Pietersburg and Giyani greenstone belts and bordering granitoid orthogneisses, northern Kaapvaal Craton, South Africa. Journal of African Earth Sciences 30 (4), 773– 793. Kröner, A., Ekwueme, N., Pidgeon, R.T., 2001. The oldest rocks in West Africa: SHRIMP zircon age for early Archean migmatitic orthogneiss at Kaduna, northern Nigeria. Journal of Geology 109, 399–406. Kröner, A., Wilde, S.A., Li, J.H., Wang, K.Y., 2005. Age and evolution of a late Archaean to Palaeoproterozoic upper to lower crustal section in the Wutaishan/Hengshan/Fuping terrain of northern China. Journal of Asian Earth Sciences 24, 577–595. Kröner, A., Wilde, S.A., Zhao, G.C., O’Brien, P.J., Sun, M., Liu, D.Y., Wan, Y.S., Liu, S.W., Guo, J.H., 2006. Zircon geochronology and metamorphic evolution of mafic dykes in the Hengshan Complex of northern China: Evidence for late Palaeoproterozoic extension and subsequent high-pressure metamorphism in the NCC. Precambrian Research 146, 45–67. Kroopnick, P., 1980. The distribution of 13 C in the Atlantic ocean. Earth and Planetary Science Letters 49, 469–484. Krot, A.N., Keil, K., Goodrich, C.A., Scott, E.R.D., Weisberg, M.K., 2003. Classification of meteorites. In: Davis, A.M. (Ed.), Meteorites, Comets and Planets. In: Treatise on Geochemistry, vol. 1. Elsevier-Pergamon, Oxford, pp. 83–128. Kruckenberg, S.C., Chamberlain, K.R., Frost, C.D., Frost, B.R., 2001. One billion years of Archean crustal evolution: Black Rock Mountain, northeastern Granite Mountains, Wyoming. Geological Society of America Abstracts with Programs 33 (6), A-401. Kruger, F.J., 1996. Legitimizing the ivory trade using isotopic techniques: tagging vs. tracing. South African Journal of Wildlife Research 26 (4), 131–132. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 dpg15 v.2007/06/04 Prn:5/06/2007; 11:41 F:dpg15ref.tex; VTEX/zk p. 87 aid: dpg15ref pii: S0166-2635(07)15094-5 docsubty: MISC References 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 87 Krull-Davatzes, A.E., Lowe, D.R., Byerly, G.R., 2006. Compositional grading in an ∼ 3, 24 Ga impact-produced spherule bed, Barberton greenstone belt, South Africa: A key to impact plume evolution. South African Journal of Geology 109, 233–244. Kryuchov, V.P., 1990. Ridge Belts: are they compressional or extensional structures? Earth, Moon, and Planets 50–51, 471– 491. Kudryavtsev, A.B., Schopf, J.W., Agresti, D.G., Wdowiak,T.J., 2001. In situ laser-Raman imagery of Precambrian microscopic fossils. Proceedings of the National Academy of Sciences 98, 823–826. Kuiper, Y.D., Lin, S., Böhm, C.O., Corkery, M.T., 2003. Structural geology of the Assean Lake and Aiken River deformation zones, northern Manitoba (NTS 64A1, 2 and 8). In: Report of Activities 2003, Manitoba Industry, Economic Development and Mines, Manitoba Geological Survey, pp. 105–113. Kuiper, Y.D., Lin, S., Böhm, C.O., Corkery, M.T., 2004a. Structural geology of Assean Lake, northern Manitoba (NTS 64A1, 2, 8). In: Report of Activities 2004, Manitoba Industry, Economic Development and Mines, Manitoba Geological Survey, pp. 195– 200. Kuiper, Y.D., Lin, S., Böhm, C.O., Corkery, M.T., 2004b. Structural geology of the Aiken River deformation zone, northern Manitoba (NTS 64A1, 2, 8). In: Report of Activities 2004, Manitoba Industry, Economic Development and Mines, Manitoba Geological Survey, pp. 195–200. Kump, L.R., Barley, M.E., 2006. Abrupt onset of subaerial volcanism and the rise of atmospheric oxygen. In: Geological Society of America Annual Meeting, Philadelphia, Abstracts with Programs, p. 55. Kurat, G., Koeberl, C., Presper, T., Brandstatter, F., Maurette, M., 1994. Petrology and geochemistry of Antarctic micrometeorites. Geochimica et Cosmochimica Acta 58, 3879–3904. Kusky, T.M., 2004. Introduction. In: Kusky, T.M. (Ed.), Precambrian Ophiolites and Related Rocks. In: Developments in Precambrian Geology, vol. 13. Elsevier, Amsterdam, pp. 1–34. Kusky, T.M., Polat, A., 1999. Growth of granite greenstone terranes at convergent margins and stabilization of Archean cratons. Tectonophysics 305, 43–73. Kusky, T.M., Li, J.H., Tucker, R.T., 2001. The Dongwanzi ophiolite: Complete Archaean ophiolite with extensive sheeted dike complex, North China craton. Science 292, 1142– 1145. Kuznetsov, V.G., Khrenov, P.M. (Eds.), 1982. Geological Map of Irkutsk Region and Contiguous Territories, Scale of 1:500,000. Ministy of Geology of the USSR, Irkutsk. Kyte, F.T., 2002. Tracers of extraterrestrial components in sediments and inferences for Earth’s accretion history. In: Geological Society America, Special Paper 356, pp. 21– 38. Kyte, F.T., Zhou, L., Lowe, D.R., 1992. Noble metal abundances in an early Archaean impact deposit. Geochimica et Cosmochimica Acta 56, 1365–1372. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 dpg15 v.2007/06/04 Prn:5/06/2007; 11:41 F:dpg15ref.tex; VTEX/zk p. 88 aid: dpg15ref pii: S0166-2635(07)15094-5 docsubty: MISC 88 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 References Kyte, F.T., Shukolyukov, A., Lugmair, G.W., Lowe, D.R., Byerly, G.R., 2003. Early Archean spherule beds: Chromium isotopes confirm origin through multiple impacts of projectiles of carbonaceous chondrite type. Geology 31, 283–286. Laflèche, M.R., Dupuy, C., Dostal, J., 1992. Tholeiitic volcanic rocks of the late Archean Blake River Group, southern Abitibi greenstone belt: origin and geodynamic implications. Canadian Journal of Earth Sciences 29, 1448–1458. Lahaye, Y., Arndt, N., Byerly, G.R., Chauvel, C., Fourcade, S., Gruau, G., 1995. The influence of alteration on the trace-element and Nd isotopic compositions of komatiites. Chemical Geology 126, 43–64. Lamb, S.H., 1984. Structures on the eastern margin of the Archaean Barberton greenstone belt, northwest Swaziland. In: Kröner, A., Greiling, A. (Eds.), Precambrian Tectonics Illustrated. E. Schweizerbart’sche Verlagsbuchhandlung, Stuttgart, pp. 19–39. Lamb, S.H., Paris, I., 1988. Post-Onverwacht Group stratigraphy in the SE part of Archaean Barberton greenstone belt. Journal of African Earth Sciences 7, 285–306. Lambert, I., Donnelly, T., Dunlop, J., Groves, D., 1978. Stable isotopic compositions of early Archaean sulphate deposits of probable evaporitic and volcanogenic origins. Nature 276, 808–811. Lambert, R.St.J., 1983. Metamorphism and thermal gradients in the Proterozoic continental crust. In: Medaris, L.G., et al. (Eds.), Proterozoic Geology: Selected Papers from an International Proterozoic Symposium. Geological Society of America, Memoir 161, pp. 155–166. Lan, Y.Q., Si, X.M, Li, Z.D., Sun, F.X., 1990. Archaean Metamorphic Geology of Qian’an Area, Eastern Hebei, China. Jilin Science and Technology Press, Jilin, 247 pp. (in Chinese). Lang, N.P., Hansen, V.L., 2006. Venusian channel formation as a subsurface process. Journal of Geophysical Research 111, doi:10.1029/2005JE002629. Langstaff, G.D., 1995. Archean geology of the Granite Mountains, Wyoming. Unpublished Ph.D. dissertation. Colorado School of Mines, Golden, CO, 671 pp. Lanier, W.P., Lowe, D.R., 1982. Sedimentology of the Middle Marker (3.4 Ga), Onverwacht Group, Transvaal, South Africa. Precambrian Research 18, 237–260. Langford, F.F., Morin, J.A., 1976. The development of the Superior Province of northwestern Ontario by merging island arcs. American Journal of Science 276, 1023–1034. Large, R.R., 1992. Australian volcanic-hosted massive sulphide deposits: features, styles and genetic models. Economic Geology 87, 471–510. Larson, R.L., 1991. Latest pulse of the Earth: evidence for a mid-Cretaceous superplume. Geology 19, 547–550. Laska, S., Lottspeich, F., Kletzin, A., 2003. Membrane-bound hydrogenase and sulfur reductase of the hyperthermophilic and acidophilic archaeon Acidianus ambivalens. Microbiology-SGM 149, 2357–2371. Layer, P.W., 1986. Archean palaeomagnetism of southern Africa. Ph.D. thesis. Stanford University, Stanford, CA, 397 pp. Lawver, L.A., Müller, R.D., 1994. Iceland hotspot track. Geology 22, 311–314. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 dpg15 v.2007/06/04 Prn:5/06/2007; 11:41 F:dpg15ref.tex; VTEX/zk p. 89 aid: dpg15ref pii: S0166-2635(07)15094-5 docsubty: MISC References 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 89 Layer, P.W., Kröner, A., York, D., 1992. Pre-3000 Ma thermal history of the Archean Kaap Valley pluton, South Africa. Geology 20, 717–720. Leal, L.R.B., Cunha, J.C., Cordani, U.G., Teixeira, W., Nutman, A.P., Leal, A.B.M., Macambira, M.J.B., 2003. SHRIMP U-Pb, Pb-207/Pb-206 zircon dating, and Nd isotopic signature of the Umburanas greenstone belt, northern Sao Francisco craton, Brazil. Journal of South American Earth Science 15, 775–785. Leat, P.T., Larter, R.D., 2003. Intra-oceanic subduction systems: tectonic and magmatic processes. In: Geological Society of London, Special Publication 219, pp. 1–17. Le Bas, M.J., Le Maître, R.W., Streckeisen, A., Zanettin, B. 1986. A chemical classification of volcanic rocks based on the total alkali-silica diagram. Journal of Petrology 27, 745– 750. LeCheminant, A.N., Heaman, L.M., 1989. Mackenzie igneous events, Canada: Middle Proterozoic hotspot magmatism associated with ocean opening. Earth and Planetary Science Letters 96, 38–48. Leclair, A.D., 2005. Géologie du nord-est de la Province du Supérieur, Québec. Ministère des Ressources naturelles et de la Faune, DV 2004-04, 19 pp., 1 carte (échelle 1:750,000). Leclair, A., Berclaz, A., David, J., Percival, J.A., 2002a. Les événements tectonomagmatiques du nord-est de la Province du Supérieur: 300 millions d’années d’évolution archéenne. In: Projet de cartographie du Grand-Nord – Rapport d’atelier. Ministère des Ressources naturelles, Québec, MB 2002-01, pp. 65–67. Leclair, A., Parent, M., David, J., Dion, D.-J., Sharma, K.N.M., 2002b. Geology of the Lac La Potherie Area (34I). Ministère des Ressources naturelles, Québec, RG 2001-04, 40 pp. Leclair, A., Berclaz, A., Parent, M., Cadieux, A.M., Sharma, K.N.M., 2003. Géologie 1:250,000, 24L – Lac Dufreboy. Ministère des Ressources naturelles, Québec, carte SI-24L-C2G-03C. Leclair, A.D., Boily, M., Berclaz, A., Labbé, J.-Y., Lacoste, P., Simard, M., Maurice, C., 2006a. 1.2 billion years of Archean evolution in the northeastern Superior Province. Geological Association of Canada, Abstracts, vol. 31, p. 85. Leclair A., Labbé, J.-Y., Berclaz, A., David, J., Gosselin, C., Lacoste, P., Madore, L., Maurice, C., Roy, P., Sharma, K.N.M., Simard, M., 2006. Government geoscience stimulates mineral exploration in the Superior Province, northern Quebec. Geoscience Canada 33, 60–75. Leclerc, F., 2004. Évolution tectonostratigraphique et métamorphique de la ceinture volcano-sédimentaire de Qalluviartuuq-Payne, nord-est de la Province du Supérieur. M.Sc. thesis. Université du Québec à Montréal, 101 pp. Lecuyer, C., Simon, L., Guyot, F., 2000. Comparison of carbon, nitrogen and water budgets on Venus and the Earth. Earth and Planetary Science Letters 181, 33–40. Lee, S.M., 1965. Région d’Inussuaq – Pointe Normand, Nouveau-Québec. Ministère des richesses naturelles, Québec, Rapport géologique 119, 138 pp. Le Maître, R.W., 2002. Igneous Rocks: A Classification and Glossary of Terms. Cambridge, Cambridge University Press. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 dpg15 v.2007/06/04 Prn:5/06/2007; 11:41 F:dpg15ref.tex; VTEX/zk p. 90 aid: dpg15ref pii: S0166-2635(07)15094-5 docsubty: MISC 90 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 References Lee, T., Papanastassiou, D.A., 1974. Mg isotopic anomalies in the Allende meteorite and correlation with O and Sr effects. Geophysical Research Letters 1, 225–228. Lee, T., Papanastassiou, D.A., Wasserburg, G.J., 1976. Demonstration of 26 Mg excess in Allende and evidence for 26 Al. Geophysical Research Letters 3, 109–112. Lemieux, S., Ross, G.M., Cook, F.A., 2000. Crustal geometry and tectonic evolution of the Archean crystalline basement beneath the southern Alberta Planis, from new seismic reflection and potential-field studies. Canadian Journal of Earth Sciences 37, 1473–1491 Lenardic, A., Moresi, L-N., 1999. Some thoughts on the stability of cratonic lithosphere: effects of buoyancy and viscosity. Journal of Geophysical Research 104, 12747–12758. Lenton, P.G., Corkery, M.T., 1981. The Lower Churchill River Project (interim report). Manitoba Department of Energy and Mines, Mineral Resources Division, Open File Report OF81-3, pp. 23. Lepland, A., Arrhenius, G., Cornell, D., 2002. Apatite in early Archean supracrustal rocks, southern West Greenland: its origin, association with graphite and potential as a biomarker. Precambrian Research 118, 221–241. Lepland, A., van Zuilen, M.A., Arrhenius, G., Whitehouse, M.J., Fedo, C.M., 2005. Questioning the evidence for Earth’s earliest life – Akilia revisited. Geology 33, 77–79. Lesher, C.M., Arndt, N.T., 1995. REE and Nd isotope geochemistry, petrogenesis, and volcanic evolution of contaminated komatiites in Kambalda, Western Australia. Lithos 34, 127–157. Leshin, L.A., Rubin, A.E., McKeegan, K.D., 1997. The oxygen isotopic composition of olivine and pyroxene from CI chondrites. Geochimica et Cosmochimica Acta 61, 835– 845. Lespade, P., Al-Jishi, R., Dresselhaus, M.S., 1982. Model for Raman scattering from incompletely graphitized carbons. Carbon 5, 427–431. Levison, H., Lissauer, J.J., Duncan, M.J., 1998. Modelling the diversity of outer planetary systems. Astronomical Journal 116, 1998–2014. Lewan, M.D., 2003. Experiments on the role of water in petroleum formation. Geochimica et Cosmochimica Acta 61, 3691–3723. Li, H.K., Li, H.M., Lu, S.N., 1995. Single grain zircon U-Pb ages for volcanic rocks from Tuanshanzi Formation of Changcheng System and their geological implications. Geochemica 24, 43–48 (in Chinese with English abstract). Li, J.H., He, W.Y., Qian, X.L., 1997. Genetic mechanism and tectonic setting of a Proterozoic mafic dyke swarm: implications for palaeoplate reconstruction. Geological Journal of China Universities 3, 2–8 (in Chinese with English abstract). Li, J.H., Kusky, T.M., Huang, X.N., 2002. Archaean podiform chromitites and mantle tectonites in ophiolitic melange, NCC: A record of early oceanic mantle processes. GSA Today 12, 4–11. Li, J.H., Qian, X.L., Huang, X.N., 2000. The tectonic framework of the basement of NCC and its implication for early Precambrian cratonization. Acta Petrologica Sinica 16, 1– 10 (in Chinese with English abstract). 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 dpg15 v.2007/06/04 Prn:5/06/2007; 11:41 F:dpg15ref.tex; VTEX/zk p. 91 aid: dpg15ref pii: S0166-2635(07)15094-5 docsubty: MISC References 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 91 Li, S.G., Hart, S.R., Gou, A.L., Zhang, G.W., 1987. Whole-rock Sm-Nd isotope age of the Dengfeng Group in central Henan and its tectonic significance. Chinese Science Bulletin 22, 1728–1731 (in Chinese). Li, S.X., Xu, X.C., Liu, X.S., Sun, D.Y., 1994. Early Precambrian geology of Wulashan Region, Inner Mongolia. Geological Publishing House, Beijing, 140 pp. (in Chinese with English abstract). Li, Y.-H., 1991. Distribution patterns of elements in the ocean: A synthesis. Geochimica et Cosmochimica Acta 55, 3223–3240. Li, Z-X., Zhang, L., Powell, C.McA., 1996. Positions of the East Asian cratons in the Neoproterozoic supercontinent Rodinia. Australian Journal of Earth Sciences 43, 593– 604. Libby W.G., de Laeter, J.R., Armstrong, R.A., 1999. Proterozoic biotite dates in the northwestern part of the Yilgarn Craton, Western Australia. Australian Journal of Earth Sciences 46, 851–860. Lin, S., 2005. Synchronous vertical and horizontal tectonism in the Neoarchean: Kinematic evidence from a synclinal keel in the northwestern Superior craton, Canada. Precambrian Research 139, 181–194. Lin, S., Percival, J.A., Skulski, T., 1996. Structural constraints on the tectonic evolution of a late Archean greenstone belt in the northeastern Superior Province, northern Quebec (Canada). Tectonophysics 265, 151–167. Lin, S., Davis, D.W., Rotenberg, E., Corkery, M.T., Bailes A.H., 2006. Geological evolution of the northwestern Superior Province: Clues from geology, kinematics and geochronology in the Gods Lake Narrows area, Oxford Lake – Knee Lake – Gods Lake greenstone belt, Manitoba. Canadian Journal of Earth Sciences 43, 749–765. Lindsay, J.F., Brasier, M.D., McLoughlin, N., Green, O.R., Fogel, M., McNamara, K.M., Steele, A., Mertzman, S.A., 2003. Abiotic Earth – establishing a baseline for earliest life, data from the Archean of Western Australia. Lunar and Planetary Science XXXIV, 1137. Lindsay, J.F., Brasier, M.D., McLoughlin, N., Green, O.R., Fogel, M., Steele, A., Mertzman, S.A., 2005. The problem of deep carbon – an Archaean paradox. Precambrian Research 143, 1–22. Lissauer, J.J., 1999. Chaotic motion in the solar system. Reviews of Modern Physics 71, 835–845. Liu, D.Y., Page, R.W., Compston, W., Wu, J.S., 1985. U-Pb zircon geochronology of late Archaean metamorphic rocks in the Taihangshan–Wutaishan area. Precambrian Research 27, 85–109. Liu, D.Y., Shen, Q.H., Zhang, Z.Q., Jahn, B.M., Aurvay, B., 1990. Archaean crustal evolution in China: U-Pb geochronology of the Qianxi Complex. Precambrian Research 48, 223–244. Liu, D.Y., Nutman, A.P., Compston, W., Wu, J.S., Shen, Q.H., 1992. Remnants of >3800 Ma crust in the Chinese part of the Sino-Korean craton. Geology 20, 339–342. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 dpg15 v.2007/06/04 Prn:5/06/2007; 11:41 F:dpg15ref.tex; VTEX/zk p. 92 aid: dpg15ref pii: S0166-2635(07)15094-5 docsubty: MISC 92 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 References Liu, D.Y., Wilde, S.A., Wan, Y.S., Wu, J.S., Wu, F.Y., Zhou, H.Y, Dong, C.Y., Yin, X.Y., in review. New U-Pb and Hf isotopic data confirm Anshan as the oldest preserved part of the North China Craton. American Journal of Science. Liu, S.W., Pan, Y.M., Li, J.H., Li, Q.G., Zhang, J., 2002. Geological and isotopic geochemical constraints on the evolution of the Fuping Complex, North China Craton. Precambrian Research 117 (1–2), 41–56. Lobach-Zhuchenko, S.B., Levchenkov, O.A., Chekulaev, V.P., Krylov, I.N, 1986. Geological evolution of the Karelian-granite greenstone terrain. Precambrian Research 33, 45–65. Loiselle, M.C., Wones, D.R., 1979. Characteristic and origin of anorogenic granites. In: Geological Society of America, Abstracts with Programs, vol. 11, p. 468 Londry, K.L., Des Marais, D.J., 2003. Stable carbon isotope fractionation by sulfatereducing bacteria. Applied and Environmental Microbiology 69, 2942–2949. Love, G.D., Snape, C.E., Carr, A.D., Houghton, R.C., 1995. Release of covalently-bound alkane biomarkers in high yields from kerogen via catalytic hydropyrolysis. Organic Geochemistry 23, 981–986. Love, S.G., Brownlee, D.E., 1993. A direct measurement of the terrestrial mass accretion rate of cosmic dust. Science 262, 550–553. Lovley, D.R., Stolz, J.F., Nord, G.L., Jr., Phillips, E.J.P., 1987. Anaerobic production of magnetite by a dissimilatory iron-reducing micro-organism. Nature 330, 252–254. Lowe, D.R., 1980. Archean sedimentation. Annual Review of Earth and Planetary Sciences 8, 145–167. Lowe, D.R., 1980. Stromatolites 3,400-Myr old from the Archaean of Western Australia. Nature 284, 441–443. Lowe, D.R., 1982. Comparative sedimentology of the principal volcanic sequences of Archean greenstone belts in South Africa, Western Australia, and Canada: implications for crustal evolution. Precambrian Research 17, 1–29. Lowe, D.R., 1983. Restricted shallow-water sedimentation of Early Archean stromatolitic and evaporitic strata of the Strelley Pool Chert, Pilbara Block, Western Australia. Precambrian Research 19, 239–283. Lowe, D.R., 1992. Major events in the geological development of the Precambrian earth. In: Schopf, J.W., Klein, C. (Eds.), The Proterozoic Biosphere. Cambridge University Press, Cambridge, pp. 67–76. Lowe, D.R., 1994. Abiological origin of described stromatolites older than 3.2 Ga. Geology 22, 387–390. Lowe, D.R., 1994. Archean greenstone-related sedimentary rocks. In: Condie, K.C. (Ed.), Archean Crustal Evolution. Elsevier, Amsterdam, pp. 121–170. Lowe, D.R., 1994. Accretionary history of the Archean Barberton greenstone belt (3.55– 3.22 Ga) southern Africa. Geology 22, 1099–1102. Lowe, D.R., 1999a. Petrology and sedimentology of cherts and related silicified sedimentary rocks in the Swaziland Supergroup. In: Lowe, D.R., Byerly, G.R. (Eds.), Geologic Evolution of the Barberton Greenstone Belt, South Africa. In: Geological Society of America, Special Paper 329, pp. 83–114. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 dpg15 v.2007/06/04 Prn:5/06/2007; 11:41 F:dpg15ref.tex; VTEX/zk p. 93 aid: dpg15ref pii: S0166-2635(07)15094-5 docsubty: MISC References 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 93 Lowe, D.R., 1999b. Geologic evolution of the Barberton greenstone belt and vicinity. In: Lowe, D.R., Byerly, G.R. (Eds.), Geologic Evolution of the Barberton Greenstone Belt, South Africa. In: Geological Society of America, Special Paper 329, pp. 287–312. Lowe, D.R., Byerly, G.R., 1986a. Archean flow-top alteration zones formed initially in a low-temperature sulphate-rich environment. Nature 324, 245–248. Lowe, D.R., Byerly, 1986b. Early Archaean silicate spherules of probable impact origin, South Africa and Western Australia. Geology 14, 83–86. Lowe, D.R., Byerly, G.R., 1999. Stratigraphy of the west-central part of the Barberton Greenstone Belt, South Africa. In: Lowe, D.R., Byerly, G.R. (Eds.), Geologic Evolution of the Barberton Greenstone Belt, South Africa. In: Geological Society of America, Special Paper 329, pp. 1–36. Lowe, D.R., Fisher Worrell, G., 1999. Sedimentology, mineralogy, and implications of silicified evaporites in the Kromberg Formation, Barberton Greenstone Belt, South Africa. In: Lowe, D.R., Byerly, G.R. (Eds.), Geologic Evolution of the Barberton Greenstone Belt, South Africa. In: Geological Society of America, Special Paper 329, pp. 167–188. Lowe, D.R., Knauth, L.P., 1977. Sedimentology of the Onverwacht Group (3.4 billion years), Transvaal, South Africa, and its bearing on the characteristics and evolution of the early earth. Journal of Geology 85, 699–723. Lowe, D.R., Knauth, L.P., 1978. The oldest marine carbonate ooids reinterpreted as volcanic accretionary lapilli: Onverwacht Group, South Africa. Journal of Sedimentary Petrology 48, 709–722. Lowe, D.R., Nocita, B.W., 1999. Foreland basin sedimentation in the Mapepe Formation, southern-facies Fig Tree Group. In: Lowe, D.R., Byerly, G.R. (Eds.), Geologic Evolution of the Barberton Greenstone Belt, South Africa. In: Geological Society of America, Special Paper 329, pp. 233–258. Lowe, D.R., Byerly, G.R., Ransom, B.L., Nocita, B.R., 1985. Stratigraphic and sedimentological evidence bearing on structural repetition in Early Archean rocks of the Barberton Greenstone Belt, South Africa. Precambrian Research 27, 165–186. Lowe, D.R., Byerly, G.R., Asaro, F., Kyte, F., 1989. Geological and geochemical record of 3400-million-year-old terrestrial meteorite impacts. Science 245, 959–962. Lowe, D.R., Byerly, G.R., Heubeck, C., 1999. Structural divisions and development of the west-central part of the Barberton Greenstone Belt. In: Lowe, D.R., Byerly, G.R. (Eds.), Geologic Evolution of the Barberton Greenstone Belt, South Africa. In: Geological Society of America, Special Paper 329, pp. 37–82. Lowe, D.R., Byerly, G.R., Kyte, F.T., Shukolyukov, A., Asaro, F., Krull, A., 2003. Characteristics, origin, and implications of Archean impact-produced spherule beds, 3.47–3.22 Ga, in the Barberton Greenstone Belt, South Africa: Keys to the role of large impacts on the evolution of the early Earth. Astrobiology 3, 7–48. Lu, L.Z., Xu, X.C., Liu, F.L. 1996. Early Precambrian Khondalite Series of North China. Changchun Publishing House, Changchun, 272 pp. (in Chinese). Lu, S.N., 2002. Preliminary Study of Precambrian Geology in the North Tibet-Qinghai Plateau. Geological Publishing House, Beijing, 125 pp. (in Chinese). 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 dpg15 v.2007/06/04 Prn:5/06/2007; 11:41 F:dpg15ref.tex; VTEX/zk p. 94 aid: dpg15ref pii: S0166-2635(07)15094-5 docsubty: MISC 94 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 References Lu, S.N., Yang, C.L., Li, H.K., Li, H.M., 2002. A group of rifting events in the terminal Palaeoproterozoic in the NCC. Gondwana Research 5, 123–131. Luais, B., Hawkesworth, C.J., 2002. Pb isotope variations in Archean time and possible links to the sources of certain Mesozoic – Recent basalts. In: Fowler, C.M.R., Ebinger, C.J., Hawkesworth, C.J. (Eds.), The Early Earth: Physical, Chemical and Biologic Development. In: Geologic Society of London, Special Publication 199, pp. 105–124. Ludden, J., Hubert, C., Barnes, A., Milkereit, B., Sawyer, E., 1993. A three dimensional perspective on the evolution of Archaean crust: LITHOPROBE seismic reflection images in the southwestern Superior province. Lithos 30, 357–372. Ludwig, K.R., 1999. User’s Manual for Isoplot / Ex, v2.3, A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronological Center Special Publication No. 1a, 52 pp. Lugmair, G.W., Galer, S.J.G., 1992. Age and isotopic relationships among the angrites Lewis Cliff 86010 and Angra dos Reis. Geochimica et Cosmochimica Acta 56, 1673– 1694. Lugmair, G.W., Shukolyukov, A., 1997. 53 Mn-53 Cr isotope systematics of the HED parent body. Lunar and Planetary Science XXVIII, 823–824. Lugmair, G.W., Shukolyukov, A., 1998. Early solar system timescales according to 53 Mn53 Cr systematics. Geochimica et Cosmochimica Acta 62, 2863–2886. Lugmair, G. ., Shukolyukov, A., 2001. Early solar system events and timescales. Meteoritics and Planetary Science 36, 1017–1026. Lund, E.H., 1956. Igneous and metamorphic rocks of the Minnesota River Valley. Bulletin of Geological Society of America 67, 1475–1490. Lundberg, L.L., Zinner, E., Crozaz, G., 1994. Search for isotopic anomalies in oldhamite (CAs) from unequilibrated (E3) enstatite chondrites. Meteoritics 29, 384–393. Lunine, J.I., Coradani, A., Gautier, D., Owen, T.C., Wuchterl, G., 2004. The origin of Jupiter. In: Bagenal, F., Dowling, T.E., McKinnon, W.B. (Eds.), Jupiter. Cambridge University Press, pp. 19–34. Lutts, B.G., Oksman, V.K., 1990. Deeply Eroded Fault Zones of the Anabar Shield. Nauka, Moscow, 260 pp. Lutts, B.G., 1985. Magmatism of Mobile Belts of the Early Earth. Moscow, 216 pp. Lyell, C., 1830. Principles of Geology, Being an Attempt to Explain the Former Changes of the Earth’s Surface, by Reference to Causes Now in Operation, vol. 1. John Murray, London, 511 pp. Lyons, J.R., 2006. Gas-phase mechanisms of sulfur isotope mass-independent fractionation. In: Eos Transactions of the American Geophysical Union, vol. 87, Fall Meeting Supplements, Abstract V11C-0599. Maaløe, S., 1982. Petrogenesis of Archaean tonalites. Geologische Rundschau 71, 328– 346. Maas, R., McCulloch, M.T., 1991. The provenance of Archean clastic metasediments in the Narryer Gneiss Complex, Western Australia: trace element geochemistry, Nd isotopes, and U-Pb ages for detrital zircons. Geochimica et Cosmochimica Acta 55, 1914–1932. Maas, R., Kinny, P.D., Williams, I.S., Froude, D.O., Compston, W., 1992. The Earth’s oldest known crust: A geochronological and geochemical study of 3900–4200 Ma old 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 dpg15 v.2007/06/04 Prn:5/06/2007; 11:41 F:dpg15ref.tex; VTEX/zk p. 95 aid: dpg15ref pii: S0166-2635(07)15094-5 docsubty: MISC References 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 95 detrital zircons from Mt. Narryer and Jack Hills, Western Australia. Geochimica et Cosmochimica Acta 56, 1281–1300. MacDougall, J.D., Lugmair, G.W., Kerridge, J.F., 1989. Early Solar System aqueaous activity: Sr isotope evidence from the Orgueil CI meteorite. Nature 307, 249–251. Macek, J.J., 1989. Sapphirine coronas from Sipiwesk Lake, Manitoba. Manitoba Energy and Mines, Minerals Division, Geological Paper GP85-1, 42 pp. Macek, J.J., Bleeker, W., 1989. Thompson Nickel Belt project – Pipe Pit mine, Setting and Ospwagan lakes. In: Report of Field Activities 1989, Manitoba Energy and Mines, Minerals Division, pp. 73–87. Macek, J.J., McGregor, C.R., 1998. Thompson Nickel Belt project: progress on a new compilation map of the Thompson Nickel Belt. In: Report of Activities, 1998, Manitoba Energy and Mines, Geological Services, pp. 36–38. Macek, J.J., Zwanzig, H.V., Pacey, J.M., 2006. Thompson Nickel Belt geological compilation map, Manitoba. Manitoba Science, Technology, Energy and Mines, Manitoba Geological Survey, Open File Report, OF2006-33, digital map on CD. Macgregor, A.M., 1951. Some milestones in the Precambrian of Southern Rhodesia. Proceedings of the Geological Society of South Africa 54, 27–71. Machado, N., Brooks, C., Hart, S.R., 1986. Determination of initial 87 Sr/86 Sr and 143 Nd/144 Nd in primary minerals from mafic and ultramafic rocks: Experimental procedure and implications for the isotopic characteristics of the Archean mantle under the Abitibi greenstone belt, Canada. Geochimica et Cosmochimica Acta 50, 2335–2348. Machado, N., Heaman, L.M., Krogh, T.E., Weber, W., 1987. U-Pb geochronology program: Thompson Belt – northern Superior Province. In: Report of Field Activities 1987, Manitoba Energy and Mines, Minerals Division, pp. 145–147. Machado, N., Krogh, T.E., Weber, W., 1990. U-Pb geochronology of basement gneisses in the Thompson Belt (Manitoba): evidence for pre-Kenoran and Pikwitonei-type crust and early Proterozoic basement reactivation in the western margin of the Archean Superior Province. Canadian Journal of Earth Sciences 27, 794–802. Mackwell, S.J., Zimmerman, M.E., Kohlstedt, D.L., 1998. High-temperature deformation of dry diabase with application to tectonics on Venus. Journal of Geophysical Research 102, 975–984. MacPherson, G.J., 2003. Calcium-Aluminium-rich inclusions in chondritic meteorites. In: Davis, A.M. (Ed.), Meteorites, Comets and Planets. Treatise on Geochemistry, vol. 1. Elsevier-Pergamon, Oxford, pp. 201–246. MacPherson, G.J., Davis, A.M., Zinner, E.K., 1995. The distribution of aluminium-26 in the early Solar System – a reappraisal. Meteoritics 30, 365–386. Madore, L., Larbi, Y., 2001. Geology of the Rivière Arnaud area (25D) and adjacent coastal areas (25C, 25E et 25F). Ministère des Ressources naturelles, Québec, RG 2001-06, 33 pp. Madore, L., Bandyayera, D., Bédard, J.H., Brouillette, P., Sharma, K.N.M., Beaumier, M., David, J., 2000. Geology of the Lac Peters Area (NTS 24M). Ministère des Ressources naturelles, Québec, RG 99-16, 40 pp. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 dpg15 v.2007/06/04 Prn:5/06/2007; 11:41 F:dpg15ref.tex; VTEX/zk p. 96 aid: dpg15ref pii: S0166-2635(07)15094-5 docsubty: MISC 96 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 References Madore, L., Larbi, Y., Sharma, K.N.M., Labbé, J-Y., Lacoste, P., David, J., Brousseau, K., Hocq, M., 2002. Geology of the Lac Klotz (35A) and the Cratère du Nouveau-Quebec (southern half of 35H) areas. Ministère des Ressources Naturelles Québec, RG 2002-05. Mann, S., Sparks, N.H.C, Frankel, R.B., Bazylinski, D.A., Jannasch, H.W., 1990. Biomineralization of ferrimagnetic greigite (Fe3 S4 ) and iron pyrite (FeS2 ) in a magnetotactic bacterium. Nature 343, 258–261. Manning, C.E., Mojzsis, S.J., Harrison, T.M., 2006. Geology, age and origin of supracrustal rocks, Akilia, Greenland. American Journal of Science 306, 303–366. Maphalala, R.M., Kröner, A., 1993. Pb-Pb single zircon ages for the younger archaean granitoids of Swaziland, Southern Africa. In: Mines, G.S.A. (Ed.), International Colloquium of African Geology, Mbabane, pp. 201–206. Mareschal, J.C., West, G.F., 1980. A model for Archean tectonism. 2. Numerical-models of vertical tectonism in greenstone belts. Canadian Journal of Earth Sciences 17, 60–71. Markowski, A., Quitté, G., Kleine, T., Halliday, A.N., 2005. Tungsten isotopic constraints on the formation and evolution of iron meteorite parent bodies. Lunar and Planetary Science XXXVI, abstract 1308. Markowski, A., Leya, I., Quitté, G., Ammon, K., Halliday, A.N., Wieler, R., 2006. Correlated helium-3 and tungsten isotopes in iron meteorites: Quantitative cosmogenic corrections and planetesimal formation times. Earth and Planetary Science Letters 250, 104–115. Marshak, S., 1999. Deformation style way back when: thoughts on the contrasts between Archaean/Paleoproterozoic and contemporary orogens. Journal of Structural Geology 21, 1175–1182. Marshall, A.E., 2000. Low temperature-low pressure (‘epithermal’) siliceous vein deposits of the North Pilbara granite-greenstone terrane, Western Australia. Australian Geological Survey Organization, Record 2000/1, 40 pp. Marshall, C.P, Allwood, A.C., Walter, M.R., Van Kranendonk, M.J., Summons, R.E., 2004a. Spectroscopic and microscopic characterization of the Carbonaceous Material in Archaean Cherts, Pilbara Craton, Western Australia. In: Abstracts of the 21st Annual Meeting of the Society of Organic Petrology, vol. 21. Sydney, New South Wales, Australia, pp. 107–108. Marshall, C.P, Allwood, A.C., Walter, M.R., Van Kranendonk, M.J., Summons, R.E., 2004b. Characterization of the carbonaceous material in the 3.4 Ga Strelley Pool Chert, Pilbara Craton, Western Australia. Geological Society of America Annual Meeting, Denver, CO. Abstracts with programs, pp. 197-3. Marshall, C.P., Love, G.D., Snape, C.E., Hill, A.C., Allwood, A.C., Walter, M.R., Van Kranendonk, M.J., Bowden, S.A., Sylva, S.P., Summons, R.E., 2007. Characterization of kerogen in Archaean cherts, Pilbara Craton, Western Australia. Precambrian Research, in press. Marston, J.G., 1979. Copper mineralization in Western Australia. Geological Survey of Western Australia, Mineral Resources Bulletin 13. Martin, H., 1986. Effect of steeper Archean geothermal gradient on geochemistry of subduction-zone magmas. Geology 14 (9), 753–756. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 dpg15 v.2007/06/04 Prn:5/06/2007; 11:41 F:dpg15ref.tex; VTEX/zk p. 97 aid: dpg15ref pii: S0166-2635(07)15094-5 docsubty: MISC References 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 97 Martin, H., 1987. Petrogenesis of Archean trondhjemites, tonalites and granodiorites from eastern Finland: major and trace element geochemistry. Journal of Petrology 28, 921– 953. Martin, H., 1993. The mechanisms of petrogenesis of the Archean continental crust – Comparison with modern processes. Lithos 30, 373–388. Martin, H., 1994. The Archean grey gneiss and the genesis of continental crust. In: Condie, K.C. (Ed.), Archean Crustal Evolution. Elsevier, Amsterdam, pp. 205–259. Martin, H., 1999. The adakitic magmas: modern analogs of Archean granitoids. Lithos 46, 411–429. Martin, H., 2005. Genesis and evolution of the primitive Earth continental crust. In: Gargaud, M., Barbier, B., Martin, H., Reisse, J. (Eds.), Lectures in Astrobiology, vol. I. Springer, Berlin, pp. 352–383. Martin, H., Moyen, J-F., 2002. Secular changes in tonalite-trondhjemite-granodiorite composition as markers of the progressive cooling of the Earth. Geology 30, 319–322. Martin, H., Peucat, J.J., Sabate, P., Cunha, J.C., 1997. Crustal evolution in the Early Archean of South America: Example of the Sete Voltas massif, Bahia state, Brazil. Precambrian Research 82, 35–62. Martin, H., Smithies, R.H., Rapp, R., Moyen, J.-F., Champion, D., 2005. An overview of adakite, tonalitie-trondhjemite-granodiorite (TTG) and sanukitoid: relationships and some implications for crustal evolution. Lithos 79, 1–24. Marty, B., Yokochi, R., 2006. Water in the early Earth. Reviews in Mineralogy and Geochemistry 62, 421–450. Mason, B., Moore, C.B., 1982. Principles of Geochemistry, 4th ed. John Wiley and Sons, New York, 344 pp. Matthews, M.J., Pimenta, M.A., Dresselhaus, G., Dresselhaus, M.S., Endo, M., 1999. Origin of dispersive effects of the Raman D band in carbon materials. Physics Review B 59, 6585–6588. Matthews, P.E., Charlesworth, E.G., Eglington, B.M., Harmer, R.E., 1989. A minimum 3.29 Ga age for the Nondweni greenstone complex in the southeastern Kaapvaal Craton. South African Journal of Geology 92, 272–278. Mauersberger, K., Erbacher, B., Krankowsky, D., Gunther, J., Nickel, R., 1999. Ozone isotope enrichment: Isotopomer-specific rate coefficients. Science 283, 370–372. Maurette, M., Duprat, J., Engrand, C., Gounelle, M., Kurat, G., Matrajt, G., Toppani, A., 2000. Accretion of neon, organics, CO2 , nitrogen and water from large interplanetary dust particles on the early Earth. Planetary and Space Science 48, 1117–1137. Maurice, C., Berclaz, A., David, J., Sharma, K.N.M., Lacoste, P., 2005. Geology of the Povungnituk (35C) et de Kovik Bay (35F) areas. Ministère des Ressources naturelles, Québec, RG 2004-05, 41 pp. Maurice, C., David, J., Leclair, A., Francis, D., 2006. An autochthonous origin for the northeastern Superior Province greenstone belts. In: Geological Association of Canada – Mineralogical Association of Canada, Annual Meeting, Abstracts Volume 31, p. 98. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 dpg15 v.2007/06/04 Prn:5/06/2007; 11:41 F:dpg15ref.tex; VTEX/zk p. 98 aid: dpg15ref pii: S0166-2635(07)15094-5 docsubty: MISC 98 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 References McCall, J.G.H., 2003. A critique of the analogy between Archaean and Phanerozoic tectonics based on regional mapping of the Mesozoic-Cenozoic plate convergent zone in the Makran, Iran. Precambrian Research 127, 5–18. McCarthy, T., Rubridge, B. (Eds.), 2005. The Story of Earth & Life – A Southern African Perspective on a 4.6 Billion-Year Journey. Striuk Publishers, Cape Town, South Africa, 333 pp. McCollom, T., 2003. Formation of meteorite hydrocarbons from thermal decomposition of siderite (FeCO3 ). Geochimica et Cosmochimica Acta 67, 311–317. McCollom, T.M., Seewald, J.S., 2006. Carbon isotope composition of organic compounds produced by abiotic synthesis under hydrothermal conditions. Earth and Planetary Science Letters 243, 74–84. McCombs, J.A., Dahl, P.S., Hamilton, M.A., 2004. U-Pb ages of Neoarchean granitoids from the Black Hills, South Dakota, USA: implications for crustal evolution in the Archean Wyoming province. Precambrian Research 130, 161–184. McCord, T.B., Adams, J.B., Johnson, T.V., 1970. Asteroid Vesta: spectral reflectivity and compositional implications. Science 168, 1445–1447. McCoy, T., Keil, K., Clayton, R.N., Mayeda, T.K., Bogard, D.D., Garrison, D.H., Huss, G.R., Hutcheon, I.D., Wieler, R., 1996. A petrologic, chemical and isotopic study of Monument Draw and comparison with other acapulcoites: evidence for formation by incipient partial melting. Geochimica et Cosmochimica Acta 60, 2681–2708. McCoy, T., Keil, K., Clayton, R.N., Mayeda, T.K., Bogard, D.D., Garrison, D.H., Wieler, R., 1997. A petrologic and isotopic study of lodranites: evidence for early formation as partial melt residues from heterogeneous precursors. Geochimica et Cosmochimica Acta 61, 623–637. McCuaig, T.C., Kerrich, R., 1998. P-T-t-deformation-fluid characteristics of lode gold deposits: evidence from alteration systematics. Ore Geology Reviews 12, 381–453. McCulloch, M.T., 1987. Sm-Nd isotopic constraints on the evolution of Precambrian crust in the Australian continent. In: Kroner, A. (Ed.), Proterozoic Lithospheric Evolution. In: American Geophysical Union, Geodynamics Series, vol. 17. Washington, DC, pp. 115–130. McCulloch, M.T., 1994. Primitive 87 Sr/86 Sr from and Archean barite and conjecture on the Earth’s age and origin. Earth and Planetary Science Letters 126, 1–13. McCulloch, M.T., Bennett, V.C., 1993. Evolution of the early Earth: Constraints from 143 Nd-142 Nd isotopic systematics. Lithos 30, 237–255. McCulloch, M.T., Bennett, V.C., 1994. Progressive growth of the Earth’s continental crust and depleted mantle: Geochemical constraints. Geochimica et Cosmochimica Acta 58, 4717–4738. McCulloch, M.T., Bennett, V.C., 1998. Early Differentiation of the Earth: An Isotopic Perspective. In: Jackson, I. (Ed.), The Earth’s Mantle. Cambridge University Press, Cambridge, pp. 127–158. McCulloch, M.T., Black, L.P., 1984. Sm-Nd isotopic systematics of Enderby Land granulites and evidence for the redistribution of Sm and Nd during metamorphism. Earth and Planetary Science Letters 71, 46–58. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 dpg15 v.2007/06/04 Prn:5/06/2007; 11:41 F:dpg15ref.tex; VTEX/zk p. 99 aid: dpg15ref pii: S0166-2635(07)15094-5 docsubty: MISC References 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 99 McCulloch, M.T., Wasserburg, G.J., 1978. Sm-Nd and Rb-Sr chronology of continental crust formation. Science 200, 1003–1011. McCulloch, M.T., Wasserburg, G.J., 1980. Early Archean Sm-Nd model ages from a tonalitic gneiss, northern Michigan. In: Geological Society of America, Special Paper 182, pp. 135–138. McDaniel, K.M., Hansen, V.L., 2005. Circular Lows, a Genetically Distinct Subset of Coronae? In: Lunar and Planetary Science Conference XXXVI, 2367.pdf. McDonough, W.F., Sun, S.-S., 1995. The composition of the Earth. Chemical Geology 120, 223–253. McGill, G.E., 1994. Hotspot evolution and Venusian tectonic style. . Journal of Geophysical Research 99, 23149–23161. McGregor, V.R., 1968. Field evidence of very old Precambrian rocks in the Godthaab area, West Greenland. In: The Geological Survey of Greenland, Report 15, pp. 31–35. McGregor, V.R., 1973. The early Precambrian gneisses of the Godthaab district, West Greenland. Philosophical Transactions of the Royal Society of London A273, 343–358. McGregor, V.R., Mason, B., 1977. Petrogenesis and geochemistry of metabasaltic and metasedimentary enclaves in the Amîtsoq gneisses, West Greenland. American Mineralogist 62, 887–904. McGregor, V.R., Friend, C.R.L., Nutman, A.P., 1991. The late Archaean mobile belt through Godthåbsfjord, southern West Greenland: a continent-continent collision zone? Bulletin of the Geological Society Denmark 39, 179–197. McKeegan, K.D., Davis, A.M., 2003. Early Solar System chronology. In: Davis, A.M. (Ed.), Meteorites, Comets and Planets. In: Treatise on Geochemistry, vol. 1. ElsevierPergamon, Oxford, pp. 431–460. McKenzie, D.P., Bickle, M.J., 1988. The volume and composition of melt generated by extension of the lithosphere. Journal of Petrology 29, 625–679. McKenzie, D., Ford, P.G., Johnson, C., Parsons, B., Pettengill, G.H., Sandwell, D., Saunders, R.S., Solomon, S.C., 1992. Features on Venus generated by plate boundary processes. Journal of Geophysical Research 97, 13533–13544. McKinnon, W.B., Zahnle, K.J., Ivanov, B.A., Melosh, H.J., 1997. Cratering on Venus: Models and observations. In: Bouger, S.W., Hunten, D.M., Phillips, R.J. (Eds.), Venus II. University of Arizona Press, Tucson, AZ, pp. 969–1014. McLennan, S.M., Taylor, S.R., Hemming, S.R., 2005. Composition, differentiation and evolution of continental crust: Constraints from sedimentary rocks and heat flow. In: Brown, M., Rushmer, T. (Eds.), Evolution and Differentiation of the Earth’s Crust. Cambridge University Press, pp. 93–135. McPhie, J., Goto, Y., 1996, Lobe and layered structures in dacite sills of the Archean Strelley succession, Western Australia. Eos, Transactions, American Geophysical Union, vol. 77 (Supplement), p. W125. McSween Jr, H.Y., Richardson, S.M., 1977. The composition of carbonaceous chondrite matrix. Geochimica et Cosmochimica Acta 41, 1145–1161. Meissner, R., 1986: The Continental Crust: A Geophysical Approach. In: International Geophysical Series, vol. 34. Academic Press, 426 pp. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 dpg15 v.2007/06/04 Prn:5/06/2007; 11:41 F:dpg15ref.tex; VTEX/zk p. 100 aid: dpg15ref pii: S0166-2635(07)15094-5 docsubty: MISC 100 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 References Melnyk M.J., Cruden, A.R., Davis, D.W., Stern, R.A., 2006. U-Pb ages of magmatism constraining regional deformation in the Winnipeg River subprovince and Lake of the Woods greenstone belt: Evidence for Archean terrane accretion in the western Superior Province. Canadian Journal of Earth Sciences 43, 967–993. Melosh, H.J., 1990. Giant impacts and the thermal state of the early Earth. In: Newsome, H.E., Jones, J.H. (Eds.), Origin of the Earth. Oxford University Press, New York, pp. 69–83. Melosh, H.J., Vickery, A.M., 1991. Melt droplet formation in energetic impact events. Nature 350, 494–497. Menzies, M.A., Fan, W.M., Zhang, M., 1993. Palaeozoic and Cenozoic lithoprobes and he loss of >120 km of Archaean lithosphere, Sino-Korean Craton, China. In: Geological Society of London, Special Publication 76, pp. 71–78. Menzies, M.A., Xu, Y-G., 1998. Geodynamics of the North China Craton. In: Flower, M., Chng, S.L., Lo, C.H., Lee, T.Y. (Eds.), Mantle Dynamics and Plate Interactions in East Asia. In: American Geophysical Union, Geodynamics Series, vol. 27. Washington, DC, pp. 155–165. Meredith, M.T., 2005. A late Archean tectonic boundary exposed at Tin Cup Mountain, Granite Mountain, Wyoming. M.S. thesis. University of Wyoming, Laramie, Wyoming, 77 pp. Meyer, M.R., Backman, D.E., Weinberger, A.J., Wyatt, M.C., 2006. Evolution of circumstellar disks around normal stars: Placing our solar system in context. In: Reipurt, B., Jewitt, D., Keil, K. (Eds.), Protostars and Planets, vol. V. University of Arizona Press, Tucson, AZ, in press. Mezger, K., Bohlen, S.R., Hanson, G.N., 1990. Metamorphic history of the Archean Pikwitonei Granulite Domain and the Cross Lake Subprovince, Superior Province, Manitoba, Canada. Journal of Petrology 31, 483–517. Mikhalsky, E.V., Sheraton, J.W., Laiba, A.A., Tingey, R.J., Thost, D.E., Kamenev, E.N., Fedorov, L.V., 2001. Geology of the Prince Charles Mountains, Antarctica. Geoscience Australia Bulletin 247, Australian Geological Survey Organisation, Canberra, 210 pp. Mikhalsky, E.V., Beliatsky, B.V., Sheraton, J.W., Roland, N.W., 2006a. Two distinct Precambrian terranes in the Southern Prince Charles Mountains, East Antarctica: SHRIMP dating and geochemical constraints. Gondwana Research 9, 291–309. Mikhalsky, E.V., Laiba, A.A., Beliatsky, B.V., 2006b. Tectonic subdivisions of the Prince Charles Mountains: a review of geologic and isotopic data. In: Futterer, D.K., Damaske, D., Kleinschmidt, G., Miller, H., Tessensohn, F. (Eds.), Antarctica – Contributions to Global Earth Sciences. Springer, Berlin, Heidelberg, New York, pp. 69–82. Miller, D.M., Goldstein, S.L., Langmuir, C.H., 1994. Cerium/lead and lead isotope ratios in arc magmas and the enrichment of lead in the continents. Nature 368, 514–520. Millero, F., Sohn, M.L., 1992. Chemical Oceanography. CRC Press, Boca Raton, FL, 531 pp. Millhohlen, G.L., Irving, A.J., Wyllie, P.J., 1974. Melting interval of peridotite with 5.7 per cent water to 30 kbar. Journal of Geology 82, 575–587. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 dpg15 v.2007/06/04 Prn:5/06/2007; 11:41 F:dpg15ref.tex; VTEX/zk p. 101 aid: dpg15ref pii: S0166-2635(07)15094-5 docsubty: MISC References 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 101 Minister, J.-F., Birck, J.-L., Allegre, C.J., 1982. Absolute age of formation of chondrites studies by the 87 Rb-87 Sr method. Nature 300, 414–419. Mittlefehldt, D.W., 2003. Achondrites. In: Davis, A.M. (Ed.), Meteorites, Comets and Planets. In: Treatise on Geochemistry, vol. 1. Elsevier-Pergamon, Oxford, pp. 291–324. Mittlefehldt, D.W., Lindstom, M.M., Bogard, D.D., Garrison, D.H., Field, S.W., 1996. Acapulco- and Lodran-like achondrites: Petrology, geochemistry, chronology and origin. Geochimica et Cosmochimica Acta 60, 867–882. Mittlefehldt, D.W., McCoy, T.J., Goodrich, C.A., Kracher, A., 1998. Non-chondritic meteorites from asteroidal bodies. In: Papike, J.J. (Ed.), Planetary Materials. In: Reviews in Mineralogy, vol. 36. Mineralogical Society of America, Washington, DC, pp. 4.103– 4.130. Mittlefehldt, D.W., Bogard, D.D., Berkley, J.L., Garrision, D.H., 2003. Brachinites: Igneous rocks from a differentiated asteroid. Meteoritics and Planetary Science 38, 1601– 1625. Moecher, D.P., Perkins, D., III, Leier-Englehardt, P.J., et al., 1986. Metamorphic conditions of late Archean high-grade gneisses, Minnesota River Valley, U.S.A. Canadian Journal of Earth Sciences 23, 633–645. Mogk, D., Henry, D., 1988. Metamorphic petrology of the northern Archean Wyoming Province, SW Montana: evidence for Archean collisional tectonics, In: Ernst, W. (Ed.), Metamorphism and Crustal Evolution in the Western US. Prentice Hall, Englewood Cliffs, NJ, pp. 363–382. Mogk, D.W., Mueller, P.A., Wooden, J.L., 1988. Archean tectonics of the North Snowy Block, Beartooth Mountains, Montana. Journal of Geology 96, 125–141. Mogk, D.W., Mueller, P.A., Wooden, J., 1992. The significance of Archean terrane boundaries: Evidence from the northern Wyoming province. Precambrian Research 55, 155– 168. Mogk, D.W., Mueller, P.A., Wooden, J.L., 2004. Tectonic implications of late Archeanearly Proterozoic supracrustal rocks in the Gravelly Range, SW Montana. In: Geological Society of America, 2004 Annual Meeting, Abstracts with Programs – Geological Society of America, vol. 36, no. 5, p. 507. Mojzsis, S.J., Harrison, T.M., 2002a. Establishment of a 3.83-Ga magmatic age for the Akilia tonalite (southern West Greenland). Earth and Planetary Science Letters 202, 563–576. Mojzsis, S.J., Harrison, T.M., 2002b. Origin and Significance of Archean Quartzose Rocks at Akilia, Greenland. Science 298, 917a. Mojzsis, S.J., Ryder, G., 2001. Accretion to Earth and Moon ∼3.85 Ga. In: PeuckerEhrenbrink, B., Schmitz, B. (Eds.), Accretion of Extraterrestrial Matter Throughout Earth’s History. Kluwer, New York, pp. 423–466. Mojzsis, S.J., Arrhenius, G., McKeegan, K.D., Harrison, T.M., Nutman, A.P., Friend, C.R.L., 1996. Evidence for life on Earth before 3,800 million years ago. Nature 384, 55–59. Mojzsis, S.J., Harrison, T.M., Arrhenius, G., McKeegan, K.D., Grove, M., 1999. Origin of life from apatite dating? – Reply. Nature 400, 127–128. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 dpg15 v.2007/06/04 Prn:5/06/2007; 11:41 F:dpg15ref.tex; VTEX/zk p. 102 aid: dpg15ref pii: S0166-2635(07)15094-5 docsubty: MISC 102 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 References Mojzsis, S.J., Harrison, T.M., Pidgeon, R.T., 2001. Oxygen-isotope evidence from ancient zircons for liquid water at the Earth’s surface 4,300 Myr ago. Nature 409, 178–181. Mojzsis, S.J., Coath, C.D., Greenwood, J.P., McKeegan, K.D., Harrison, T.M., 2003. Massindependent isotope effects in Archean (2.5 to 3.8 Ga) sedimentary sulphides determined by ion microprobe analysis. Geochimica et Cosmochimica Acta 67, 1635–1658. Monster, J., Appel, P.W.U, Thode, H.G., Schidlowski, M., Carmichael, C.M., Bridgwater, D., 1979. Sulfur isotope studies in early Archaean sediments from Isua, West Greenland – Implications for the antiquity of bacterial sulfate reduction. Geochimica et Cosmochimica Acta 43, 405–413. Montelli, R., Nolet, G., Dahlen, F.A., Masters, G., Engdahl, E.R., Hung, S-H., 2004. Finitefrequency tomography reveals a variety of plumes in the mantle. Science 303, 338–343. Mook, W.G., Bommerson, J.C., Staverman, W.H., 1974. Carbon isotope fractionation between dissolved bicarbonate and gaseous carbon dioxide. Earth and Planetary Science Letters 22, 169–176. Moorbath, S., 1975. Evolution of Precambrian crust from Strontium isotopic evidence. Nature 254, 395–398. Moorbath, S., 1977. Ages, isotopes and the evolution of the Precambrian continental crust. Chemical Geology 20, 151–187. Moorbath, S., 2005. Oldest rocks, earliest life, heaviest impacts, and the Hadean-Archaean transition. Applied Geochemistry 20, 819–824. Moorbath, S., Taylor, P.N., 1985. Precambrian geochronology and the geological record. In: Snelling, N.J. (Ed.), The Chronology of the Geological Record. In: Geological Society of London, Memoir 10, pp. 10–28. Moorbath, S., O’Nions, R.K., Pankhurst, R.J., Gale, N.H., McGregor, V.R., 1972. Further rubidium-strontium age determinations on the very early Precambrian rocks of the Godthåb district: West Greenland. Nature 240, 78–82. Moorbath, S., O’Nions, R.K., Pankhurst, R.J., 1973. Early Archaean age for the Isua Iron Formation, West Greenland. Nature 245, 138–139. Moorbath, S., Whitehouse, M.J., Kamber, B.S., 1997. Extreme Nd-isotope heterogeneity in the early Archaean – Fact or fiction? Case histories from northern Canada and West Greenland. Chemical Geology 135, 213–231. Moores, E.M., 2002. Pre-1 Ga (pre-Rodinian) ophiolites: Their tectonic and environmental indicators. Bulletin of Geological Society of America 114, 80–95. Moralev, V.M., 1986. Early Evolution of the Continental Lithosphere. Nauka, Moscow, 119 pp. (in Russian). Moralev, V.M., Glukhovsky, M.Z., 2000. Diamond-bearing kimberlite fields of the Siberian craton and the early Precambrian metallogeny. Ore Geology Reviews 17, 141–153. Morant, P., 1998. Panorama Zinc-Copper deposits. In: Berkman, D.A., Mackenzie, D.H. (Eds.), Geology of Australian and Papua New Guinean Mineral Deposits. The Australian Institute of Mining and Metallurgy, Melbourne, Australia, pp. 287–292. Morbidelli, A., Chambers, J., Lunine, J.I., Petit, J.M., Robert, F., Valsecchi, G.B., Cyr, K.E., 2000. Source regions and time scales for the delivery of water to Earth. Meteoritics and Planetary Science 35, 1309–1320. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 dpg15 v.2007/06/04 Prn:5/06/2007; 11:41 F:dpg15ref.tex; VTEX/zk p. 103 aid: dpg15ref pii: S0166-2635(07)15094-5 docsubty: MISC References 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 103 Morey, G.B., Sims, P.K., 1976. Boundary between two lower Precambrian terranes in Minnesota and its geological significance. Bulletin of Geological Society of America 87, 141–152. Morgan, J.W., Anders, E., 1980. Chemical composition of Earth, Venus and Mercury. Proceedings of the National Academy of Sciences of the United States of America – Physical Sciences 77, 6973–6977. Morgan, J.W., Walker, R.J., Grossman, J.N., 1992. Rhenium-osmium isotope systematics in meteorites I: Magmatic iron meteorite groups IIAB and IIIAB. Earth and Planetary Science Letters 108, 191–202. Morgan, J.W., Horn, M.F., Walker, R.J., Grossman, J.N., 1995. Rhenium-osmium concentration and isotope systematics in group IIAB iron meteorites. Geochimica et Cosmochimica Acta 59, 2331–2344. Mortensen, J.K., Card, K.D., 1993. U-Pb age constraints for the magmatic and tectonic evolution of the Pontiac Subprovince, Quebec. Canadian Journal of Earth Sciences 30, 1970–1980. Moser, D., 1994. The geology and structure of the mid-crustal Wawa gneiss domain: a key to understanding tectonic variation with depth and time in the late Archean AbitibiWawa orogen. Canadian Journal of Earth Sciences 31, 1064–1080. Moser, D.E., Heaman, L.M., Krogh, T.E., Hanes, J.A., 1996. Intracrustal extension of an Archean orogen revealed using single-grain U-Pb zircon geochronology. Tectonics 15, 1093–1109. Moser, D.E., Flowers, R.M., Hart, R.J., 2001. Birth of the Kaapvaal tectosphere 3.08 billion years ago. Nature 291, 465–468. Moyen, J.-F., Stevens, G., 2006. Experimental constraints on TTG petrogenesis: Implications for Archean geodynamics. In: Benn, K., Mareschal, J.-C., Condie, K.C. (Eds.), Archean Geodynamics and Environments. In: Geophysical Monograph 164. American Geophysical Union, Washington, DC, pp. 149–175. Moyen, J.-F., Martin, H., Jayananda, M., Auvray, B., 2003. Late Archaean granites: a typology based on the Dharwar Craton (India). Precambrian Research 127 (1–3), 103–123. Moyen, J.-F., Stevens, G., Kisters, A.F.M., 2006. Record of mid-Archaean subduction from metamorphism in the Barberton terrain, South Africa. Nature 443, 559–562. Muehlenbachs, K., 1998. The oxygen isotopic composition of the oceans, sediments and the seafloor. Chemical Geology 145, 263–273. Mueller, P.A., Frost, C.D., 2006. The Wyoming province: a distinctive Archean craton in Laurentian North America. Canadian Journal of Earth Sciences 43, in press. Mueller, P.A., Wooden, J.L., 1988. Evidence for Archean subduction and crustal recycling, Wyoming province. Geology 16, 871–874. Mueller, P.A., Wooden, J.L., Henry, D.J., Bowes, D.R., 1985. Archean crustal evolution of the eastern Beartooth Mountains, Montana–Wyoming. In: Montana Bureau of Mines and Geology, Special Publication 92, pp. 9–20. Mueller, P.A., Shuster, R.D., Graves, M.A., Wooden, J.L., Bowes, D.R., 1988. Age and composition of a Late Archean magmatic complex, Beartooth Mountains, Montana– Wyoming. In: Montana Bureau of Mines and Geology, Special Publication 96, pp. 6–22. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 dpg15 v.2007/06/04 Prn:5/06/2007; 11:41 F:dpg15ref.tex; VTEX/zk p. 104 aid: dpg15ref pii: S0166-2635(07)15094-5 docsubty: MISC 104 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 References Mueller, P.A., Wooden, J.L., Nutman, A.P., 1992. 3.96 Ga zircons from an Archean quartzite, Beartooth Mountains, Montana. Geology 20, 327–330. Mueller, P.A., Shuster, R.D., Wooden, J.L., Erslev, E.A., Bowes, D.R., 1993. Age and composition of Archean crystalline rocks from the southern Madison Range, Montana: implications for crustal evolution in the Wyoming craton. Bulletin of Geological Society of America 105, 437–446. Mueller, P.A., Heatherington, A., Weyand, E., Mogk, D., Wooden, J., Nutman, A., 1995. Geochemical evolution of Archean crust in the northern Madison Range, Montana: Evidence from U-Pb and Sm-Nd systematics. Geologic Society of America, Abstracts with Programs 27 (4), 49. Mueller, P.A., Wooden, J.L., Mogk, D.W., Nutman, A.P., Williams, I.S., 1996. Extended history of a 3.5 Ga trondhjemitic gneiss, Wyoming province, USA: evidence from U-Pb systematics in zircon. Precambrian Research 78, 41–52. Mueller, P.A., Wooden, J.L., Nutman, A.P., Mogk, D.W., 1998. Early Archean crust in the northern Wyoming province: Evidence from U–Pb ages of detrital zircons. Precambrian Research 91, 295–307. Mueller, P.A., Heatherington, A.L., Kelly, D.M., Wooden, J.L., Mogk, D.W., 2002. Paleoproterozoic crust within the Great Falls tectonic zone; implications for the assembly of southern Laurentia. Geology 30, 127–130. Mueller, P., Wooden, J., Heatherington, A., Burger, H., Mogk, D., D’Arcy, K., 2004. Age and evolution of the Precambrian crust of the Tobacco Root Mountains. In: Brady, J.B., Burger, H.R., Cheney, J.T., Harms, T.A. (Eds.), Precambrian Geology of the Tobacco Root Mountains, Montana. In: Geological Society of America, Special Paper 377, pp. 181–202. Mueller, P.A., Burger, H.R., Wooden, J.L., Brady, J.B., Cheney, J.T., Harms, T.A., Heatherington, A.L., Mogk, D.W., 2005. Paleoproterozoic metamorphism in the northern Wyoming Province: implications for the assembly of Laurentia. Journal of Geology 113 (2), 169–179. Mueller, P., Mogk, D., Wooden, J., 2006. Archean Crustal Evolution in the Northern Wyoming Province: Implications for Mantle Keels. In: AGU Fall Meeting (V11D-0631) Mueller, W.U., Marquis, R., Thurston, P. (Eds.), 2002. Evolution of the Archean Abitibi Greenstone Belt and Adjacent Terranes: New Insights from Geochronology, Geochemistry, Structure and Facies Analysis. Precambrian Research 115, 374 pp. Muhling, J.R., 1990. The Narryer Gneiss Complex of the Yilgarn block, Western Australia: a sement of Archean lower crust uplifted during Proterozoic orogeny. Journal of Metamorphic Geology 8, 47–64. Mulligan, R., 1957. Split Lake, Manitoba. Geological Survey of Canada, Preliminary Map 10-1956. Murphy, J.B., Nance, R.D., 1991. Supercontinent model for the contrasting character late proterozoic orogenic belts. Geology 91, 469–472. Musacchio, G., White, D.J., Asudeh, I., Thomson, C.J., 2004. Lithospheric structure and composition of the Archean western Superior Province from seismic refraction/wide- 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 dpg15 v.2007/06/04 Prn:5/06/2007; 11:41 F:dpg15ref.tex; VTEX/zk p. 105 aid: dpg15ref pii: S0166-2635(07)15094-5 docsubty: MISC References 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 105 angle reflection and gravity modeling. Journal of Geophysical Research 109, B03304, doi:10.1029/2003JB002427. Myers, J.S., 1978. Formation of banded gneisses by deformation of igneous rocks. Precambrian Research 6, 43–64. Myers, J.S., 1988a. Early Archaean Narryer Gneiss Complex, Yilgarn Craton, Western Australia. Precambrian Research 38, 297–307. Myers, J.S., 1988b. Oldest known terrestrial anorthosite at Mount Narryer, Western Australia. Precambrian Research 38, 309–323. Myers, J.S., 1990a. Precambrian tectonic evolution of part of Gondwana, southwestern Australia. Geology 18, 537–540. Myers, J.S., 1990b. Western Gneiss Terrane. In: Geology and Mineral Resources of Western Australia. Western Australia Geological Survey, Memoir 3, pp. 13–31. Myers, J.S., 1993. Precambrian history of the West Australian Craton and adjacent orogens. Annual Review of Earth and Planetary Sciences 21, 453–485. Myers, J.S., 1995. The generation and assembly of an Archaean supercontinent: evidence from the Yilgarn Craton, Western Australia. In: Coward, M.P., Ries, A.C. (Eds.), Early Precambrian Processes. In: Geological Society of London, Special Publication 95, pp. 143–154. Myers, J.S., 1997. Archaean geology of the Eastern Goldfields of Western Australia; regional overview. Precambrian Research 83, 1–10. Myers, J.S., 2001. Protoliths of the 3.8–3.7 Ga Isua greenstone belt, West Greenland. Precambrian Research 105, 129–141. Myers, J.S., Crowley, J.L., 2000. Vestiges of life in the oldest Greenland rocks? A review of early Archaean geology of the Godthåbsfjord region, and reappraisal of field evidence for >3850 Ma life on Akilia. Precambrian Research 103, 101–124. Myers, J.S., Hocking, R., 1998. Geological Map of Western Australia, 1:2,500,000, 13th ed. Western Australian Geological Survey. Myers, J.S., Occhipinti, S.A., 2001. Narryer Terrane. In: Occhipinti, S.A., Sheppard, S., Myers, J.S., Tyler, I.M., Nelson, D.R. (Eds.) Archaean and Palaeoproterozoic Geology of the Narryer Terrane (Yilgarn Craton) and the Southern Gascoyne Complex (Capricorn Orogen), Western Australia – A Field Guide. In: Western Australia Geological Survey, Record 2001/8, pp. 8–42. Myers, J.S., Swager, C., 1997. The Yilgarn Craton. In: de Wit, M., Ashwal, L.D. (Eds.),Greenstone Belts. Clarendon Press, Oxford, UK, pp. 640–656. Myers, J.S., Williams, I.R., 1985. Early Precambrian crustal evolution at Mount Narryer, Western Australia. Precambrian Research 27, 153–163. Mysen, B., Boettcher, A.L., 1975a. Melting of an hydrous mantle I. Phase relations of natural peridotite at high pressures and temperatures with controlled activity of water, carbon dioxyde and hydrogen. Journal of Petrology 16, 520–548. Mysen, B., Boettcher, A.L., 1975b. Melting of an hydrous mantle II. Geochemistry of crystals and liquids formed by anatexis of mantle peridotite at high pressures and temperatures as a function of the controlled activities of water, carbon dioxyde and hydrogen. Journal of Petrology 16, 549–593. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 dpg15 v.2007/06/04 Prn:5/06/2007; 11:41 F:dpg15ref.tex; VTEX/zk p. 106 aid: dpg15ref pii: S0166-2635(07)15094-5 docsubty: MISC 106 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 References Nadeau, P., 2003. Structural investigation of the Porpoise Cove area, Northeastern Superior Province, Northern Quebec. Unpublished thesis. Simon Fraser University, 95 pp. Nagahara, H., 1992. Yamato 8002: Partial melting residue on the “unique” chondrite parent body. In: Proceedings of the NIPR Symposium on Antarctic Meteorites, vol. 5, pp. 191– 223. Nagao, K., Okazaki, R., Sawada, S., Nakamura, N., 1999. Noble gases and K-Ar ages of five Rumuruti chondrites: Yamato Y-75302, Y-79182, Y-793575, Y-82002, and Asuka881988. Antarctic Meteorite Research (abstract) 23, 81. Nägler, T.F., Kramers, J.D., 1998. Nd isotopic evolution of the upper mantle during the Precambrian: Models, data and the uncertainty of both. Precambrian Research 91, 233– 252. Nägler, T.F., Kramers, J.D., Kamber, B.S., Frei, R., Predergast, M.D.A., 1997. Growth of subcontinental lithospheric mantle beneath Zimbabwe started at or before 3.8 Ga: A Re-Os study on chromites. Geology 25, 983–986. Nakamoto, T., Kita, N.T., Tachibana, S., 2005. Chondrule age distribution and rate of heating events for chondrule formation. Antarctic Meteorite Research 18, 253–272. Nakamura, K., Kato, Y., 2004. Carbonatization of oceanic crust by the seafloor hydrothermal activity and its significance as a CO2 sink in the Early Archean. Geochimica et Cosmochimica Acta 68, 4595–4618. Nakamura, N., 1974. Determination of REE, Ba, Fe, Mg, Na and K in carbonaceous and ordinary chondrites. Geochimica et Cosmochimica Acta 38, 757–775. Namiki, N., Solomon, S.C., 1994. Impact crater densities on volcanoes and coronae on Venus: implications for volcanic resurfacing. Science 265, 929–933. Nance, R.D., Worsley, T.R., Moody, J.B., 1998. The supercontinent cycle. Scientific American 259, 44–52. Naraoka, H., Ohtake, M., Maruyama, S., Ohmoto, H., 1996. Non-biogenic graphite in 3.8Ga metamorphic rocks from the Isua district, Greenland. Chemical Geology 133, 251– 260. Nelson, D.R., 1996. Compilation of SHRIMP U-Pb Zircon Geochronology Data, 1995. Western Australia Geological Survey, Record 1996/5. Nelson, D.R., 1997a. Evolution of the Archaean granite–greenstone terranes of the Eastern Goldfields, Western Australia. SHRIMP U-Pb zircon constraints. Precambrian Research 83, 57–81. Nelson, D.R., 1997b. Compilation of SHRIMP U-Pb Zircon Geochronology Data, 1996. Western Australia Geological Survey, Record 1997/2. Nelson, D.R., 1998a. Granite-greenstone crust formation on the Archaean Earth: a consequence of two superimposed processes. Earth and Planetary Science Letters 158, 109–119. Nelson, D.R., 1998b. Compilation of SHRIMP U-Pb Zircon Geochronology Data, 1997. Western Australia Geological Survey, Record 1998/2. Nelson, D.R., 1999, Compilation of SHRIMP U-Pb Zircon Geochronology Data, 1998. Western Australia Geological Survey, Record 1999/2. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 dpg15 v.2007/06/04 Prn:5/06/2007; 11:41 F:dpg15ref.tex; VTEX/zk p. 107 aid: dpg15ref pii: S0166-2635(07)15094-5 docsubty: MISC References 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 107 Nelson, D.R., 2000. Compilation of Geochronology Data, 1999. In: Geological Survey of Western Australia, Record 2000/2, pp. 62–65. Nelson, D.R., 2001. Compilation of SHRIMP U-Pb Zircon Geochronology Data, 2000. Western Australia Geological Survey, Record 2001/2. Nelson, D.R., 2002a. Compilation of SHRIMP U-Pb Zircon Geochronology Data, 2001. Western Australia Geological Survey, Record 2002/2. Nelson, D.R., 2002b. Hadean Earth crust: microanalytical investigation of 4.4 to 4.0 Ga zircons from Western Australia. Geochimica et Cosmochimica Acta 66, A549. Nelson, D.R., 2004. The early Earth, Earth’s formation and first billion years. In: Eriksson, P.G., et al. (Eds.), The Precambrian Earth: Tempos and Events. Elsevier, Amsterdam, pp. 3–27. Nelson D.R., Trendall A.F., Altermann W., 1999. Chronological correlations between the Pilbara and Kaapvaal cratons. Precambrian Research 97, 165–189. Nelson, D.R., Robinson, B.W., Myers, J.S., 2000. Complex geological histories extending for 4.0 Ga deciphered from xenocryst zircon microstructures. Earth and Planetary Science Letters 181 (1–2), 89–102. Nemchin, A.A., 1990. Evolution of the Aldan Shield, Eastern Siberia. In: VII International Conference on Geochronology, Cosmochronology and Isotope Geology, Abstracts volume. Geological Society of Australia, Canberra, p. 70. Nemchin, A.A., Pidgeon, R.T., 1997. Evolution of the Darling Range batholith, Yilgarn Craton, Western Australia: a SHRIMP zircon study. Journal of Petrology 38, 625–649. Nemchin, A.A., Pidgeon, R.T., Whitehouse, M.J., 2006. Re-evaluation of the origin and evolution of >4.2 Ga zircons from the Jack Hills metasedimentary rocks. Earth and Planetary Science Letters 244, 218–233. Neukum, G., Ivanov, B., Hartmann, W.K., 2001. Cratering records in the inner solar system. In: Kallenbach, R., et al. (Eds.), Chronology and Evolution of Mars. Kluwer, Dordrecht, pp. 55–86. Neumann, E.-R., 1994. The Oslo Rift: P-T relations and lithosphere structure. Tectonophysics 240, 159–172. Neumayr, P., Cabri, L.J., Groves, D.I., Mikucki, E.J., Jackman, J., 1993. The mineralogical distribution of gold and relative timing of gold mineralization in two Archean settings of high metamorphic grades in Australia. Canadian Mineralogist 31, 711–725. Newsom, H.E., White, W.M., Jochum, K.P., Hofmann, A.W., 1986. Siderophile and chalcophile element abundances in oceanic basalts, Pb isotope evolution and growth of the Earth’s core. Earth and Planetary Science Letters 80, 299–313. Newton, R.C., Manning, C.E., 2005. Solubility of anhydrite, CaSO4 , in NaCl-H2 O solution at high pressures and temperatures: Applications to fluid-rock interaction. Journal of Petrology 46, 701–716. Neymark, L.A., Kovach, V.P., Nemchin, A.A., Morozova, I.M., Kotov, A.B., Vinogradov, D.P., Gorokhovsky, B.M., Ovchinikova, G.V., Bogomolova, L.M., Smelov, A.P. 1993. Late Archaean intrusive complexes in the Olekma granite-greenstone terrane (Eastern Siberia): geochemical and isotopic study. Precambrian Research 62, 453–472. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 dpg15 v.2007/06/04 Prn:5/06/2007; 11:41 F:dpg15ref.tex; VTEX/zk p. 108 aid: dpg15ref pii: S0166-2635(07)15094-5 docsubty: MISC 108 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 References Neymark, L.A., Larin, A.M., Nemchin, A.A., 1998. Geochemical, geochronological (UPb) and isotopic (Pb, Nd) evidence of anorogenic magmatism in the North Baikal volcano-plutonic belt. Petrology 6 (2), 139–164. Nichols Jr., R.H., Hohenberg, C.M., Kehm, K., Kim, Y., Marti, K., 1994. I-Xe studies of the Acapulco meteorite: Absolute I-Xe ages of individual phosphate grains and the Bjurböle standard. Geochimica et Cosmochimica Acta 58, 2553–2561. Nicolaysen, K., Frey, F.A., Hodges, K.V., Weis, D., Giret, A., 2000. 40Ar/39Ar geochronology of flood basalts from the Kerguelen Archipelago, southern Indian Ocean: implications for cenozoic eruption rates of the Kerguelen plume. Earth and Planetary Science Letters 174, 313–28. Nicollet, C., Lahlafi, M., Lasnier, B., 1993. Existence d’un épisode métamorphique tardihercynien, granulitique de basses pressions, dans le Haut-Allier (Massif Central) : implications géodynamiques. Comptes rendus de l’Académie des Sciences, Série 2 317, 1609–1615. Niemeyer, S., 1979a. I-Xe dating of silicate and troilite from IAB iron meteorites. Geochimica et Cosmochimica Acta 43, 843–860. Niemeyer, S., 1979b. 40 Ar-39 Ar dating of inclusions from IAB iron meteorites. Geochimica et Cosmochimica Acta 43, 1829–1840. Niemeyer, S., Zaikowski, A., 1980. I-Xe age and trapped Xe components in the Murray (C2) chondrite. Earth and Planetary Science Letters 48, 335–347. Nieuwland, D.A., Compston, W., 1981. Crustal evolution in the Yilgarn Block near Perth, Western Australia. In: Glover, J.A., Groves, D.I. (Eds.), Archaean Geology. In: Geological Society of Australia, Special Publication 7, pp. 159–171. Nijman, W., De Bruin, K., Valkering, M., 1998. Growth fault control of early Archaean cherts, barite mounds, and chert-barite veins, North Pole Dome, Eastern Pilbara, Western Australia. Precambrian Research 88, 25–52. Nijman, W., de Vries, S.T., 2004. Early Archaean crustal collapse structures and sedimentary basin dynamics. In: Eriksson, P.G., Altermann, W., Nelson, D.R., Mueller, W.U., Catuneau, O. (Eds.), The Precambrian Earth: Tempos and Events. Elsevier, Amsterdam, pp. 139–154. Nijman, W., de Bruijne, K.C.H., Valkering, M.E., 1998. Growth fault control of early Archaean cherts, barite mounds and chert-barite veins, North Pole Dome, eastern Pilbara, Western Australia. Precambrian Research 88, 25–52. Nikishin, A.M., Ziegler, P.A., Abbott, D., Brunet, M-F., Cloetingh, S., 2002. PermoTriassic intraplate magmatism and rifting in Eurasia: Implications for mantle plumes and mantle dynamics. Tectonophysics 351, 3–39. Nikolayeva, O.V., 1993. Largest impact features on Venus—non-preserved or nonrecognizable? In: Lunar and Planetary Science Conference XXIV. Houston, TX, pp. 1083–1084. Nimmo, F., McKenzie, D. 1998. Volcanism and tectonics on Venus. Annual Reviews of Earth and Planetary Sciences 26, 23–52. Nisbet, E.G., Sleep, N., 2001. The habitat and nature of early life. Nature 409, 1083–1091. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 dpg15 v.2007/06/04 Prn:5/06/2007; 11:41 F:dpg15ref.tex; VTEX/zk p. 109 aid: dpg15ref pii: S0166-2635(07)15094-5 docsubty: MISC References 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 109 Nisbett, E.G., Cheadle, M.J., Arndt, N.J., Bickle, M.J., 1993. Constraining the potential temperature of the Archean mantle: A review of the evidence from komatiites. Lithos 30, 291–307. Nishizawa, M., Takahata, N., Terada, K., Komiya, T., Ueno, Y., Sano, Y., 2005. Rare-earth element, lead, carbon, and nitrogen geochemistry of apatite-bearing metasediments from the ∼3.8 Ga Isua Supracrustal Belt, West Greenland. International Geology Review 47, 952–970. Noldart A.J., Wyatt, J.D., 1962. The geology of a portion of the Pilbara Goldfield, covering the Marble Bar and Nullagine 4-mile map sheets. Western Australia Geological Survey, Bulletin 115, 199 pp. Nolet, G., Karato, S-I., Montelli, R., 2006. Plume fluxes from seismic tomography. Earth and Planetary Science Letters 248, 685–699. Norman, M.D., Borg, L.E., Nyquist, L.E., Bogard, D.D., 2003. Chronology, geochemistry, and petrology of a ferroan noritic anorthosite clast from Descartes breccia 67215: Clues to the age, origin, structure, and impact history of the lunar crust. Meteoritics and Planetary Science 38, 645–661. Norrish, K., Hutton, J.T., 1969. An accurate X-ray spectrographic method for the analysis of a wide range of geological samples. Geochemica et Cosmochimica Acta 33, 431–453 Norrish, K., Chappell, B.W., 1977. X-ray fluorescence spectrometry. In Zussman, J. (Ed.), Physical Methods in Determinative Mineralogy, 2nd ed. Academic Press, London, pp. 201–272. Norrish, K., Hutton, J.T., 1969. An accurate X-ray spectrographic method for the analysis of a wide range of geological samples. Geochimica et Cosmochimica Acta 33, 431–453. Nozhkin, A.D., 1999. Continental margin Paleoproterozoic complexes in the Angara foldbelt and their metallogenic peculiarities. Russian Geology and Geophysics 40 (11), 1524–1544 Nozhkin, A.D., 1986. Main features of composition and structure of the Precambrian complexes of the Yenisey highland. In: Reverdatto, V.V., Khlestov, V.V. (Eds.), Precambrian Crystalline Complexes of the Yenisey Highland. Russian Academy of Sciences Publication, Novosibirsk, pp. 9–18 (in Russian). Nozhkin, A.D., Turkina, O.M., 1993. Geochemistry of granulites from Kansk and Sharyzhalgay complexes. In: Transactions of the United Institute of Geology, Geophysics and Mineralogy, vol. 817, Novosibirsk, 219 pp. (in Russian). Nozkin, A.D., Turkina, O.M., Melgunov, M.S., 2001. Geochemistry of metavolcanosedimentary and granitoid rocks of the Onot greenstone belt. Geochemistry International 39 (1), 27–44. Nunes, D.C., Phillips, R.J., Brown, C.D., Dombard, A.J., 2004. Relaxation of compensated topography and the evolution of crustal plateaus on Venus. Journal Geophysical Research 109, doi:10.1029/2003JE002119. Nutman, A.P., 1984. Early Archaean crustal evolution of the Isukasia area, southern West Greenland. In: Kröner, A., Greiling, R. (Eds.), Precambrian Tectonics Illustrated. E. Schweitzerbart’sche Verlagsbuchhandlung, Stuttgart, pp. 79–94. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 dpg15 v.2007/06/04 Prn:5/06/2007; 11:41 F:dpg15ref.tex; VTEX/zk p. 110 aid: dpg15ref pii: S0166-2635(07)15094-5 docsubty: MISC 110 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 References Nutman, A.P., 2006a. Comment on: Zircon thermometer reveals minimum melting conditions on Earliest Earth. Science 311, 779a. Nutman, A.P, 2006b. Antiquity of the oceans and continents. Elements 2, 223–227. Nutman, A.P., Bridgwater, D., 1986. Early Archaean Amîtsoq tonalites and granites from the Isukasia area, southern West Greenland: Development of the oldest-known sial. Contributions to Mineralogy and Petrology 94, 137–148. Nutman, A.P., Collerson, K.D., 1991. Very early Archean crustal-accretion complexes preserved in the North Atlantic Craton. Geology 19, 791–794. Nutman, A.P., Cordani, U.G., 1993. SHRIMP U-Pb zircon geochronology of Archean granitoids from the Contendas-Mirante aarea of the Sao Francisco craton, Bahia, Brazil. Precambrian Research 63, 179–188. Nutman, A.P., Friend, C.R.L., 2006. Petrography and geochemistry of apatites in banded iron formation, Akilia, W. Greenland: Consequences for oldest life evidence. Precambrian Research 147, 100–106. Nutman, A.P., Friend, C.R.L., 2007. Adjacent terranes with c. 2715 and 2650 Ma highpressure metamorphic assemblages in the Nuuk region of the North Atlantic Craton, southern West Greenland: Complexities of Neoarchaean collisional orogeny. Precambrian Research, in press. Nutman, A.P., Allaart, J.H., Bridgwater, D., Dimroth, E., Rosing, M.T., 1984a. Stratigraphic and geochemical evidence for the depositional environment of the early Archaean Isua supracrustal belt, southern West Greenland. Precambrian Research 25, 365–396. Nutman, A.P., Bridgwater, D., Fryer, B, 1984b. The iron rich suite from the Amîtsoq gneisses of southern West Greenland: Early Archaean plutonic rocks of mixed crustal and mantle origin. Contributions to Mineralogy and Petrology 87, 24–34. Nutman, A.P., Mojzsis, S.J., Friend, C.R.L., 1997. Recognition of 3850 Ma waterlain sediments in West Greenland and their significance for the early Archaean Earth. Geochimica et Cosmochimica Acta 61, 2475–2484. Nutman, A.P., Friend, C.R.L., Baadsgaard, H., McGregor, V.R., 1989. Evolution and assembly of Archean gneiss terranes in the Godthåbsfjord region, southern West Greenland: Structural, metamorphic, and isotopic evidence. Tectonics 8, 573–589. Nutman, A.P., Chernyshev, I.V., Baadsgaard, H., 1990. The Archean Aldan shield of Siberia, USSR – The search for its oldest rocks and evidence for reworking in the MidProterozoic. In: Golver, J.E., Ho, S. (Eds.), Third International Archean Symposium, Extended Abstract Volume, Geoconferences WA Inc., Perth, Australia, p. 60–61. Nutman, A.P., Kinny, P.D., Compston, W., Williams, I.S., 1991. SHRIMP U-Pb zircon geochronology of the Narryer Gneiss Complex, Western Australia. Precambrian Research 52, 275–300. Nutman, A.P., Chernyshev. I.V., Baadsgaard, H., Smelov, A.P., 1992a. The Aldan shield of Siberia, USSR: the age of its Archean components and evidence for widespread reworking in the mid-Proterozoic. Precambrian Research 54, 195–210. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 dpg15 v.2007/06/04 Prn:5/06/2007; 11:41 F:dpg15ref.tex; VTEX/zk p. 111 aid: dpg15ref pii: S0166-2635(07)15094-5 docsubty: MISC References 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 111 Nutman, A.P., Chadwick, B., Ramakrishnan, M., Viswanatha, M.N., 1992b. U-Pb ages of detrital zircon in supracrustal rocks older than c. 3000 Ma in southern Peninsular India. Journal of the Geological Society of India 39, 367–374. Nutman, A.P., Bennett, V., Kinny, P.D., Price, R. 1993a. Large-scale crustal structure of the northwestern Yilgarn Craton, Western Australia: evidence from Nd isotopic data and zircon geochronology. Tectonics 12, 971–981. Nutman, A.P., Friend, C.R.L., Kinny, P.D., McGregor, V.R., 1993b. Anatomy of an Early Archean gneiss complex: 3900 to 3600 Ma crustal evolution in southern West Greenland. Geology 21, 415–418. Nutman, A.P., Friend, C.R.L., Bennett, V.C., 2001. Review of the oldest (4400–3600 Ma) geological and mineralogical record: Glimpses of the beginning. Episodes 24 (2), 93– 101. Nutman, A.P., Hagiya, H., Maruyama, S. 1995. SHRIMP U-Pb single zircon geochronology of a Proterozoic mafic dyke, Isukasia, southern West Greenland. Bulletin of the Geological Society Denmark 42, 17–22. Nutman, A.P., McGregor, V.R., Friend, C.R.L., Bennett, V.C., Kinny, P.D., 1996. The Itsaq gneiss complex of southern West Greenland; the world’s most extensive record of early crustal evolution. Precambrian Research 78, 1–39. Nutman, A.P., Bennett, V.C., Friend, C.R.L., Rosing, M.T., 1997. ∼3710 and 3790 Ma volcanic sequences in the Isua (Greenland) supracrustal belt; structural and Nd isotope implications. Chemical Geology 141, 271–287. Nutman, A.P., Mojzsis, S.J., Friend, C.R.L., 1997. Recognition of 3850 Ma waterlain sediments in West Greenland and their significance for the early Archaean Earth. Geochimica et Cosmochimica Acta 61, 2475–2484. Nutman, A.P., Bennett, V.C., Friend, C.R.L., Norman, M.D., 1999. Meta-igneous (nongneissic) tonalites and quartz-diorites from an extensive ca. 3800 Ma terrain south of the Isua supracrustal belt, southern West Greenland: constraints on early crust formation. Contributions to Mineralogy and Petrology 137 (4), 364–388. Nutman, A.P., Friend, C.R.L., Bennett, V.C., McGregor, V.R., 2000. The early Archaean Itsaq Gneiss Complex of southern West Greenland: The importance of field observations in interpreting dates and isotopic data constraining early terrestrial evolution. Geochemica et Cosmochimica Acta 64, 3035–3060. Nutman, A.P., Friend, C.R.L., Bennett, V.C., 2001. Review of the oldest (4400–3600 Ma) geological and mineralogical record: Glimpses of the beginning. Episodes 24, 93–101. Nutman, A.P., Friend, C.R.L., Bennett, V.C., 2002a. Evidence for 3650–3600 Ma assembly of the northern end of the Itsaq Gneiss complex, Greenland: implicationm for early Archean tectonics. Tectonics 21 (1), 10.1029/2000TC001203. Nutman, A.P., McGregor, V.R., Shiraishi, K., Friend, C.R.L., Bennett, V.C., Kinny, P.D., 2002b. 3850 Ma BIF and mafic inclusions in the early Archaean Itsaq Gneiss Complex around Akilia, southern West Greenland? The difficulties of precise dating of zirconfree protoliths in migmatites. Precambrian Research 117, 185–224. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 dpg15 v.2007/06/04 Prn:5/06/2007; 11:41 F:dpg15ref.tex; VTEX/zk p. 112 aid: dpg15ref pii: S0166-2635(07)15094-5 docsubty: MISC 112 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 References Nutman, A.P., Friend, C.R.L., Barker, S.S., McGregor, V.R., 2004, Inventory and assessment of Palaeoarchaean gneiss terrains and detrital zircons in southern West Greenland. Precambrian Research 135, 281–314. Nutman, A.P., Bennett, V.C., Friend, C.R.L., Horie, K., Hidaka, H., 2007. C. 3850 Ma tonalites in the Nuuk region, Greenland: Geochemistry and their reworking within an Eoarchaean gneiss complex. Contributions to Mineralogy and Petrology, in press. Nyquist, L.E., Takeda, H., Bansal, B.M., Shih, C-Y., Wiesmann, H., Wooden, J.L., 1986. Rb-Sr and Sm-Nd internal isochron ages of a subophitic basalt clast and a matrix sample from the Y 75011 eucrite. Journal of Geophysical Research 91, 8137–8150. Nyquist, L.E., Bansal, B.M., Wiesmann, H., Shih, C-Y., 1994. Neodymium, strontium and chromium isotopic studies of the LEW86010 and Angra dos Reis meteorites and the chronology of the angrite parent body. Meteoritics 29, 872–885. Nyquist, L.E., Bogard, D.D., Shih, C.Y., Greshake, A., Stoffler, D., Eugster, O., 2001a. Ages and geologic histories of Martian meteorites. Space Science Reviews 96 (1–4), 105–164. Nyquist, L.E., Reese, Y., Wiesmann, H., Shih, C-Y., Takeda, H., 2001b. Live 53 Mn and 26 Al in an unique cumulate eucrite with very calcic feldspar (An-98). Meteoritics and Planetary Science 36 (Supplement), A151–152. Nyquist, L.E., Shih, C-Y., Wiesmann, H., Mikouchi, T., 2003. 26 Al and 53 Mn in D’Orbigny and Sahara 99555 and the timescale for angrite magmatism. In: Lunar and Planetary Science Conference XXXIV, abstract 1388. Occhipinti, S.A., Reddy, S.M., 2004. Deformation in a complex crustal-scale shear zone: Errabiddy Shear Zone, Western Australia. In: Alsop, G.I., Holdsworth, R.E., McCaffrey, K.J.W., Hand, M. (Eds.), Flow Processes in Faults and Shear Zones. In: Geological Society of London, Special Publication 224, pp. 229–248. Occhipinti, S.A., Sheppard, S., Passchier, C., Tyler, I.M., Nelson, D.R., 2004. Palaeoproterozoic crustal accretion and collision in the southern Capricorn Orogen: the Glenburgh Orogeny. Precambrian Research 128, 237–255. O’Connor, J.T., 1965. A classification for quartz-rich igneous rocks based on feldspar ratios. In: U.S. Geological Survey, Professional Paper 525(B), pp. 79–84. Ohmoto, H., 1986. Stable isotope geochemistry of ore deposits. Reviews in Mineralogy 16, 491–559. Ohmoto, H., 1997. When did Earth’s atmosphere become oxic? Geochemical News 93, 12–27. Ohmoto, H., 1999. Redox state of the Archean atmosphere: Evidence from detrital heavy minerals in ca. 3250–2750 Ma sandstones from the Pilbara Craton, Australia: Comment. Geology 27, 1151–1152. Ohmoto, H., Felder, R.P., 1987. Bacterial activity in the warmer, sulfate-beating Archean oceans. Nature 328, 244–246. Ohmoto, H., Goldhaber, M.B., 1997. Sulfur and carbon isotopes. In: Barnes, H.L. (Ed.), Geochemistry of Hydrothermal Ore Deposits, 3rd ed. John Wiley & Sons, New York, pp. 517–611. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 dpg15 v.2007/06/04 Prn:5/06/2007; 11:41 F:dpg15ref.tex; VTEX/zk p. 113 aid: dpg15ref pii: S0166-2635(07)15094-5 docsubty: MISC References 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 113 Ohmoto, H., Kakegawa, T., Lowe, D.R., 1993. 3.4-billion-year-old biogenic pyrites from Barberton, South Africa – sulfur isotope evidence. Science 262, 555–557. O’Keefe, J.D., Aherns, T.J., 1982. Interaction of the Cretaceous/Tertiary extinction bolide with the atmosphere. In: Geological Society of America, Special Paper 190, pp. 103– 120. Oldow, J.S., Bally, A.W., Ave Lallemant, H.G., Leeman, W.P., 1989. Phanerozoic evolution of the North American Cordillera; United States and Canada. In: Bally, A.W., Palmer, A.R. (Eds.), The Geology of North America – An Overview. In: The Geology of North America, v. A. Geological Society of America, Boulder, CO, pp. 139–232. Olivarez, A.M., Owen, R.M., 1991. The europium anomaly of seawater: implications for fluvial versus hydrothermal REE inputs to the oceans. Chemical Geology 92, 317–328. Oliver, R.L., James, P.R., Collerson, K.D., Ryan, A.B., 1982. Precambrian geologic relationships in the Vestfold Hills, Antarctica. In: Craddock, C. (Ed.), Antarctic Geoscience. University of Wisconsin Press, Madison, pp. 435–444. O’Neil, J., Cloquet, C., Stevenson, R.K., Francis, D., 2006. Fe isotope systematics of banded iron formation from the 3.8 Ga Nuvvuagittuq greenstone belt, Northern Superior Pronvince, Canada. Geological Association of Canada, Abstracts, vol. 31. O’Neil, J.R., 1986. Theoretical and experimental aspects of isotope fractionation. In: Valley, J.W., Taylor, H.P., J.R. O’Neil (Eds.), Stable Isotope in High Temperature Geological Processes. In: Reviews in Mineralogy, vol. 16, pp. 1–40. O’Neill, C.J., Lenardic, A., O’Reilly, S.Y., Griffin, W.L., 2007. Dynamics of cratons in an evolving mantle. Lithos, in press. O’Neill, J.M., Lopez, D.A., 1985. Character and regional significance of Great Falls Tectonic Zone, east-central Idaho and west-central Montana. American Association of Petroleum Geologists Bulletin 69, 437–447. O’Nions, R.K., Evenson, N.M., Hamilton, P.J., 1979 Geochemical modelling of mantle differentiation and crustal growth. Journal of Geophysical Research 84, 6091–6101 O’Nions, R.K., Hamilton, P.J., Hooker, P.J., 1983. A Nd isotopic investigation of sediments related to crustal development in the British Isles. Earth and Planetary Science Letters 63, 229–240 Ono, S., Eigenbrode, J.L., Pavlov, A.A., Kharecha, P., Rumble, D., Kasting, J.F., Freeman, K.H., 2003. New insights into Archean sulfur cycle from mass-independent sulfur isotope records from the Hamersley Basin, Australia. Earth and Planetary Science Letters 213, 15–30. Ono, S., Wing, B.A., Johnston, D., Farquhar, J., Rumble, D., 2006. Mass-dependent fractionation of quadruple sulfur isotope system as a new tracer of sulfur biogeochemical cycles. Geochimica et Cosmochimica Acta 70, 2238–2252. Ono, S., Shanks, W.C., III, Rouxel, O.J., Rumble, D., 2007. S-33 constraints on the seawater sulfate contribution in modern seafloor hydrothermal vent sulfides. Geochimica et Cosmochimica Acta, in press. Ontario Geological Survey, 1992. Chart A – Archean tectonic assemblages, plutonic suites, and events in Ontario. Ontario Geological Survey, Map 2579. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 dpg15 v.2007/06/04 Prn:5/06/2007; 11:41 F:dpg15ref.tex; VTEX/zk p. 114 aid: dpg15ref pii: S0166-2635(07)15094-5 docsubty: MISC 114 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 References O’Reilly, S.Y., Griffin, W.L., 1985. A xenolith-derived geotherm for southeastern Australia and its geophysical implications. Tectonophysics 111, 41–63. O’Reilly, S.Y., Griffin, W.L., 1996. 4-D lithosphere mapping: methodology and examples. Tectonophysics 262, 3–18. O’Reilly, S.Y., Griffin, W.L., 2006. Imaging chemical and thermal heterogeneity in the subcontinental lithospheric mantle with garnets and xenoliths: Geophysical implications. Tectonophysics 416, 289–309. O’Reilly, S.Y., Griffin, W.L., Poudjom-Djomani Y.H., Morgan, P., 2001. Are lithospheres forever? Tracking changes in subcontinental lithopsheric mantle through time. GSA Today 11, 4–10. Orgel, L., 1998. The origin of life – a review of facts and speculations. Trends in Biochemical Sciences 23, 491–495. Oslund, R., 1997. Modelling of variations in Norwegian olivine deposits, causes of variation and estimation of key quality factors. Doktor Ingeniør thesis. Norwegian University of Science and Technology, Trondheim, 189 pp. Ota, T., Gladkochub, D.P., Sklyarov, E.V., Sklyarov, E.V., Mazukabzov, A.M., Watanabe, T., 2004. P-T history of garnet-websterites in the Sharyzhalgay complex, southwestern margin of the Siberian craton: evidence for Paleoproterozoic high-pressure metamorphism. Precambrian Research 132 (4), 327–348. Otto, A., Dziggel, A., Kisters, A.F.M., Meyer, F.M., 2005. Polyphase gold mineralization in the structurally condensed granitoid-greenstone contact at the New Consort Gold Mine. In: Geological Society of America Abstracts with Programs, Barberton Greenstone Belt, South Africa. Otto, A., Dziggel, A., Meyer, F.M., 2006. Geochemical signatures of gold mineralization at the New Consort gold mine, South Africa. Beihefte zum European Journal of Mineralogy 18, 99. Otto, A., Dziggel, A., Kisters, A.F.M., Meyer, F.M., 2007. The New Consort gold mine, South Africa: Orogenic gold mineralization in a condensed metamorphic profile. Mineralium Deposita, in review. Oversby, V.M., 1975. Lead isotope systematics and ages of the Archaean acid intrusives in the Kalgoorlie–Norseman area, Western Australia. Geochimica et Cosmochimica Acta 39, 1107–1125. Pace, N.R., 1997. A molecular view of microbial diversity and the biosphere. Science 276, 734–740. Pace, N.R., 2001. The universal nature of biochemistry. Proceedings of the National Academy of Sciences of the United States of America 98, 805–808. Page, F.Z., DeAngelis, M.T., Fu, B., Kita, N.T., Lancaster, P.J., Valley, J.W., 2006. Slow oxygen diffusion in zircon. Geochimica et Cosmochimica Acta 70 (18), Suppl. 1, A467. Pahlevan, K., Stevenson, D.J., 2005. The oxygen isotope similarity between the Earth and Moon – source region or formation process? Lunar and Planetary Science XXXVI, 2382 (abstract). 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 dpg15 v.2007/06/04 Prn:5/06/2007; 11:41 F:dpg15ref.tex; VTEX/zk p. 115 aid: dpg15ref pii: S0166-2635(07)15094-5 docsubty: MISC References 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 115 Palme, H., Jones, A., 2003. Solar System abundances of the elements. In: Davis, A.M. (Ed.), Meteorites, Comets and Planets. In: Treatise on Geochemistry, vol. 1. ElsevierPergamon, Oxford, pp. 41–61. Palmer, M.R., Edmond, J.M., 1989. Strontium isotope budget of the modern ocean. Earth and Planetary Science Letters 92, 11–26. Papineau, D., Mojzsis, S.J., 2006. Mass-independent fractionation of sulfur isotopes in sulfides from the pre-3770 Ma Isua Supracrustal Belt, West Greenland. Geobiology 4, 227–238. Papineau, D., Mojzsis, S.J., Coath, C.D., Karhu, J.A., McKeegan, K.D., 2005. Multiple sulfur isotopes of sulfides from sediments in the aftermath of Paleoproterozoic glaciations. Geochimica et Cosmochimica Acta 69, 5033–5060. Papineau, D., Mojzsis, S.J., Schmitt, A.K., 2007. Multiple sulfur isotopes from Paleoproterozoic Huronian interglacial sediments and the rise of atmospheric oxygen. Earth and Planetary Science Letters, in press. Paris, I.A., 1985. The geology of the farms Josefsdal, Dunbar and part of Diepgezet in the Barberton greenstone belt. Ph.D. thesis. University of the Witwatersrand, Johannesburg, 239 pp. Paris, I., Stanistreet, I.G., Hughes, M.J., 1985. Cherts of the Barberton greenstone belt interpreted as products of submarine exhalative activity. Journal of Geology 93, 111– 129. Park, J.K., Buchan, K.L., Harlan, S.S., 1995. A proposed giant radiating dyke swarm fragmented by the separation of Laurentia and Australia based on palaeomagnetism of ca. 780 Ma mafic intrusions in western North America. Earth and Planetary Science Letters 132, 129–139. Park, R.G., 1997. Early Precambrian plate tectonics. South African Journal of Geology 100, 23–35. Parks, J., Lin, S., Davis, D.W., Corkery, M.T., 2006. Geochronological constrains on the history of the Island Lake greenstone belt and the relationship of terranes in the northwestern Superior Province. Canadian Journal of Earth Sciences 43, 789–803. Parman, S., Dann, J.C., Grove, T.L., de Wit, M.J., 1997. Emplacement conditions of komatiite magmas from the 3.49 Ga Komati Formation, Barberton Greenstone Belt, South Africa. Earth and Planetary Science Letters 150, 303–323. Parman, S.W., Grove, T.L., Dann, J.C., 2001. The production of Barberton komatiites in an Archean subduction zone. Geophysical Letter 28, 303–323. Parman, S.W., Grove, T.L., Dann, J.C., de Wit, M.J., 2004. A Subduction origin for komatiites and cratonic lithospheric mantle. South African Journal of Geology 107, 107–118. Parman, S.W., Grove, T.L., 2004. Petrology and geochemistry of Barberton Komatiites and basaltic komatiites: Evidence of Archean fore-arc magmatism. In: Kusky, T.M. (Ed.), Precambrian Ophiolites and Related Rocks. In: Developments in Precambrian Geology, vol. 13. Elsevier, Amsterdam, pp. 539–565. Pasteris, J.D., Wopencka, B., 2002. Images of Earth’s earliest fossils? Nature 420, 476– 477. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 dpg15 v.2007/06/04 Prn:5/06/2007; 11:41 F:dpg15ref.tex; VTEX/zk p. 116 aid: dpg15ref pii: S0166-2635(07)15094-5 docsubty: MISC 116 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 References Pasteris, J.D., Wopencka, B., 2003. Necessary, but not sufficient: Raman identification of disordered carbon as a signature of ancient life. Astrobiology 3, 727–738. Patchett, P.J., 1983. Importance of the Lu-Hf isotopic system in studies of planetary chronology and chemical evolution. Geochimica et Cosmochimica Acta 47, 81–91. Patchett, P.J., Kouvo, O., Hedge, C.E., Tatsumoto, M., 1981. Evolution of continental crust and mantle heterogeneity: evidence from Hf isotopes. Contributions to Mineralogy and Petrology 78, 279–297. Patiño-Douce, A.E., Beard, J.S., 1995. Dehydration-melting of Bt gneiss and Qtz amphibolite from 3 to 15 kB. Journal of Petrology 36, 707–738. Patiño-Douce, A E., 2005. Vapor-absent melting of tonalite at 15–32 kbar. Journal of Petrology 46 (2), 275–290. Patterson, C., 1956. Age of meteorites and the earth. Geochimica et Cosmochimica Acta 10, 230–237. Pavlov, A.A., Kasting, J.F., 2002. Mass-independent fractionation of sulfur isotopes in Archean sediments: Strong evidence for an anoxic Archean atmosphere. Astrobiology 2, 27–41. Pavlov, A.A., Pavlov, A.K., Kasting, J.F., 1999. Irradiated interplanetary dust particles as a possible solution for the deuterium/hydrogen paradox of Earth’s oceans. Journal of Geophysical Research – Planets 104 (E12), 30725–30728. Pavlov, A.A., Kasting, J.F., Eigenbrode, J.L., Freeman, K.H., 2001a. Organic haze in Earth’s early atmosphere: Source of low-C-13 in Late Archean kerogens? Geology 29, 1003–1006. Pavlov, A.A., Kasting, J.F., Brown, L.L., 2001b. UV-shielding of NH3 and O2 by organic hazes in the Archean atmosphere. Journal of Geophysical Research 106, 23,267– 23,287. Pavoni, N., 1997. Geotectonic bipolarity – evidence of bicellular convection in the Earth’s mantle. South African Journal of Geology 100, 291–299. Pawley, M.J., Collins, W.J., 2002. The development of contrasting structures during the cooling and crystallisation of a syn-kinematic pluton. Journal of Structural Geology 24, 469–483. Pawley, M.J., Van Kranendonk, M.J., Collins, W.J., 2004. Interplay between magmatism and deformation during the evolution of the domical Archaean Shaw Granitoid Complex, Pilbara Craton, Western Australia. Precambrian Research 131, 213–230. Pearce, J.A., 1983. The role of sub-continental lithosphere in magma genesis at destructive plate margins. In: Hawkesworth, C.J., Norry, M.J. (Eds.), Continental Basalts and Mantle Xenoliths. Shiva, Nantwich, pp. 230–249. Pearce, J.A., Parkinson, I.A., 1993. Trace elements models for mantle melting: application to volcanic arc petrogenesis. In: Prichard, H., Alabaster, T., Harris, N.B.W., Neary, C. (Eds.), Magmatic Processes and Plate Tectonics. In: Geological Society of London, Special Publication 76, pp. 373–403. Pearce, J.A., Harris N.B.W., Tindle A.G., 1984. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. Journal of Petrology 25, 956- 983. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 dpg15 v.2007/06/04 Prn:5/06/2007; 11:41 F:dpg15ref.tex; VTEX/zk p. 117 aid: dpg15ref pii: S0166-2635(07)15094-5 docsubty: MISC References 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 117 Pearce, J.A., Stern, R.J., Bloomer, S.H., Fryer, P., 2005. Geochemical mapping of the Mariana arc-basin system: Implications for the nature and distribution of subduction components. Geochemistry Geophysics Geosystems 6 (7), doi:10.1029/2004GC000895. Pearson, D.G., 1999. The age of continental roots. Lithos 48, 171–194. Pearson, D.G., Canil, D., Shirey, S.B., 2004. Mantle samples included in volcanic rocks: xenoliths and diamonds. In: Holland, H.D., Turekian, K.K. (Eds.), Treatise on Geochemistry, vol. 2. Elsevier, Amsterdam, pp. 171–275. Pearson, N.J., Alard, O., Griffin, W.L., Jackson, S.E., O’Reilly, S.Y., 2002. In situ measurement of Re-Os isotopes in mantle sulfides by Laser Ablation Multi-Collector Inductively-Coupled Mass Spectrometry: analytical methods and preliminary results. Geochimica et Cosmochimica Acta 66, 1037–1050. Peccerillo, A., Taylor, S.R., 1976. Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area, Northern Turkey. Contribution to Mineralogy and Petrology 58, 63–81. Peck, W.H., Valley, J.W., Wilde, S.A., Graham, C.M., 2001. Oxygen isotope ratios and rare earth elements in 3.3 to 4.4 Ga zircons: Ion microprobe evidence for high δ 18 O continental crust and oceans in the Early Archean. Geochimica et Cosmochimica Acta 65, 4215–4229. Peck W.H., Valley, J.W., Graham, C.M., 2003. Slow oxygen diffusion rates in igneous zircons from metamorphic rocks. American Mineralogist 88, 1003–1014. Pellas, P., Fieni, C., Trieloff, M., Jessberger, E.K., 1997. The cooling history of the Acapulco meteorite as recorded by the 244Pu and 40Ar-39Ar chronometers. Geochimica et Cosmochimica Acta 61, 3477–3501. Peltonen, P., Kontinen, A., 2004. The Jormua Ophiolite: A mafic-ultramafic complex from an ancient ocean-continent transition zone. In: Kusky, T.M. (Ed.), Precambrian Ophiolites and Related Rocks. In: Developments in Precambrian Geology, vol. 13, pp. 35–72. Peng, P., Zhai, M.G., Zhang, H.F., Guo, J.H., 2005. Geochronological constraints on the Palaeoproterozoic evolution of the NCC: SHRIMP zircon ages of different types of mafic dikes. International Geological Review 47, 492–508. Percival, J.A., 1994. Archean high-grade metamorphism. In: Condie, K.C. (Ed.), Archean Crustal Evolution. In: Developments in Precambrian Geology, vol. 11. Elsevier, Amsterdam, pp. 315–355. Percival, J.A., Card, K.D., 1992. Geology of the Vizien greenstone belt. Geological Survey of Canada, Open file 2495, scale 1:50,000. Percival, J., Card, K.D., 1994. Geology, Lac Minto – Rivière aux Feuilles. Geological Survey of Canada, Map 1854A (1:500,000). Percival, J.A., Helmstaedt, H., 2004. Insights on Archean continent-ocean assembly, western Superior Province, from new structural, geochemical, and geochronological observations: introduction and summary. Precambrian Research 132, 209–212. Percival, J.A., Mortensen, J.K., 2002. Water-deficient calc-alkaline plutonic rocks of Northeastern Superior Province, Canada: significance of charnockitic magmatism. Journal of Petrology 43, 1617–1650. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 dpg15 v.2007/06/04 Prn:5/06/2007; 11:41 F:dpg15ref.tex; VTEX/zk p. 118 aid: dpg15ref pii: S0166-2635(07)15094-5 docsubty: MISC 118 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 References Percival, J.A., Skulski, T., 2000. Tectonothermal evolution of the northern Minto Block, Superior Province, Québec, Canada. Canadian Mineralogist 38, 345–378. Percival, J.A., Whalen, J.B., 2000. Observations on the North Caribou terrane – Uchi subprovince interface in western Ontario and eastern Manitoba. In: Geological Survey of Canada, Current Research 2000-C15, 8 pp. Percival, J.A., Green, A.G., Milkereit, B., Cook, F.A., Geis, W., West, G.F., 1989. Seismic reflection profiles across deep continental crust exposed in the Kapuskasing uplift structure. Nature 342, 416–419. Percival, J.A., Mortensen, J.K., Stern, R.A., Card, K.D., Bégin, N.J., 1992. Giant granulite terranes of northeastern Superior Province: the Ashuanipi complex and Minto block. Canadian Journal of Earth Sciences 29, 2287–2308. Percival, J.A., Stern, R.A., Mortensen, J.K., Card, K.D., Bégin, N.J., 1994. Minto block Superior Province: missing link in deciphering tectonic assembly of the craton at 2.7 Ga. Geology 22, 839–842. Percival, J.A., Skulski, T., Card, K.D., 1995. Geology, Rivière Kogaluc – Lac Qalluviartuuq region (parts of 34J and 34O). Geological Survey of Canada, Open file 3112, scale 1:250,000. Percival, J., Skulski, T., Nadeau, L., 1996. Geology, Lac Couture, Quebec. Geological Survey of Canada, Open file 3315. Percival, J., Skulski, T., Nadeau, L., 1997a. Reconnaissance geology of the Pelican - Nantais belt, northeastern Superior province, Quebec. Geological Survey of Canada, Open file 3525. Percival, J., Skulski, T., Nadeau, L., 1997b. Granite-greenstone terranes of the northern Minto Block, northeastern Québec: Pélican-Nantais, Faribault-Leridon and Duquet belts. In: Geological Survey of Canada, Current Research, 1997-C, pp. 211–221. Percival, J.A., Stern, R.A., Skulski, T., 2001. Crustal growth through successive arc magmatism: Reconnaissance U-Pb SHRIMP data from the northeastern Superior Province, Canada. Precambrian Research 109, 203–238. Percival, J.A., Bailes, A.H., McNicoll, V., 2002. Mesoarchean breakup, Neoarchean accretion in the western Superior craton, Lake Winnipeg Canada. Geological Association of Canada Field Trip B3 Guidebook, 42 pp. Percival, J.A., Bleeker, W., Cook, F.A., Rivers, T., Ross, G., van Staal, C., 2004a. PanLITHOPROBE workshop IV: Intraorogen correlations and comparative orogenic anatomy. Geoscience Canada 31, 23–39. Percival, J.A., McNicoll, V., Brown, J.L., Whalen, J.B., 2004b. Convergent margin tectonics, central Wabigoon subprovince, Superior Province, Canada. Precambrian Research 132, 213–244. Percival, J.A., McNicoll, V., Bailes, A.H., 2006a. Strike-slip juxtaposition of ca. 2.72 Ga juvenile arc and >2.98 Ga continent margin sequences and its implications for Archean terrane accretion, western Superior Province, Canada. Canadian Journal of Earth Sciences 43, 895–927. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 dpg15 v.2007/06/04 Prn:5/06/2007; 11:41 F:dpg15ref.tex; VTEX/zk p. 119 aid: dpg15ref pii: S0166-2635(07)15094-5 docsubty: MISC References 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 119 Percival, J.A., Sanborn-Barrie, M., Skulski, T., Stott, G.M., Helmstaedt, H., White, D.J., 2006b. Tectonic evolution of the western Superior Province from NATMAP and Lithoprobe studies. Canadian Journal of Earth Sciences 43, 1085–1117. Percival, J.A., 2007. Geology and metallogeny of the Superior Province. In Goodfellow, W.D. (Ed.), Mineral Resources of Canada: A Synthesis of Major Deposit-types, District Metallogeny, the Evolution of Geological Provinces, and Exploration Methods. In: Geological Association of Canada, Special Paper XX, in press. Peredery, W.V., Inco Geological Staff, 1982. Geology and nickel sulphide deposits of the Thompson Belt, Manitoba. In: Hutchinson, R.W., Spence, C.D., Franklin, J.M. (Eds.), Precambrian Sulphide Deposits. In: Geological Association of Canada, Special Paper 25, pp. 165–209. Perfit, M.R., Davidson, J.P., 2000. Plate tectonics and volcanism. In: Sigurdson, H., et al (Eds.), Encyclopedia of Volcanoes. Academic Press, San Diego, CA, pp. 89–113 Pering, C.S., Barnes, S.J., Hill, R.E.T., 1995. The physical volcanology of Archean komatiite sequences from Forrestania, Southern Cross Province, Western Australia. Lithos 34, 189–207. Perry, E.C., 1967. The oxygen isotope chemistry of ancient cherts. Earth and Planetary Science Letters 3, 62–66. Perry, E.C., Ahmad, S.N., Swulius, T.M., 1978. The oxygen isotope composition of 3800 m.y. old metamorphosed chert and iron formation from Isukasia, Greenland. Journal of Geology 86, 223–239. Perry, E.C., Lefticariu, L., 2003. Formation and geochemistry of Precambrian cherts. In: Mackenzie, F.T. (Ed.), Sediments, Diagenesis, and Sedimentary Rocks. In: Treatise on Geochemistry, vol. 7. Elsevier, Amsterdam, pp. 99–113. Peterman, Z.E., 1981. Dating of Archean basement in northeastern Wyoming and southern Montana. Bulletin of Geological Society of America 92 (1), 139–146. Peterman, Z.E., Hildreth, R.A., 1978. Reconnaissance geology and geochronology of the Precambrian of the Granite Mountains, Wyoming. U.S. Geological Survey, Professional Paper 1055, 22 pp. Peterman, Z.E., Zartman, R.E., Sims, P.K., 1980. Tonalitic gneiss of early Archean age from northern Michigan. In: Geological Society of America, Special Paper 182, pp. 125–134. Peterman, Z.E., Zartman, R.E., Sims, P.K., 1986. A protracted Archean history in the Watersmeet gneiss dome. In: U.S. Geological Survey, Bulletin 1655, pp. 51–64. Petford, N., Atherton, M.P., 1996. Na-rich partial melts from newly underplated basaltic crust: the Cordillera Blanca batholith, Peru. Journal of Petrology 37 (6), 1491–1521. Petrov, A.F., Gusev, G.S., Tretyakov, F.F., Oksman, V.S., 1985. The Archean (Aldanian) and early Proterosoic (Karelian) megacomplexes. In: Kovalsky, V.V. (Ed.), Structure and Evolution of the Earth’s Crust in Yakutia. Nauka, Moscow, pp. 9–39 (in Russian). Petrova, Z.I., Levitsky, V.I., 1984. Petrology and Geochemistry of Cisbaikal Granulite Complexes. Nauka, Moscow, 201 pp. (in Russian). Pettengill, G.H., Ford, P.G., Wilt, R.J., 1992. Venus surface radiothermal emission as observed by Magellan. Journal of Geophysical Research 97, 13,091-13,102 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 dpg15 v.2007/06/04 Prn:5/06/2007; 11:41 F:dpg15ref.tex; VTEX/zk p. 120 aid: dpg15ref pii: S0166-2635(07)15094-5 docsubty: MISC 120 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 References Peucat, J.J., Capdevila, R., Drareni, A., Choukroune, P., Fanning, C.M., BernardGriffiths, J., Fourcade, S., 1996. Major and trace element geochemistry and isotope (Sr, Nd, Pb, O) systematics of an Archaean basement involved in a 2.0 Ga very high-temperature (1000 ◦ C) metamorphic event in Ouzzal Massif, Hoggar, Algeria. Journal of Metamorphic Geology 14 (6), 667–692. Peucat, J.J., Ménot, R.P., Monnier, O., Fanning, C.M., 1999. The Terre Adélie basement in the East Antarctica Shield: geological and isotopic evidence for a major 1.7 Ga thermal event; comparison with the Gawler Craton in South Australia. Precambrian Research 94, 205–224. Peucat, J.J., Drareni, A., Latouche, L., Deloule, E., Vidal, P., 2003. U-Pb zircon (TIMS and SIMS) and Sm-Nd whole-rock geochronology of the Gour Oumelalen granulitic basement, Hoggar massif, Tuareg shield, Algeria. Journal of African Earth Science 37, 229–239. Peucker-Ehrenbrink, B., Miller, M.W., 2006. Marine 87 Sr/86 Sr record mirros the evolving upper continental crust. Geochimica et Cosmochimica Acta 70 (18), A487. Pflug, H.D., 1965. Structured organic remains from the Fig Tree Series of the Barberton Mountain Land. Economic Geology Research Unit, Information Circular, 32, University of the Witwatersrand, Johannesburg, 36 pp. Pflug, H.D., 2001. Earliest organic evolution. Essay to the memory of Bartholomew Nagy. Precambrian Research 106, 79–91. Pflug, H.D., Jaeschke-Boyer, H., 1979. Combined structural and chemical analysis of 3800-Myr-old microfossils. Nature 280, 483–486. Phillips, R.J., 1993. The age spectrum of the Venusian surface. Eos 74 (16) (Supplement), 187. Phillips, R.J., Bullock, M.A., Hauck, S.A., II, 2001. Climate and interior coupled evolution on Venus. Geophysical Research Letters 28, 1779–1782. Phillips, R.J., Grimm, R.E., Malin, M.C., 1991. Hot-spot evolution and the global tectonics of Venus. Science 252, 651–658. Phillips, R.J., Hansen, V.L., 1994. Tectonic and magmatic evolution of Venus. Annual Reviews of Earth and Planetary Sciences 22, 597–654. Phillips, R.J., Hansen, V.L., 1998. Geological evolution of Venus: Rises, plains, plumes and plateaus. Science 279, 1492–1497. Phillips, R.J., Izenberg, N.R., 1995. Ejecta correlations with spatial crater density and Venus resurfacing history. Geophysical Research Letters 22, 1517–1520. Phillips, R.J., Johnson, C.J., Mackwell, S.L., Morgan, P., Sandwell, D.T., Zuber, M.T., 1997. Lithospheric mechanics and dynamics of Venus. In: Bouger, S.W., Hunten, D.M., Phillips, R.J. (Eds.), Venus II. University of Arizona Press, Tucson, AZ, pp. 1163–1204. Phillips, R.J., Kaula, W.M., McGill, G.E., Malin, M.C., 1981. Tectonics and evolution of Venus. Science 212, 879–887. Phillips, R.J., Raubertas, R.F., Arvidson, R.E., Sarkar, I.C., Herrick, R.R., Izenberg, N., Grimm, R.E., 1992. Impact crater distribution and the resurfacing history of Venus. Journal of Geophysical Research 97, 15923–15948. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 dpg15 v.2007/06/04 Prn:5/06/2007; 11:41 F:dpg15ref.tex; VTEX/zk p. 121 aid: dpg15ref pii: S0166-2635(07)15094-5 docsubty: MISC References 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 121 Pidgeon, R.T., 1978. 3450 M.y. old volcanics in the Archaean layered greenstone succession of the Pilbara Block, Western Australia. Earth and Planetary Science Letters 37, 423–428. Pidgeon, R.T., 1992. Recrystallisation of oscillatory zoned zircon: some geochronological and petrological implications. Contributions to Mineralogy and Petrology 110, 463– 472. Pidgeon, R.T., Hallberg, J.A., 2000. Age relationships in supracrustal sequences in the northern part of the Murchison Terrane, Archaean Yilgarn Craton, Western Australia: a combined field and zircon U-Pb study. Australian Journal of Earth Sciences 47, 153– 165. Pidgeon, R.T., Nemchin, A.A., 2006. High abundance of early Archaean grains and the age distribution of detrital zircons in a sillimanite-bearing quartzite from Mt Narryer, Western Australia. Precambrian Research 150, 201–220. Pidgeon, R.T., Wilde, S.A., 1990. The distribution of 3.0 Ga and 2.7 Ga volcanic episodes in the Yilgarn Craton of Western Australia. Precambrian Research 48, 309–325. Pidgeon, R.T., Wilde, S.A., 1998. The interpretation of complex zircon U-Pb systems in Archaean granitoids and gneisses from the Jack Hills, Narryer Gneiss Terrane, Western Australia. Precambrian Research 91, 309–332. Pidgeon, R.T., Compston, W., Wilde, S.A., Baxter, J.L., Collins, L.B., 1986. Archaean evolution of the Jack Hills Metsedimentary Belt, Yilgarn Block, Western Australia. Terra Cognita 6, 146. Pidgeon, R.T., Wilde, S.A., Compston, W., 1990. U-Pb ages of zircons from conglomerate clasts in the Jack Hills Metasedimentary Belt, Yilgarn Craton, Western Australia. In: 7th International ICOG Conference, Abstracts, p. 78. Pirajno, F., 2000. Ore Deposits and Mantle Plumes. Kluwer Academic Publishers, 507 pp. Pirajno, F., Van Kranendonk, M.J., 2005. A review of hydrothermal processes and systems on earth and implications for Martian analogues. Australian Journal of Earth Sciences 52, 329–351. Pirajno, F., Chen, Y.-J., Qi, J.-P., Long, X., 2006. Mesozoic-Cenozoic intraplate tectonics and magmatism in E and NE China. In: IAVCEI 2006. International Conference on Continental Volcanism, Abstracts and Programs, Guangzhou, China, p. 184. Pirajno, F., Mao, J.-W., Zhang, Z.-C., Zhang, Z.-H., Yang, F.-Q., Chai, F.-M., in press. The association of anorogenic mafic-ultramafic intrusions and A-type magmatism in the Tian Shan and Altay orogens, NW China: implications for geodynamic evolution and potential for the discovery of new ore deposits. Asian Journal of Earth Sciences, Special Issue. Plank, T., 2005. Constraints from Thorium/Lanthanum on Sediment Recycling at Subduction Zones and the Evolution of Continents. Journal of Petrology 46, 921–944 Plant, J.A., Kinniburgh, D.G., Smedley, F.M., Fordyce, F.M., Klinck, B.A., 2003. Arsenic and selenium. In: Treatise on Geochemistry, vol. 9. Elsevier, Amsterdam, pp. 17–66. Platt, J.P., England, P.C., 1993. Convective removal of lithosphere beneath mountain belts: thermal and mechanical consequences. American Journal of Science 293, 307–336. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 dpg15 v.2007/06/04 Prn:5/06/2007; 11:41 F:dpg15ref.tex; VTEX/zk p. 122 aid: dpg15ref pii: S0166-2635(07)15094-5 docsubty: MISC 122 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 References Plaut, J.J., 1993. Stereo imaging. In: Ford, J.P., et al. (Eds.), Guide to Magellan Image Interpretation. NASA-JPL Publication 93-24, pp. 33–41. Playford, P.E., Cockbain, A.E., 1976. Modern algal stromatolites at Hamelin Pool, a hypersaline barred basin in Shark Bay, Western Australia. In: Walter, M.R. (Ed.), Stromatolites. In: Developments in Sedimentology, vol. 20. Elsevier, Amsterdam, pp. 389–411. Plumb, K.A., 1991. New Precambrian timescale. Episodes 14, 139–140. Plumb, K.A., James, H.L., 1986. Subdivision of Precambrian time: Recommendations and suggestions by the commission on Precambrian stratigraphy. Precambrian Research 32, 65–92. Plyusnina, L.P., 1982. Geothermometry and geobarometry of plagioclase-hornblende bearing assemblages. Contributions to Mineralogy and Petrology 80, 140–146. Podmore, D.C., 1990. Shay Gap-Sunrise Hill and Nimingarra iron ore deposits. In: Australasian Institute of Mining and Metallurgy, Monograph 14, pp. 137–140. Podosek, F.A., Cassen, P., 1994. Theoretical, observational, and isotopic estimates of the lifetime of the solar nebula. Meteoritics 29, 6–25. Poitrasson, F., Halliday, A.N., Lee, D.C., Levasseur, S., Teutsch, N., 2004. Iron isotope differences between Earth, Moon, Mars and Vesta as possible records of contrasted accretion mechanisms. Earth and Planetary Science Letters 223, 253–266. Polat, A., Frei, R., 2005. The origin of early Archean banded iron formations and of continental crust, Isua, southern West Greenland. Precambrian Research 138, 151–175. Polat, A., Hofmann, A.W., 2003. Alteration and geochemical patterns in the 3.7–3.8 Ga Isua greenstone belt, West Greenland. Precambrian Research 126, 197–218. Polat, A., Kerrich, R., 2004. Precambrian arc associations: Boninites, adakites, magnesian andesites, and Nb-enriched basalts. In: Kusky, T.M. (Ed.), Precambrian Ophiolites and Related Rocks. In: Developments in Precambrian Geology, vol. 13. Elsevier, Amsterdam, pp. 567–598. Polat, A., Kerrich, R., Wyman, D.A., 1998. The late Archean Schreiber-Hemlo ad White River-Dayohessarah greenstone belts, Superior Province: collages of oceanic plateaus and subduction-accretion complexes. Tectonophysics 289, 295–326. Polat, A., Hofmann, A.W., Rosing, M.T., 2002. Boninite-like volcanic rocks in the 3.7– 3.8 Ga Isua greenstone belt, West Greenland: geochemical evidence for intra-oceanic subduction zone processes in the early Earth. Chemical Geology 184, 231–254. Polat, A., Li, J.H., Fryer, B., Kusky, T., Gagnon, J., Zhang, S., 2006. Geochemical characteristics of the Neoarchean (2800–2700 Ma) Taishan greenstone belt, North China Craton: Evidence for plume–craton interaction. Chemical Geology 230, 60–87. Poller, U., Gladkochub, D., Donskaya, T., Mazukabzov, A., Sklyarov, E., Todt, W., 2004. Timing of Early Proterozoic magmatism along the Southern margin of the Siberian Craton (Kitoy area). Transactions Royal Society Edinburg, Earth Sciences 136 (95), 353–368. Poller, U., Gladkochub, D., Donskaya, T., Mazukabzov, A., Sklyarov, E., Todt, W., 2005. Multistage magmatic and metamorphic evolution in the Southern Siberian craton: Archean and Paleoproterozoic zircon ages revealed by SHRIMP and TIMS. Precambrian Research 136, 353–368. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 dpg15 v.2007/06/04 Prn:5/06/2007; 11:41 F:dpg15ref.tex; VTEX/zk p. 123 aid: dpg15ref pii: S0166-2635(07)15094-5 docsubty: MISC References 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 123 Pope, M.C., Grotzinger, J.P., 2000. Controls on fabric development and morphology of tufa and stromatolites, uppermost Pethei Group (1.8 Ga), Great Slave Lake, northwest Canada. In: Grotzinger, J., James, N. (Eds.), SEPM Special Publication – Carbonate Sedimentation and Diagenesis in the Evolving Precambrian World, pp. 103–122. Popov, N.V., Smelov, A.P., Dobretsov, H.N., Bogomolova, L., Kartavchenko, V.G., 1990. Olondo Greenstone Belt. Academy of Sciences Publishers, Yakutsk, 170 pp. (in Russian). Popov, N.V., Zedgenizov, A.N., Berezkin, V.I., 1989. Petrochemistry of the Archean Metavolcanics in the Sunnagin Block of the Aldan Massif. Nauka, Novosibirsk, 78 pp. (in Russian). Post, N.J., Hensen, B.J., Kinny, P.D., 1997. Two metamorphic episodes during a 1340– 1180 Ma convergent tectonic event in the Windmill Islands, East Antarctica. In: C. Ricci, A. (Ed.), The Antarctic Region: Geological Evolution and Processes. Terra Antartica Publication, Siena, pp. 157–161. Postelnikov, E.S., Museibov, N.I., 1992. Structure of the Baikal orogeny basement. Geotectonics 6, 37–51. Potrel, A., Peucat, J.J., Fanning, C.M., Auvray, B., Burg, J.P., Caruba, C., 1996. 3.5 Ga old terranes in the Est African craton, Mauritania. Journal of the Geological Society London 153, 507–510. Potter, J., Rankin, A.H., Treloar, P.J., 2004. Abiogenic Fischer-Tropsch synthesis of hydrocarbons in alkaline igneous rocks; fluid inclusion, textural and isotopic evidence from the Lovozero complex, N.W. Russia. Lithos 75, 311–330. Poudjom Djomani, Y.H., O’Reilly, S.Y., Griffin, W.L., Morgan, P., 2001. The density structure of subcontinental lithosphere: Constraints on delamination models. Earth and Planetary Science Letters 184, 605–621. Poujol, M., Anhaeusser, C.R., 2001. The Johannesburg Dome, South Africa: new single zircon U-Pb isotopic evidence for early Archaean granite-greenstone development within the Central Kaapvaal Craton. Precambrian Research 108, 139–157. Poujol, M., Robb, L.J., 1999. New U-Pb zircon ages on gneisses and pegmatite from South of the Murchison greenstone belt, South Africa. South African Journal of Geology 102 (2), 93–97. Poujol, M., Robb, L.J., Respaut, J.P., Anhaeusser, C.R., 1996. 3.07–2.97 Ga Greenstone Belt formation in the northeastern Kaapvaal Craton: Implications for the origin of the Witwatersrand Basin. Economic Geology 91 (8), 1455–1461. Poujol, M., Robb, L.J., Anhaeusser, C.R., Gericke, B., 2003. A review of the geochronological constraints on the evolution of the Kaapvaal Craton, South Africa. Precambrian Research 127, 181–213. Poulsen, K.H., Borraidaile, G.H., Kehlenbeck, M.M., 1980. An inverted Archean succession at Rainy Lake, Ontario. Canadian Journal of Earth Sciences 17, 1358–1369. Powell, R., Will, T.M., Phillips, G.N., 1991. Metamorphism in Archean greenstone belts: Calculated fluid compositions and implications for gold mineralization. Journal of Metamorphic Geology 9, 141–150. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 dpg15 v.2007/06/04 Prn:5/06/2007; 11:41 F:dpg15ref.tex; VTEX/zk p. 124 aid: dpg15ref pii: S0166-2635(07)15094-5 docsubty: MISC 124 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 References Pravdivtseva, O.A., Hohenberg, C.M., 1999. Observations of mineral specific I-Xe ages in ordinary chondrites. Lunar and Planetary Science XXX, 2047. Premo, W.R., Tatsumoto, M., Misawa, K., Nakamura, N., Kita, N.I., 1999. Pb-isotopic systematics of lunar highland rocks (>3.9 Ga): Constraints on early lunar evolution. In: Snyder, G.A., Neal, C.R., Ernst, W.G. (Eds.), Planetary Petrology and Geochemistry. GSA, Bellwether Publishing Ltd. Price, M., Suppe, J., 1994. Mean age of rifting and volcanism on Venus deduced from impact crater densities. Nature 372, 756–759. Price, M.H., Watson, G., Brankman, C., 1996. Dating volcanism and rifting on Venus using impact crater densities. Journal of Geophysical Research 101, 4637–4671. Price, N.J., 2001. Major Impacts and Plate Tectonics: A Model for the Phanerozoic Evolution of the Earth’s Lithosphere. Routledge, London, 354 pp. Price, R.E., Pichler, T., 2006. Abundance and mineralogical association of arsenic in the Suwannee Limestone (Florida): Implications for arsenic release during water-rock interaction. Chemical Geology 228, 44–56. Prinzhofer, A., Papanastassiou, D.A., Wasserberg, G.J., 1992. Samarium-neodymium evolution of meteorites. Geochimica et Cosmochimica Acta 56, 797–815. Prinz, M., Nehru, C.E., Delaney, J.S., Weisberg, M., 1983. Silicates in IAB and IIICD irons, winonaites, lodranites and Brachina: a primitive and modified-primitive group. Lunar and Planetary Science XIV, 616–617. Puchtel, I.S., 1992. Mafic-ultramafic rocks and crust-mantle evolution in the Early Precambrian: the Olekma gneiss-greenstone area as ana example. Publ. Inst. Petrography, Mineralogy and Ore Deposits of Russia, Russian Academy of Sciences, Moscow, 20 pp. (in Russian). Puchtel, I.S., Zhuravlev, D.Z., 1989. Petrology and geochemistry of early and later Archean komatiites from Olekma granite-greenstone terrane. In: 28th I.G.C., Abstracts, vol. 2. Washington, DC, pp. 643–644. Puchtel, I.S., Zhuravlev, D.Z., Samsonov, A.V., Arndt, N.’., 1993. Petrology and geochemistry of metamorphosed komatiites and basalts from the Tungurcha greenstone belt, Aldan shield. Precambrian Research 62 (4), 399–417. Puchtel, I.G., Haase, K.M., Hofmann, A.W., Chauvel, C., Kulikov, V.S., Garbe-Schonberg, C.-D., Nemchin, A.A., 1997. Petrology and geochemistry of crustally contaminated komatiitic basalts from the Vetreny Belt, southeastern Baltic Shield: evidence for an early Proterozoic mantle plume beneath rifted Archean continental lithosphere. Geochimica et Cosmochimica Acta 61 (6), 1205–1222. Puchtel, I.S., Hofmann, A.W., Mezger, K., Jochum, K.P., Shchipansky, A.A., Samsonov, A.V., 1998. Oceanic plateau model for continental crustal growth in the Archaean: a case study from the Kostomuksha greenstone belt, NW Baltic Shield. Earth and Planetary Science Letters 155, 57–74. Puura, V., Flodén, T., 1999. Rapakivi-granite-anorthosite magmatism – a way of thinning and stabilisation of the Sveofennian crust, Baltic Sea Basin. Tectonophysics 305, 75–92. Pyke, J., 2000. Minerals laboratory staff develops new ICP-MS preparation method. Australian Geological Survey Organisation Research Newsletter 33, 12–14. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 dpg15 v.2007/06/04 Prn:5/06/2007; 11:41 F:dpg15ref.tex; VTEX/zk p. 125 aid: dpg15ref pii: S0166-2635(07)15094-5 docsubty: MISC References 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 125 Qian, X.L., Cui, W.Y., Wang, S.Q., Wang, G.Y., 1985. Geology of Precambrian Iron Ores in Eastern Hebei Province, China. Hebei Science and Technology Press, Shijiazhuang, 273 pp. (in Chinese with English abstract). Rabeau, O., 2003. Étude de l’évolution du néodyme dans la croûte continentale du nord-est de la Province du Supérieur, Nunavik, Québec. Unpublished M.Sc. thesis. Université du Québec à Montréal, 80 pp. Rai, V.K., Jackson, T.L., Thiemens, M.H., 2005. Photochemical mass-independent sulfur isotopes in achondrite meteorites. Science 309, 1062–1065. Rai, V.K., Thiemens, M.H., 2007. Mass independently fractionated sulfur components in chondrites. Geochimica et Cosmochimica Acta, in press. Rainbird, R.H., Ernst, R.E., 2001. The sedimentary record of mantle plume uplift. In: Ernst, R.E., Buchan, K.L. (Eds.), Mantle Plumes: Their Identification Through Time. In: Geological Society of America, Special Paper 352, pp. 227–245. Rainbird, R.H., McNicoll, R.J., Theriault, R.J., Heaman, L.M., Abbott, J.G., Long, D.G.F., Thorkelson, D.J., 1997. Pan-continental river system draining Grenville Orogen recorded by U-Pb and Sm-Nd geochronology of Neoproterozoic quartzarenites and mudrocks, northwestern Canada. Journal of Geology 105, 1–17. Ramberg, H., 1952. The Origin of Metamorphic and Metasomatic Rocks. University of Chicago Press, Chicago, 317 pp. Ramberg, H., 1967. Gravity Deformation and the Earth’s Crust. Academic Press, London, 214 pp. Ramsay, J.G., 1963. Structural investigations in the Barberton Mountain Land, eastern Transvaal. Transactions of the Geological Society of South Africa 66, 353–401. Ranen, M.C., Jacobsen, S.B., 2006. Barium isotopes in chondritic meteorites: Implications for planetary reservoir models. Science 314, 809–812. Ransom, B.L., 1987. The paleoenvironmental, magmatic, and geologic history of the 3,500 Myr Kromberg Formation, west limb of the Onverwacht anticline, Barberton Greenstone Belt, South Africa. Masters thesis. Louisiana State University, Baton Rouge, 103 pp. Ransom, B., Byerly, G.R., Lowe, D.R., 1999. Subaqueous to subaerial Archean ultramafic phreatomagmatic volcanism, Kromberg Formation, Barberton Greenstone Belt, South Africa. In: Lowe, D.R., Byerly, G.R. (Eds.), Geologic Evolution of the Barberton Greenstone Belt, South Africa. In: Geological Society of America, Special Paper 329, pp. 151–166. Rapp, R., 2003. Experimental constraints on the origin of compositionnal variations in the adakite-TTG-sanukitoid-HMA family of granitoids. In: EGS-AGU-EUG Joint Assembly, Nice, France, 6–11 April 2003. Rapp, R.P., Watson, E.B., 1995. Dehydration melting of metabasalt at 8–32 kbar: implications for continental growth and crust-mantle recycling. Journal of Petrology 36, 891–931. Rapp, R.P., Shimizu, N., Norman, M.D., Applegate, G.S., 1999. Reaction between slab derived melts and peridotite in the mantle wedge: experimental constraints at 3.8 GPa. Chemical Geology 160, 335–356. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 dpg15 v.2007/06/04 Prn:5/06/2007; 11:41 F:dpg15ref.tex; VTEX/zk p. 126 aid: dpg15ref pii: S0166-2635(07)15094-5 docsubty: MISC 126 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 References Rapp, R., Shimizu, N., Norman, M.D., Applegate, G.S., 2000. Reaction between slabderived melts and peridotite in the mantle wedge: experimental constraints at 3.8 GPa. Chemical Geology 160, 335–356. Rapp, R.P., Shimizu, N., Norman, M.D., 2003. Growth of early continental crust by partial melting of eclogite. Nature 425, 605–609. Rapp, R.P., Watson, E.B., Miller, C.F., 1991. Partial melting of amphibolite/eclogite and the origin of Archean trondhjemites and tonalites. Precambrian Research 51, 1–25. Rasmussen, B., 2000. Filamentous microfossils in a 3,235-million-year-old volcanogenic massive sulphide deposit. Nature 405, 676–679. Rasmussen, B., Buick, R., Holland, H.D., 1999. Redox state of the Archean atmosphere: Evidence from detrital heavy minerals in ca. 3250–2750 Ma sandstones from the Pilbara Craton, Australia: Reply. Geology 27, 1152–1152. Rasmussen, B., Fletcher, I.R., Muhling, J.R., 2007. In situ U–Pb dating and element mapping of three generations of monazite: Unravelling cryptic tectonothermal events in low-grade terranes. Geochimica et Cosmochimica Acta 71, 670–690. Ravna, E.K., 2000a. Distribution of Fe2+ and Mg between coexisting garnet and hornblende in synthetic and natural systems: an empirical calibration of the garnethornblende Fe-Mg geothermometer. Lithos 53, 265–277. Ravna, E.K., 2000b. The garnet-clinopyroxene Fe2+-Mg geothermometer: an updated calibration. Journal of Metamorphic Geology 18, 211–219. Rayner, N., Corrigan, D., 2004. Uranium-lead geochronological results from the Churchill River-Southern Indian Lake transect, northern Manitoba. In: Geological Survey of Canada, Current Research 2004-F1, p. 14. Rayner, N., Stern, R.A., Carr, S.D., 2005. Grain-scale variations in trace element composition of fluid-altered zircon, Acasta Gneiss Complex, northwestern Canada. Contributions to Mineralogy and Petrology 148, 721–734. Redden, J.A., Peterman, Z.E., Zartman, R.E., DeWitt, E., 1990. U-Th-Pb geochronology and preliminary interpretation of Precambrian tectonic events in the Black Hills, South Dakota. In: Lewry, J.G., Stauffer, M.R. (Eds.), The Early Proterozoic Trans-Hudson Orogen of North America. In: Geological Association of Canada, Special Paper 37, pp. 229–251. Redman, B.A., Keays, R.R., 1985. Archaean basic volcanism in the Eastern Goldfields Province, Yilgarn Block, Western Australia. Precambrian Research 30, 113–152 Rees, D.C., Howard, J.B., 2003. The interface between the biological and inorganic worlds: Iron-sulfur metalloclusters. Science 300, 929–931. Rees, C.E., Thode, H.G., 1977. S-33 anomaly in Allende meteorite. Geochimica et Cosmochimica Acta 41, 1679–1682. Regelous, M., Collerson, M.D., 1996. 147 Sm-143 Nd, 146 Sm-142 Nd systematics of early Archaean rocks and implications for crust-mantle evolution. Geochimica et Cosmochimica Acta 60, 3513–3520. Regelous, M., Hofmann, A.W., Abouchami, W., Galer, S.J.G., 2003. Geochemistry of lavas from the Emperor Seamounts, and the geochemical evolution of Hawaiian magmatism from 85 to 42 Ma. Journal of Petrology 44, 113–140. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 dpg15 v.2007/06/04 Prn:5/06/2007; 11:41 F:dpg15ref.tex; VTEX/zk p. 127 aid: dpg15ref pii: S0166-2635(07)15094-5 docsubty: MISC References 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 127 Reimold, W.U., Meyer, F.M., Walraven, F., Matthews, P.E., 1993. Geochemistry and chronology of the pre- and post-Pongola granitoids for northeastern Transvaal. In: Mines, G.S.A. (Ed.), 16th Colloquium of African Geology, Mbabane, Swaziland, pp. 294–296. Reimold, W.U., Koeberl, C., Johnson, S., McDonald, I., 2000. Early Archaean spherule beds in the Barberton Mountain Land, South Africa: impact or terrestrial origin? In: Koeberl, C., Gilmour, I. (Eds.), Impacts and the Early Earth. Springer-Verlag, Berlin, pp. 100–116. Ren, J-Y., Tamaki, K., Li, S-T., Zhang, J-X., 2002. Late Mesozoic and Cenozoic rifting an dits dynamic setting in Eastern China and adjacent areas. Tectonophysics 344, 175–205. Replumaz, A., Karason, H., van der Hilst, R.D., Besse, J., Tapponier, P., 2004. 4-D evolution of SE Asia’s mantle from geological reconstructions and seismic tomography. Earth and Planetary Science Letters 221, 103–115. Rey, P.F., Philippot, P., Thebaud, N., 2003. Contribution of mantle plumes, crustal thickening and greenstone blanketing to the 2.75–2.65 Ga global crisis. Precambrian Research 127, 43–60. Reynolds, D.G., Brook, W.A., Marshall, A.E., Allchurch, P.D., 1975. Volcanogenic copperzinc deposits in the Pilbara and Yilgarn Archaean blocks. In: Australasian Institute of Mining and Metallurgy, Monograph 5, pp. 185–194. Reynolds, J.H., 1960. I-Xe dating of meteorites. Journal of Geophysical Research 65, 3843–3846. Richard, P., Shimizu, N., Allègre, J.J., 1976. 143 Nd/146 Nd, a natural tracer: an application to oceanic basalts. Earth and Planetary Science Letters 31, 269–278. Richards, J.R., Fletcher, I.R., Blockley, J.G., 1981. Pilbara galenas: precise isotopic assay of the oldest Australian leads; model ages and growth-curve implications. Mineralium Deposita 16, 7–30. Richardson, W.P., Okal, E.A., Van der Lee, S., 2000. Raylegh-wave tomography of the Ontong-Java Plateau. Physics of the Earth and Planetary Interiors 118, 29–51. Rieke, G.H., Su, K.Y.L., Stansberry, J.A., Trilling, D., Bryden, G., Muzerolle, J., White, B., Gorlova, N., Young, E.T., Beichman, C.A., Stapelfeldt, K.R., Hines, D.C., 2005. Decay of planetary debris disks. Astrophysical Journal 620, 1010–1026. Riganti, A. 1996. The northern segment of the early Archaean Nondweni greenstone belt, South Africa: field relations and petrogenetic constraints. Ph.D. thesis. University of Natal, Pietermaritzburg, 384 pp. Riganti, A., 2003. Geology of the Everett Creek 1:100,000 sheet. Western Australia Geological Survey, 1:100,000 Geological Series Explanatory Notes, 3 pp. Riganti, A., Wilson, A.H., 1995a. Geochemistry of the mafic/ultramafic volcanic associations of the Nondweni greenstone belt, South Africa, and constraints on their petrogenesis. Lithos 34, 235–252. Riganti, A., Wilson, A.H., 1995b. Early Archaean fumaroles: evidence in the Nondweni Greenstone Belt, South Africa. In: Extended Abstracts of the Geocongress ’95. Geological Society of South Africa, pp. 1177–1180. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 dpg15 v.2007/06/04 Prn:5/06/2007; 11:41 F:dpg15ref.tex; VTEX/zk p. 128 aid: dpg15ref pii: S0166-2635(07)15094-5 docsubty: MISC 128 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 References Robb, L.J., Anhauesser, C.R., 1983. Chemical and petrogenetic characteristics of Archean tonalite-trondhjemite gneiss plutons in the Barberton Mountain Land. In: Anhauesser, C.R. (Ed.), Contributions to the Geology of the Barberton Mountain Land. In: Geological Society of South Africa, Special Publication 9, pp. 103–116. Robb, L.J., Barton, Jr, J.M., Kable, E.J.D., Wallace, R.C., 1986. Geology, geochemistry and isotopic characteristics of the Archaean Kaap Valley pluton, Barberton mountain land, South Africa. Precambrian Research 31, 1–36. Robert, F., Chaussidon, M., 2006. A palaeotemperature curve for the Precambrian oceans based on silicon isotopes in cherts. Nature 443, 969–972. Roberts, M.J., Snape, C.E., Mitchell, S.C., 1995. Hydropyrolysis: Fundamentals, two-stage processing and PDU operation. In: Snape, C.E. (Ed.), Composition, Geochemistry and Conversion of Oil Shales. Kluwer, Germany, pp. 277–294. Robertson, M.J., Charlesworth, E.G., Phillips, G.N., 1993. Gold mineralization during progressive deformation at the Main Reef Complex, Sheba Gold Mine, Barberton Greenstone-Belt, South-Africa. In: Information Circular, Economic Geology Research Unit, University of the Witwatersrand, Johannesburg, 267, 26 pp. Roedder, E., 1981. Are the 3,800-Myr-old Isua objects microfossils, limonite-stained fluid inclusions, or neither? Nature 293, 459–462. Rogers, G.C., 1982. Oceanic plateaus as meteorite impact signatures. Nature 299, 341– 342. Rogers, J.J.M., 1996. A history of the continents in the past three billion years. Journal of Geology 104, 91–107. Rogers, J.J.W., Santosh, M., 2004. Continent and Supercontinents. Oxford University Press, Oxford, 289 pp. Rollinson, H.R., 1993. Using Geochemical Data: Evaluation, Presentation, Interpretation. Longman Scientific & Technical, London. Rollinson, H.R., 2002. The Metamorphic History of the Isua Greenstone Belt, West Greenland. In: Fowler, C.M.R., Ebinger, C.J., Hawkesworth, C.J. (Eds.), The Early Earth: Physical, Chemical and Biological Development. In: Geological Society of London, Special Publication 199, 329–350. Rollinson, H., 2007. Early Earth Systems: A Geochemical Approach. Blackwell, Oxford, 285 pp. Rollinson, H.R., Tarney, J., 2005. Adakites – the key to understanding LILE depletion in granulites. Lithos 79, 61–81. Roscoe, S.M., Donaldson, J.A., 1988. Uraniferous pyritic quartz pebble conglomerate and layered ultramafic intrusions in a sequence of quartzite, carbonate, iron formation and basalt of probable Archean age at Lac Sakami, Quebec. In: Geological Survey of Canada, Paper 88-1C, pp. 117–121. Rose, N.M., Rosing, M.T., Bridgwater, D., 1996. The origin of metacarbonate rocks in the Archaean Isua Supracrustal Belt, West Greenland. American Journal of Science 296, 1004–1044. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 dpg15 v.2007/06/04 Prn:5/06/2007; 11:41 F:dpg15ref.tex; VTEX/zk p. 129 aid: dpg15ref pii: S0166-2635(07)15094-5 docsubty: MISC References 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 129 Rosen, O.M., 1990. Archean geology and geochemistry of the Anabar shield. In: Condie, K.C., Bogdanov, N.A. (Eds.), Guidebook of the International Field Conference for IGCP Projects 217, 247, 280. Institute of Lithosphere, Moscow, 102 pp. Rosen, O.M., 1995. Metamorphic effects of tectonic movements at the lower crust level: Proterozoic collision zones and terranes of the Anabar Shield. Geotectonics 29 (2), 91– 101. Rosen, O.M., 2002. Siberian craton—a fragment of Paleoporterozoic supercontinent. Russian Journal of Earth Science 4 (2), 103–119. Rosen, O.M., 2003. The Siberian craton: tectonic zonation and stages of evolution. Geotectonics 37 (3), 175–192. Rosen, O.M., Fedorovsky, V.S., 2001. Collisional Granitoids and Crustal Sheeting. Nauchny Mir, Moscow, 186 pp. (in Russian). Rosen, O.M., Andreev, V.P., Belov, A.N., Bibikova, E.V., Zlobin, V.L., Rachkov, V.S., Sonyushkin, V.E., 1988. The Archaean of the Anabar Shield and the Problems of Early Evolution of the Earth. Nauka, Moscow, 253 pp. (in Russian). Rosen, O.M., Bibikova, E.V., Zhuravlev, D.Z., 1991. The Anabar shield early crust: age and the origin models. In: Ancient Terrestrial Crust: Age and Composition. Nauka, Moscow, pp. 199–224 (in Russian). Rosen, O.M., Condie, K.C., Natapov, L.M., Nozhkin, A.D., 1994. Archean and Early Proterozoic evolution of the Siberian craton: A preliminary assessment. In: Condie, K.C. (Ed.), Archean Crustal Evolution. Elsevier, Amsterdam, pp. 411–459. Rosen, O.M., Zhuravlev, D.Z., Sukhanov, M.K., Bibikova, E.V., Zlobin, V.L., 2000. Early Proterozoic terranes, collision zones, and associated anorthosites in the northeast of the Siberian craton: isotope geochemistry and age characteristics. Russian Geology and Geophysics 41 (2), 159–178. Rosen, O.M., Serenko, V.P., Spetsius, Z.V., Manakov, A.V., Zinchuk, N.N., 2002. Yakutian kimberlite province: position in the structure of the Siberian craton and composition of the upper and lower crust. Russian Geology and Geophysics 43 (1), 1–24. Rosenberg, E., McGill, G.E., 2001. Geologic map of the Pandrosos Dorsa (V5) quadrangle, Venus. Geologic Investigation Series Map I-2721, U.S. Geological Survey, 1:5,000,000. Rosing, M.T., 1999. 13 C-depleted carbon microparticles in >3700 Ma sea-floor sedimentary rocks from West Greenland. Science 283, 674–676. Rosing, M.T., Frei, R., 2004 U-rich Archaean sea-floor sediments from Greenland – indications of >3700 Ma oxygenic photosynthesis. Earth and Planetary Science Letters 217, 237–244. Rosing, M.T., Rose, N.M, Bridgwater, D., Thomsen, H.S., 1996. Earliest part of Earth’s stratigraphic record; a reappraisal of the >3.7 Ga Isua (Greenland) supracrustal sequence. Geology 24, 43–46. Rosing, M.T., Nutman, A.P., Løfqvist, L., 2001. A new fragment of the early Earth crust: the Aasivik terrane of West Greenland. Precambrian Research 105, 115–128. Rossi, M.J., Gudmundsson, A., 1996. The morphology and formation of flow-lobe tumuli on Icelandic shield volcanoes. Journal of Volcanology and Geothermal Research 72, 291–308. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 dpg15 v.2007/06/04 Prn:5/06/2007; 11:41 F:dpg15ref.tex; VTEX/zk p. 130 aid: dpg15ref pii: S0166-2635(07)15094-5 docsubty: MISC 130 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 References Rouxel, O., Bekker, A., Edwards, K., 2005. Iron isotope constraints on the Archean and Paleoproterozoic ocean redox state. Science 307, 1088–1091. Rouzaud, J.-N., Skrzypczak, A., Bonal, L., Derenne, S., Quirico, E., Robert, F., 2005. The high resolution transmission electron microscopy: A powerful tool for studying the organization of terrestrial and extra-terrestrial carbons. Lunar and Planetary Science XXXVI. Roy, A.B., Kröner, A., 1996. Single zircon evaporation ages constraining the growth of the Archean Aravalli craton, NW Indian shield. Geological Magazine 133, 333–342. Rubatto, D., 2002. Zircon trace element geochemistry: partitioning with garnet and the link between U-Pb ages and metamorphism. Chemical Geology 184, 123–138. Rubin, A.E., 1997a. Mineralogy of meteorite groups. Meteoritics and Planetary Science 32, 231–247. Rubin, A.E. 1997b. Mineralogy of meteorite groups: An update. Meteoritics and Planetary Science 32, 733–734. Rubin, A.E., 2000. Petrologic, geochemical and experimental constraints on models of chondrule formation. Earth Science Reviews 50, 3–27. Rubin, A.E., Kalleymeyn, G.W., 1994. Pecora Escarpment 91002: A member of the new Rumuruti (R) chondrite group. Meteoritics 29, 255–264. Rubin, A.E., Mittlefehldt, D.W., 1992. Mesosiderites – a chronological and petrologic synthesis. Meteoritics 27, 282. Rundqvist, D.V., Sokolov, Y.M., 1993. Main features of Precambrian metallogeny: In: Rundquist, D.V., Mitrofanov, F.P. (Eds.), Precambrian Geology of the USSR. Elsevier, Amsterdam, pp. 1–6. Runnegar, B., 2001. Archean sulfates from Western Australia: implications for Earth’s early atmosphere and ocean. In: 11th Annual Goldschmidt Conference, Hot Spring, Virginia, pp. 3859. Runnegar, B., Coath, C.D., Lyons, J.R., McKeegan, K.D., 2002. Mass-independent and mass-dependent sulfur processing throughout the Archean. Geochimica et Cosmochimica Acta 66 (15A), A655. Rushmer, T., 1991. Partial melting of two amphibolites: contrasting experimental results under fluid-absent conditions. Contributions to Mineralogy and Petrology 107, 41–59. Russell, M.J., Arndt, N.T., 2005. Geodynamic and metabolic cycles in the Hadean. Biogeosciences 2, 97–111. Russell, M.J., Hall, A.J., 1997. The emergence of life from iron monosulphide bubbles at a submarine hydrothermal redox and pH front. Journal of the Geological Society 154, 377–402. Russell, M.J., Martin, W., 2004. The rocky roots of the acetyl-CoA pathway. Trends in Biochemical Sciences 29, 358–363. Russell, M.J., Hall, A.J., Boyce, A.J., Fallick, A.E., 2005 On hydrothermal convection systems and the emergence of life. Economic Geology 100, 419–438. Russell, S.S., 1998. A survey of calcium-aluminium-rich inclusions from Rumurutiite chondrites: implications for relationships between meteorite groups. Meteoritics and Planetary Science 33, A131–132. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 dpg15 v.2007/06/04 Prn:5/06/2007; 11:41 F:dpg15ref.tex; VTEX/zk p. 131 aid: dpg15ref pii: S0166-2635(07)15094-5 docsubty: MISC References 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 131 Rutland, R.W.R., 1973. Tectonic evolution of the continental crust of Australia. In: Tarling, D.H., Runcorn, S.K. (Eds.), Implications of Continental Drift to the Earth Sciences. Academic Press, London, pp. 1011–1033. Ryder, G., 1990. Lunar samples, lunar accretion and th early bombardment of the Moon. Eos Transactions of the American Geophysical Union 70, 322–323. Ryder, G., 1991. Accretion and bombardment in the Earth–Moon system: the Lunar record. In: Lunar Planetary Institute Contribution 746, pp. 42–43. Ryder, G., 1997. Coincidence in the time of the Imbrium Basin impact and Apollo 15 Kreep volcanic series: impact-induced melting? In: Lunar Planetary Institute Contribution 790, pp. 61–62. Rye, R., Holland, H.D., 1998. Paleosols and the evolution of atmospheric oxygen: A critical review. American Journal of Science 298, 621–672. Rye, R., Kuo, P.H., Holland, H.D., 1997. Atmospheric carbon dioxide concentrations before 2.2 billion years ago. Nature 378, 603–605. Ryerson, F.J., Watson, E.B., 1987. Rutile saturation in magmas: implications for Ti-Nb-Ta depletion in island-arc basalts. Earth and Planetary Sciences Letters 86, 225–239. Sackmann, I.-J., Boothroyd, A.I., 2003. Our Sun V. A bright young Sun consistent with helioseismology and warm temperatures on ancient Earth and Mars. Astrophysical Journal 583, 1024–1039. SACS (South African Committee for Stratigraphy), 1980. Stratigraphy of South Africa: Part 1: Lithostratigraphy of the Republic of South Africa, South West Africa/Namibia and the Republics of Bophuthatswana, Transkei and Venda. In: Geological Survey of South Africa Handbook, vol. 8, 690 pp. Sagan, C., Mullen, G., 1972. Earth and Mars – evolution of atmospheres and surface temperatures. Science 177, 52–56. Sagan, C., Chyba, C.F., 1997. The early faint sun paradox: Organic shielding of ultravioletlabile greenhouse gases. Science 276, 1217–1221. Salnikova, E.B, Kotov, A.B., Levitskiy, V.I., Morozova, I.M., Berezhnaya, N.G., 2003. Age boundaries of high-temperature metamorphism in crystalline complexes of the Sharyzhalgay uplift of the Siberian Platform: results of U-Pb dating of single zircon grains. In: Proceedings of 2nd Conference on Isotope Geochronology: Isotope Geochronology in the Solution of Problems of Geodynamics and Ore Genesis, St.Petersburg, pp. 453–455 (in Russian). Salnikova, E.B., Kotov, A.B., Belyatskii, B.V., Yakovleva, S.Z., Morozova, I.M., Berezhnaya, N.G., Zagornaya, N.Yu., 1997. U-Pb age of granitoids in the junction zone between the Olekma and Aldan granulite-gneiss terranes. Stratigraphy and Geological Correlation 5 (2), 101–109. Salnikova, E.B., Kotov, A.B., Nemchin, A.A., Yakovleva, S.Z., Morozova, I.M., Bogomolova, L.M., Smelov, A.P., 1993. The age of Tungurchakan Pluton (Olekma granitegreenstone terrane, Aldan shield). Doklady Earth Sciences 331 (3), 356–358. Samieyani, A., 1995. Mineralogy and geochemistry of ∼3.5 Ga volcanogenic massive sulfide deposits at the Big Stubby prospect, the Pilbara district, Western Australia. Unpublished M.Sc. thesis. Tohoku University, 90 pp. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 dpg15 v.2007/06/04 Prn:5/06/2007; 11:41 F:dpg15ref.tex; VTEX/zk p. 132 aid: dpg15ref pii: S0166-2635(07)15094-5 docsubty: MISC 132 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 References Sanborn-Barrie, M., Skulski, T., 1999. 2.7 Ga tectonic assembly of continental margin and oceanic terranes in the Savant Lake-Sturgeon Lake greenstone belt, Ontario. In: Current Research 1999-C, Geological Survey of Canada, pp. 209–220. Sanborn-Barrie, M., Skulski, T., 2006. Sedimentary and structural evidence for 2.7 Ga continental arc-oceanic arc collision in the Savant – Sturgeon greenstone belt, western Superior Province, Canada. Canadian Journal of Earth Sciences 43, 995–1030. Sanborn-Barrie, M., Skulski, T., Parker, J.R., 2001. Three hundred million years of tectonic history recorded by the Red Lake greenstone belt, Ontario. In: Current Research 2001C19, Geological Survey of Canada, 19 pp. Sanborn-Barrie, M., Rogers, N., Skulski, T., Parker, J.R., McNicoll, V., Devaney, J., 2004. Geology and tectonostratigraphic assemblages, east Uchi, Red Lake and Birch-Uchi belts, Ontario. Geological Survey of Canada, Open File 4256, Ontario Geological Survey, Preliminary Map P.3460, scale 1:250,000. Sanchez-Garrido, C., 2006. Nature des apports (juvéniles/recyclage) dans la sédimentation orogénique de Schapenburg (3.2 Ga) : approche isotopique Sr et Nd. DEA, Université Blaise-Pascal, Clermont-Ferrand, France, 45 pp. Sandiford, M., 1985. The metamorphic evolution of granulites at Fyfe Hills: implications for Archaean crustal thickness in Enderby Land, Antarctica. Journal of Metamorphic Geology 3, 155–178. Sandiford, M., McLaren, S., 2002. Tectonic feedback and the ordering of heat producing elements within the continental lithosphere. Earth and Planetary Science Letters 204, 133–150. Sandiford, M., Van Kranendonk, M.J., Bodorkos, S., 2004. Conductive incubation and the origin of dome-and-keel structure in Archean granite-greenstone terrains: a model based on the eastern Pilbara Craton, Western Australia. Tectonics, 23, TC1009, doi: 10.1029/2002TC001452. Sangster, D.W., Brook, W.A., 1977. Primitive lead in an Australian Zn-Pb-Ba deposit. Nature 270, 423. Sano, Y., Terada, K., Hidaka, H., Yokoyama, K., Nutman, A.P., 1999. Palaeoproterozoic thermal events recorded in the ∼4.0 Ga Acasta gneiss, Canada: Evidence from SHRIMP U-Pb dating of apatite and zircon. Geochimica et Cosmochimica Acta 63, 899–905. Sano, Y, Terada, K, Takahasho, Y., Nutman, A.P., 1999b. Origin of life from apatite dating? Nature 400, 127. Sarkar, G., Corfu, F., Paul, D.K., McNaughton, N.J., Gupta, S.N., Bishui, P.K., 1993. Early Archean crust in Bastar craton, central India – a geochemical and isotopic study. Precambrian Research 62, 127–137. Sasaki, S., 1990. The primary solartype atmosphere surrounding the accreting Earth: H2 Oinduced high survade temperature. In: Newsome, H.E., Jones, J.H. (Eds.), Origin of the Earth. Oxford University Press, New York, pp. 195–209. Sasseville, C., 2002. Characteristics of Mesoarchean and Neoarchean supracrustal sequences at the southern margin of North Caribou terrane in the Wallace Lake greenstobne belt, Superior Province, Canada. M.Sc. thesis. McGill University, Montreal, Canada. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 dpg15 v.2007/06/04 Prn:5/06/2007; 11:41 F:dpg15ref.tex; VTEX/zk p. 133 aid: dpg15ref pii: S0166-2635(07)15094-5 docsubty: MISC References 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 133 Sasseville, C., Tomlinson, K.Y., Hynes, A., McNicoll, V., 2006. Stratigraphy, Structure, and geochronology of the 3.0–2.7 Ga Wallace Lake greenstone belt, Western Superior Province, SE Manitoba, Canada. Canadian Journal of Earth Sciences 43, 929–945. Saunders, A.D., Norry, M.J., Tarney, J., 1988. Origin of MORB and chemically-depleted mantle reservoir: trace element constraints. Journal of Petrology, Special lithosphere issue, 415–445. Sawyer, E.W., Benn, K., 1993. Structure of the high-grade Opatica belt and adjacent lowgrade Abitibi subprovince, Canada; an Archean mountain front. Journal of Structural Geology 15, 1443–1458. Scaillet, B., Clemente, B., Evans, B.W., Pichavant, M., 1998. Redox control of sulfur degassing in silicic magmas. Journal of Geophysical Research – Solid Earth 103 (B10), 23,937–23,949. Schaap, B.D., 1989. The geology and crustal structure of southwestern Minnesota using gravity and magnetic data. M.S. thesis. University of Minnesota, Minneapolis, 78 pp. Schaber, G.G., Strom, R.G., Moore, H.J., Soderblom, L.A., Kirk, R.L., Chadwick, D.J., Dawson, D.D., Gaddis, L.R., Boyce, J.M., Russell, J., 1992. Geology and Distribution of Impact Craters on Venus: What are they telling us? Journal of Geophysical Research 97, 13,257–13,302. Schärer, E., Munker, C., Mezger, K., 2001. Calibration of the lutetium-hafnium clock. Science 293, 683–687. Schärer, U., Allègre, C.J., 1985. Determination of the age of the Australian continent by single-grain zircon analyses of Mt. Narryer metaquartzite. Nature 315, 52–55. Scherer, E., Münker, C., Mezger, K., 2001. Calibration of the lutetium-hafnium clock. Science 293, 683–687. Schidlowski, M., 2001. Carbon isotopes as biogeochemical reorders of life over 3.8 Ga of Earth history: Evolution of a concept. Precambrian Research 106, 117–134. Schidlowski, M., Eichmann, R., Junge, C.E., 1975. Precambrian sedimentary carbonates: Carbon and oxygen isotope geochemistry and implications for the terrestrial oxygen budget. Precambrian Research 2, 1–69. Schidlowski, M., Appel, P.W.U., Eichmann, R., Junge, C.E., 1979. Carbon isotope geochemistry of the 3.7 × 109 -yr-old Isua sediments, West Greenland: implications for the Archaean carbon and oxygen cycles. Geochimica et Cosmochimica Acta 43, 189–199. Schidlowski, M., Hayes, J.M., Kaplan, I.R., 1983. Isotopic inference of ancient biochemistries: Carbon, sulfur, hydrogen and nitrogen. In: Schopf, J.W. (Ed.), Earth’s Earliest Biosphere – It’s Origin and Evolution. Princeton University Press, Princeton, pp. 149–186. Schiotte, L., Compston, W., Bridgwater, D., 1989. Ion probe U-Th-Pb zircon dating of polymetamorphic orthogneisses from northern Labrador. Canada Journal of Earth Sciences 26, 1533–1556. Schlesinger, W.H., 1997. Biogeochemistry. Academic Press, San Diego, 588 pp. Schmidt, M.W., 1993. Phase relations and composition in tonalite as a function of pressure: an experimental study at 650 ◦ C. American Journal of Science 293, 1011–1060. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 dpg15 v.2007/06/04 Prn:5/06/2007; 11:41 F:dpg15ref.tex; VTEX/zk p. 134 aid: dpg15ref pii: S0166-2635(07)15094-5 docsubty: MISC 134 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 References Schmidt, M.W., Thompson, A.B., 1996. Epidote in calc-alkaline magmas: an experimental study of stability, phase relationships and the role of epidote in magmatic evolution. American Mineralogist 81, 462–474. Schmidt, M.W., Poli, S., 1998. Experimentally based water budgets for dehydrating slabs and consequences for arc magma generation. Earth and Planetary Science Letters 163, 361–379. Schmitz, M.D., Bowring, S.A., de Wit, M., Volker, G., 2004. Subduction and terrane collision stabilize the western Kaapvaal craton tectosphere 2.9 billion years ago. Earth and Planetary Science Letters 222, 363–376. Schmitz, M.D., Bowring, S.A., Southwick, D.L., Boerboom, T.J., Wirth, K.R., 2005. Highprecision U-Pb geochronology in the Minnesota River Valley subprovince and its bearing on the Neoarchean to Paleoproterozoic evolution of the southern Superior Province. Bulletin of Geological Society of America 118, 82–93. Schneider, D.A., Bickford, M.E., Cannon, W.F., Schulz, K.J., Hamilton, M.A., 2002. Timing of Marquette Range Supergroup deposition and Penokean collision-related basin formation, southern Lake Superior region: implications for Paleoproterozoic tectonic reconstruction. Canadian Journal of Earth Sciences 39, 999–1012. Schoenberg, R., Kamber, B.S., Collerson, K.D., Moorbath, S., 2002. Tungsten isotope evidence from ∼3.8-Gyr metamorphosed sediments for early meteorite bombardment of the Earth. Nature 418, 403–405. Schonwandt, H.K., Petersen, J.S., 1983. Continental rifting and porphyry-molybdenum occurrences in the Oslo region, Norway. Tectonophysics 94, 609–631. Schopf, J.W. (Ed.), 1983. Earth’s Earliest Biosphere: Its Origin and Evolution. Princeton University Press, 543 pp. Schopf, J.W., 1992. Newly discovered microfossils from the Early Archaean Apex Basalt (Warrawoona Group), Western Australia. In: Schopf, J.W., Klein, C. (Eds.), The Proterozoic Biosphere: A Multi-Disciplinary Study. Cambridge University Press, pp. 25– 39. Schopf, J.W., 1993. Microfossils of the Early Archean Apex Chert: New evidence of the antiquity of life. Science 260, 640–646. Schopf, J.W., 2004. Earth’s earliest biosphere: Status of the hunt. In: Eriksson, P.G., Altermann, W., Nelson, D.R., Mueller, W.U., Catuneanu, O. (Eds.), The Precambrian Earth: Tempos and Events. In: Developments in Precambrian Geology, vol. 12. Elsevier, Amsterdam, pp. 516–539. Schopf, J.W., Kudryavtsev., A.B., Agresti, D.G., Wdowiak, T.J., Czaja, A.D., 2002. LaserRaman imagery of Earth’s earliest fossils. Nature 416, 73–76. Schramm, L.S., Brownlee, D.S., Wheelock, M.M., 1988. The elemental composition of interplanetary dust. In: Lunar and Planetary Science Conference XIX. Houston, TX, pp. 1033–1034. Schubert, G., Moore, W.B., Sandwell, D.T., 1994. Gravity over coronae and chasmata on Venus. Icarus 112, 130–146. Schubert , G., Sandwell, D.T., 1995. A global survey of possible subduction sites on Venus. Icarus 117, 173–196. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 dpg15 v.2007/06/04 Prn:5/06/2007; 11:41 F:dpg15ref.tex; VTEX/zk p. 135 aid: dpg15ref pii: S0166-2635(07)15094-5 docsubty: MISC References 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 135 Schubert, G.S., Solomatov, V.S., Tackely, P.J., Turcotte, D.L., 1997. Mantle convection and thermal evolution of Venus. In: Bouger, S.W., Hunten, D.M., Phillips, R.J. (Eds.), Venus II. University of Arizona Press, Tucson, AZ, pp. 1245–1288. Schubert, G., Turcotte, D.L., Olson, P., 2001. Mantle Convection in the Earth and Planets. Cambridge University Press, Cambridge, 940 pp. Schulze, H., Bischoff, A., Palme, H., Spettel, B., Dreibus, G., Otto, J., 1994. Mineralogy and chemistry of Rumuruti: the first meteorite fall of the new R chondrite group. Meteoritics 29, 275–286. Schultz, L., Palme, H., Spettel, B., Weber, H.W., Wänke, H., Cristophe Michel-Levy, M., Lorin, J.C., 1982. Allan Hills A77081 – An unusual stony meteorite. Earth and Planetary Science Letters 61, 23–31. Schultz, P.H., 1993. Searching for ancient Venus. In: Lunar and Planetary Science Conference XXIV, pp. 1255–1255. Scoates, R.F.J., Macek, J.J., 1978. Molson dyke swarm. In: Manitoba Department of Mines, Resources and Environmental Management, Mineral Resources Division, Geological Paper 78-1, p. 53. Scott, E.R.D., 1972. Chemical fractionation in iron meteorites and its interpretation. Geochimica et Cosmochimica Acta 36, 1205–1236. Scott, E.R., 1977. Formation of olivine-metal textures in pallasite meteorites. Geochimica et Cosmochimica Acta 41, 693–710. Scott, E.R.D., Haack, H., Love, S.G., 2001. Formation of mesosiderites by fragmentation and reaccretion of a large differentiated asteroid. Meteoritics and Planetary Science 36, 869–881. Scott, E.R.D., Jones, R.H., 1990. Disentangling nebula and asteroidal features of CO3 carbonaceous chondrite meteorites. Geochimica et Cosmochimica Acta 54, 2485–2502. Scott, E.R.D., Krot, A.N., 2003. Chondrites and their components. In: Davis, A.M. (Ed.), Meteorites, Comets and Planets. In: Treatise on Geochemistry, vol. 1. ElsevierPergamon, Oxford, pp. 143–200. Seal, R.R., II, 2006. Sulfur isotope geochemistry of sulfide minerals. In: Vaughan, D.J. (Ed.), Sulfide Mineralogy and Geochemistry. In: Reviews in Mineralogy and Geochemistry, vol. 61, pp. 633–677. Sears, D.W.G., Hasan, F.A., Batchelor, J.D., Lu J., 1991. Chemical and physical studies of type 3 chondrites – XI: metamorphism, pairing and brecciation in ordinary chondrites. In: Proceedings of the Lunar and Planetary Science Conference, vol. 21, pp. 493–512. Sears, D.W.G., Kallemeyn, G.W., Wasson, J.T., 1982. The chemical classification of chondrites II: The enstatite chondrites. Geochimica et Cosmochimica Acta 46, 597–608. Seedorff, E., Dilles., J.H., Proffett Jr., J.M., Einaudi, M.T., Zurcher, L., Stavast, W.J.A., Johnson, D.A., Barton, M.D., 2005. Porphyry deposits: characteristics and origin of hypogene features. Economic Geology, 100th Anniversary Volume, 251–298. Seeger, P.A., Fowler, W.A., Clayton, D.D., 1965. Nucleosynthesis of heavy elements by neutron capture. Astrophysical Journal 11 (Supplement), 121–166. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 dpg15 v.2007/06/04 Prn:5/06/2007; 11:41 F:dpg15ref.tex; VTEX/zk p. 136 aid: dpg15ref pii: S0166-2635(07)15094-5 docsubty: MISC 136 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 References Seewald, J.S., Seyfried, W.E., 1990. The effect of temperature on metal mobility in subseafloor hydrothermal systems: constraints from basalt alteration experiments. Earth and Planetary Science Letters 101, 388–403. Self, S., Keszthelyi, L., Thordarson, T., 1998. The importance of pahoehoe. Annual Review of Earth and Planetary Sciences 26, 81–110. Sen, C., Dunn, T., 1994. Dehydration melting of a basaltic composition amphibolite at 1.5 and 2.0 GPa: implications for the origin of adakites. Contributions to Mineralogy and Petrology 117, 394–409. Şengör, A.M.C., 2001. Elevation as an indicator of mantle-plume activity. In: Ernst, R.E., Buchan, K.L. (Eds.), Mantle Plumes: Their Identification Through Time. In: Geological Society of America, Special Paper 352, pp. 183–225. Sengör, A.M.C., Natal’in, B.A., 1996. Turkic type orogeny and its role in the making of the continental crust. Annual Review Earth and Planetary Sciences 24, 263–337. Sengör, A.M.C., Natal’in, B.A., 2004. Phanerozoic analogues of Archaean oceanic basement fragments: Altaid ophiolites and ophirags. In: Kusky, T.M. (Ed.), Precambrian Ophiolites and Related Rocks. In: Developments in Precambrian Geology, vol. 13. Elsevier, Amsterdam, pp. 675–726. Sengör, A.M.C., Okurogullari, A.H., 1991. The role of accretionary wedges in the growth of continents: Asiatic examples from Argand to plate tectonics. Eclogae Geologicae Helveticae 84, 535–597. Sengör, A.M.C., Natal’in, B.A., Burtman, V.S., 1993. Evolution of the Altayd tectonic collage and Paleozoic crustal growth in Eurasia. Nature 364, 299–307. Sengupta, P., Dasgupta, S., Bhattacharya, P.K., Hariya, Y., 1989. Mixing behavior in quaternary garnet solid-solution and an extended Ellis and Green garnet-clinopyroxene geothermometer. Contributions to Mineralogy and Petrology 103, 223–227. Sephton, M.A., Love, G.D., Meredith, W., Snape, C.E., Sun, C.-G., Watson, J.S., 2005. Hydropyrolysis: A new technique for the analysis of macromolecular material in meteorites. Planetary and Space Science 53, 1280–1286. Seyfried, W.E., 1987. Experimental and theoretical constraints on hydrothermal alteration processes at mid-ocean ridges, Annual Reviews Earth and Planetary Sciences 15, 317– 335. Shapiro, L., Brannock, W.W., 1962. Rapid analysis of silicate, carbonate and phosphate rocks. In: U.S. Geological Survey, Bulletin 1144-A Sharp, T.G., De Gregorio, B.T., 2003. Determining the Biogenicity of residual carbon within the Apex Chert. Geological Society of America, Annual Meeting, Seattle WA, Paper No. 187-2. Sharp, Z.D., Essene, E.J., Kelly, W.C., 1985. A reexamination of the arsenopyrite geothermometer – pressure considerations and applications to natural assemblages. Canadian Mineralogist 23, 517–534. Shaw, D.M., 1970. Trace element fractionation during anatexis. Geochimica et Cosmochimica Acta 34 (2), 237–243. Shemansky, D.E., 1972. CO2 extinction coefficient 1700–3000 Å. Journal of Chemical Physics 56, 1582–1587. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 dpg15 v.2007/06/04 Prn:5/06/2007; 11:41 F:dpg15ref.tex; VTEX/zk p. 137 aid: dpg15ref pii: S0166-2635(07)15094-5 docsubty: MISC References 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 137 Shemyakin, V.M., Glebovitsky, V.A., Berezhnaya, N.G.,. Yakovleva, S.Z., Morozova, I.M., 1998. On the age of the Sutam block oldest formations. Doklady Earth Sciences 360 (4), 526–529. Shen, B.F., Luo, H., Li, S.B., Li, J.J., Peng, X.L., Hu, X.D., Mao, D.B., Liang, R.Y., 1994, Geology and Metallization of Archaean Greenstone Belts in North China Platform. Geological Publishing House, Beijing, 202 pp. (in Chinese with English abstract). Shen, J.J., Papanastassiou, D.A., Wasserburg, G.J., 1996. Precise Re-Os determinations and systematics of iron meteorites. Geochimica et Cosmochimica Acta 60, 2887–2900. Shen, Q.H., Geng, Y.S., Song, B., Wan, Y.S., 2005. New information from surface outcrops and deep crust of Archaean Rocks of the North China and Yangtze Blocks, and QinlingDabie Orogenic Belt. Acta Geologica Sinica 79, 616–627 (in Chinese with English abstract). Shen, Q.H., Liu, D.Y., Wang, P., Gao, J.F., Zhang, Y.F., 1987. U-Pb and Rb-Sr isotopic age study of the Jining Group from Nei Mongol of China. Bulletin of the Chinese Academy of Geological Sciences 16, 165–178. Shen, Q.H., Shen, K., Geng, Y.S., Xu, H.F., 2000. Compositions and Geological Evolution of Yishui Complex, Shandong Province, China. Geological Publishing House, Beijing, 179 pp. (in Chinese). Shen, Q.H., Song, B., Xu, H.F., Geng, Y.S., Shen, K., 2004. Emplacement and metamorphism ages of the Caiyu and Dashan igneous bodies, Yishui County, Shandong Province: Zircon SHRIMP chronology. Geological Review 50, 275–284. Shen, Y., Buick, R., 2004. The antiquity of microbial sulfate reduction. Earth Science Reviews 64, 243–272. Shen, Y., Buick, R., Canfield, D.E., 2001. Isotopic evidence for microbial sulphate reduction in the early Archaean era. Nature 410, 77–81. Sheppard, S., Occhipinti, S.A., Tyler, I.M., 2003. The relationship between tectonism and composition of granitoid magmas, Yarlarweelor Gneiss Complex, Western Australia. Lithos 66, 133–154. Sheraton, J.W., Black, L.P., McCulloch, M.T., 1984. Regional geochemical and isotopic characteristics of high-grade metamorphics of the Prydz Bay area: the extent of Proterozoic reworking of Archaean continental crust in East Antarctica. Precambrian Research 26, 169–198. Sheraton, J.W., Tingey, R.J., Black, L.P., Offe, L.A., Ellis, D.J., 1987. Geology of Enderby Land and Western Kemp Land, Antarctica. Bulletin Australian Bureau of Mineral Resources 223, 1–51. Sherwood-Lollar, B., Westgate, T.D., Ward, J.A., Slater, G.F., Lacrampe-Couloume, G., 2002. Abiogenic formation of alkanes in the Earth’s crust as a minor source for global hydrocarbon reservoirs. Nature 416, 522–524. Shields, G.A., 2002. A chemical explanation for the mid-Neoproterozoic disappearance of molar-tooth structure ∼750 Ma. Terra Nova 14, 108–113. Shields, G.A., Veizer J., 2002. Precambrian marine carbonate isotope database: Version 1.1. Geochemistry, Geophysics, Geosystem 6, 1–12. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 dpg15 v.2007/06/04 Prn:5/06/2007; 11:41 F:dpg15ref.tex; VTEX/zk p. 138 aid: dpg15ref pii: S0166-2635(07)15094-5 docsubty: MISC 138 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 References Shields, G.A., Carden G.A.F., Veizer, J., Meidla, T., Rong, J.-Y., Li, R.-Y., 2003. Sr, C and O isotope geochemistry of Ordovician brachiopods: a major event around the MiddleLate Ordovician transition. Geochimica et Cosmochimica Acta 67, 2005–2025. Shields, G.A., Kasting, J.F. (submitted). No evidence for hot early oceans. Nature. Shiraishi, K., Ellis, D.J., Hiroi, Y., Fanning, C.M., Motoyoshi, Y., Nakai, Y., 1994. Cambrian orogenic belt in East Antarctica and Sri Lanka: implications for Gondwana assembly. Journal of Geology 102, 47–65. Shirey, S.B., Walker, R.J., 1998. The Re-Os isotope system in cosmochemistry and hightemperature geochemistry. Annual Review of Earth and Planetary Sciences 26, 423– 500. Shirey, S.B., Wilson, A.H., Carlson, R.W., 1998. Re-Os Isotopic Systematics of the 3300 Ma Nondweni Greenstone Belt, South Africa: Implications for Komatiite Formation at a Craton Edge. In: AGU Spring Meeting, Boston. Shirey, S.B., Richardson, S.H., Harris, J.W., 2004. Integrated models of diamond formation and craton evolution. Lithos 77, 923–944. Shock, E.L., Schulte, M.D., 1998. Organic synthesis during fluid mixing in hydrothermal systems. Journal of Geophysical Research – Planets 103 (E12), 28,513–28,527. Shu, F.H., Shang, H., Gounelle, M., Glassold, A.E., Lee, T., 2001. The origin of chondrules and refractory inclusions in chondritic meteorites. Astrophysics Journal 548, 1029–1050. Shukolyukov, A., Lugmair, G.W., 1993a. Live iron-60 in the early solar system. Science 259, 1138–1142. Shukolyukov, A., Lugmair, G.W., 1993b. 60 Fe in eucrites. Earth and Planetary Science Letters 119, 159–166. Shukolyukov, A., Lugmair, G.W., 1997. The 53 Mn-53 Cr isotope system in the Omolon pallasite and the half-life of 187 Re. Lunar and Planetary Science XXVIII, 1315–1316. Shukolyukov, A., Lugmair, G.W., 2006. Manganese-chromium isotope systematics of carbonaceous chondrites. Earth and Planetary Science Letters 250, 200–213. Shukolyukov, A., Kyte, F.T., Lugmair, G.W., Lowe, D.R., Byerly, G.R., 2000. The oldest impact deposits on Earth – First confirmation of an extraterrestrial component. In: Gilmour, I., Koeberl, C. (Eds.), Impacts and the Early Earth. Springer-Verlag, Berlin, pp. 99–116. Siever, R., 1992. The silica cycle in the Precambrian. Geochimica et Cosmochimica Acta 56, 3265–3272. Sillitoe, R.H., Thompson, J.F.H., 1998. Intrusion-related vein gold deposits: types, tectonomagmatic settings and difficulties of distinction from orogenic gold deposits. Resource Geology 48, 237–250. Silva, K.E., Cheadle, M.J., Nisbet, E.G., 1997. The Origin of B1 zones in komatiite flows. Journal of Petrology 38 (11), 1565-841565-84. Simard, M., Gosselin, C., David, J., 2002. Geology of the Maricourt area (24D). Ministère des Ressources naturelles, Québec, RG 2001-07, 41 pp. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 dpg15 v.2007/06/04 Prn:5/06/2007; 11:41 F:dpg15ref.tex; VTEX/zk p. 139 aid: dpg15ref pii: S0166-2635(07)15094-5 docsubty: MISC References 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 139 Simard, M., Parent, M., David, J., Sharma, K.N.M., 2003. Géologie de la région de la rivière Innuksuac (34K et 34L). Ministère des Ressources naturelles, Québec, RG 200210, 46 pp. Simard, M., Parent, M., David, J., Sharma, K.N.M., 2004. Geology of the Rivière Innuksuac area (34K and 34L). Ministère des Ressources naturelles, Québec, RG 2003-03, 40 pp. Simon, N.S.C., Irvine, G.J., Davies, G.R., Pearson, D.G., Carlson, R.W., 2003. The origin of garnet and clinopyroxene in “depleted” Kaapvaal peridotites. Lithos 71, 289–322. Simons, M., Solomon, S.C., Hager, B.H., 1997. Localization of gravity and topography: constraints on the tectonics and mantle dynamics of Venus. Geophysical Journal International 131, 24–44. Simonson, B.M., Glass, B.P., 2004. Spherule layers – Records of ancient impacts. Annual Review of Earth and Planetary Sciences 32, 329–361 Sims, J.R., Dirks, P.H.G.M., Carson, C.J., Wilson, C.J.L., 1994. The structural evolution of the Rauer Group, East Antarctica: mafic dykes as passive markers in a composite Proterozoic terrain. Antarctic Science 6, 379–394. Sims, P.K., 1980. Boundary between Archean greenstone and gneiss terranes in northern Wisconsin and Michigan. In: Geological Society of America, Special Paper 182, pp. 113–124. Sims, P.K., 1991. Great Lakes Tectonic Zone in Marquette Area, Michigan – Implications for Archean tectonics in north-central United States. In: U.S. Geological Survey, Bulletin 1904-E, pp. E1-E17. Sims, P.K., 1993. Structure map of Archean rocks, Palmer and Sands 7½ minute quadrangles, Michigan, showing Great Lakes tectonic zone. U.S. Geological Survey, Miscellaneous Investigations Series Map I-2355, scale 1:24,000. Sims, P.K., 1996a. Great Lakes Tectonics Zone. In: Sims, P.K., Carter, L.M.H. (Eds.), Archean and Proterozoic Geology of the Lake Superior Region, U.S.A., 1993. In: U.S. Geological Survey, Professional Paper 1556, pp. 24–28. Sims, P.K., 1996b. Minnesota River Valley Subprovince (Archean Gneiss Terrane). In: Sims, P.K., Carter, L.M.H. (Eds.), Archean and Proterozoic Geology of the Lake Superior Region, U.S.A., 1993. In: U.S. Geological Survey, Professional Paper 1556, pp. 14–23. Sims, P.K., Day, W.C., 1992. A regional structural model for gold mineralization in the southern part of the Archean Superior province, U.S.A. In: U.S. Geological Survey, Bulletin 1904-M, 19 pp. Sims, P.K., Day, W.C., 1993. The Great Lakes Tectonic Zone – revisited. In: U.S. Geological Survey, Bulletin 1904-S, pp. 1–11. Sims, P.K., Card, K.D., Morey, G.B., others, 1980. The Great Lakes tectonic zone; a major crustal structure in central North America. Bulletin of Geological Society of America 91, 690–698. Sims, P.K., Kotov, A.B., Neymark, L.A., Peterman, Z.E., 1997. Nd isotopic evidence for middle and early Archean crust in the Wawa subprovince of Superior Province, Michigan, U.S.A. In: Geological Association of Canada, Abstract Volume 23, A137. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 dpg15 v.2007/06/04 Prn:5/06/2007; 11:41 F:dpg15ref.tex; VTEX/zk p. 140 aid: dpg15ref pii: S0166-2635(07)15094-5 docsubty: MISC 140 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 References Singer, B.S., Myers, J.D., Frost, C.D., 1992. Mid-Pleistocene lavas from the Seguam volcanic center, central Aleutian arc: closed-system fractional crystallization of a basalt to rhyodacite eruptive suite. Contributions to Mineralogy and Petrology 110, 87–112. Sinigoi, S., Quick, J.E., Mayer, A., Demarchi, G., 1995. Density controlled assimilation of underplated crust, Ivrea–Verbano zone, Italy. Earth and Planetary Science Letters 129, 183–191. Sircombe, K.N., Bleeker, W., Stern, R.A., 2001. Detrital zircon geochronology and grainsize analysis of a ∼2800 Ma Mesoarchean proto-cratonic cover succession, Slave Province, Canada. Earth and Planetary Science Letters 189, 207–220. Sisson, T.W., Ratajeski, K., Hankins, W.B., Glazner, A.F., 2005. Voluminous granitic magmas from common basaltic sources. Contribution to Mineralogy and Petrology 148, 635–661. Sjerp, N., 1983. Geological report, Lennons Find Prospect, Pilbara Goldfield, Western Australia. Unpublished Sjerp and Associates report to Centenerary International Pty Ltd. Skjerlie, K.P., Johnston, A.D. 1993. Fluid-absent melting behavior of an F-rich tonalitic gneiss at mid-crustal pressures: implications for the generation of anorogenic granites. Journal of Petrology 34, 785–815. Skjerlie, K., Patiño-Douce, A.E., 2002. The fluid-absent partial melting of a zoisite bearing quartz eclogite from 1.0 to 3.2 GPA: implications for melting of a thickened continental crust and for subduction-zone processes. Journal of Petrology 43, 291–314. Sklyarov, E.V., Gladkochub, D.P., Mazukabzov, A.M., Men’shagin, Yu.V., 1998. Metamorphism of the ancient ophiolites of the Sharyzhalgay massif. Russian Geology and Geophysics 39 (12), 1733–1749. Sklyarov, E.V., Gladkochub, D.P., Watanabe, T., Fanning, M.K., Mazukabzov, A.M., Menshagin, Yu. V., Ota, T., 2001. Archean supracrustal rocks of the Sharyzhalgay salient and their tectonic implications. Doklady Earth Sciences 377A (3), 278–282. Skrzypczak, A., Derenne, S., Robert, F., Binet, L., Gourier, D., Rouzaud, J.N., Clinard, C., 2004. Characterization of the organic matter in an Archean chert (Warrawoona, Australia). Geochimica et Cosmochimica Acta (Abstracts volume), A240 (Goldschmidt, Copenhagen.) Skrzypczak, A., Derenne, S., Binet, L., Gourier, D., Robert, F., 2005. Characterization of a 3.5 Billion year old organic matter: Electron paramagnetic resonance and pyrolysis GCMS, tools to assess syngeneity and biogenicity. Lunar and Planetary Science XXXVI, abstract #1351. Skulski, T., Villeneuve, M., 1999. Geochronological compilation of the Superior Province, Manitoba, Ontario, Quebec. Geological Survey of Canada, Open File 3715. Skulski, T., Hynes, A., Francis, D., 1988. Basic lavas of the Archean La Grande greenstone belt: products of polybaric fractionation and crustal contamination. Contributions to Mineralogy and Petrology 100, 236–245. Skulski, T., Percival, J.A., Stern, R.A., 1996. Archean crustal evolution in the central Minto block, northern Quebec. In: Radiogenic Age and Isotopic Studies, Report 9: Geological Survey of Canada, Current Research 1995-F, pp. 17–31, 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 dpg15 v.2007/06/04 Prn:5/06/2007; 11:41 F:dpg15ref.tex; VTEX/zk p. 141 aid: dpg15ref pii: S0166-2635(07)15094-5 docsubty: MISC References 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 141 Skulski, T., Sanborn-Barrie, M., Stern, R.A., 1998. Did the Sturgeon Lake belt form near a continental margin? In: Harrap, R.M., Helmstaedt, H. (Eds.), Western Superior Transect Fifth Annual Workshop. In: Lithoprobe Report 65, Lithoprobe Secretariat, University of British Columbia, pp. 87–89. Skulski, T., Stern, R.A., Ciesielski, A., 1998. Timing and sources of granitic magmatism, Bienville subprovince, northern Quebec. In: Geological Association of Canada – Mineralogical Association of Canada, Annual Meeting, Abstract Volume 23, p. A-175. Skulski, T., Percival, J.A., Whalen, J.B., Stern, R.A., 1999. Archean crustal evolution in the northern Superior Province. In: Tectonic and Magmatic Processes in Crustal Growth: A Pan-Lithoprobe Perspective. Lithoprobe Report 75, Lithoprobe Secretariat, University of British Columbia, pp. 128–129. Skulski, T., Corkery, M.T., Stone, D., Whalen, J.B., Stern, R.A., 2000. Geological and geochronological investigations in the Stull Lake - Edmund Lake greenstone belt and granitoid rocks of the northwestern Superior Province. In: Report of Activities 2000, Manitoba Industry, Trade and Mines, Manitoba Geological Survey, pp. 117–128. Skulski, T., Hynes, A., Percival, J., Craven, J., Sanborn-Barrie, M., Helmstaedt, H., 2004. Secular Changes in Tectonic Evolution and the Growth of Continental Lithosphere. In: The LITHOPROBE Celebratory Conference: From Parameters to Processes – Revealing the Evolution of a Continent, October 12–15, 2004, Toronto, Ontario, Canada. Lithoprobe Report 86. Sleep, N.H., Windley, B.F., 1982. Archean plate tectonics: Constraints and inferences. Journal of Geology 90, 363–379. Smelov, A.P., Bereskin, V.I., Zedgenizov, A.N., 2002. New data on composition, structure and ore deposits of the Kotuykan zone of tectonic melange. Otechestvennaya Geologya 4, 45–49 (in Russian). Smelov, A.P., Zedgenizov, V.F., Timofeev, V.F., 2001. Aldano-Stanovoy shield. In: Parfenov, L.M., Kuzmin, M.I. (Eds.), Tectonics, Geodynamics and Metallogeny of the Sakha Republic (Yakutia). Nauka/Interperiodica, Moscow, pp. 81–104 (in Russian). Smelov, A.P., Zedgenizov, A.N., Parfenov, L.M., Timofeev, V.F., 1998. Precambrian Terranes of the Aldan–Stanovoi shield. In: Metallogeny, Petroleum Potential, and Geodynamics of the North Asian Craton and the Surrounding Orogenic Belts. Santai Publ., Irkutsk, pp. 119–120 (in Russian). Smith, A.J., 1981. The geology of the farms Hooggenoeg 731JT and Avontuur 721JT, southwest Barberton Greenstone Belt. B.Sc. thesis. University of the Witwatersrand, Johannesburg. Smith, H.S., Erlank, A.J., 1982. Geochemistry and petrogenesis of komatiites from the Barberton greenstone belt, South Africa. In: Arndt, N.T., Nisbet, E.G. (Eds.), Komatiites. Allen and Unwin, London, pp. 347–397. Smith, J.B., Barley, M.E., Groves, D.I., Krapez, B., McNaughton, N.J., Bickle, M.J., Chapman, H.J., 1998. The Sholl Shear Zone, West Pilbara: evidence for a domain boundary structure from integrated tectonic analyses, SHRIMP U-Pb dating and isotopic and geochemical data of granitoids. Precambrian Research 88, 143–171. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 dpg15 v.2007/06/04 Prn:5/06/2007; 11:41 F:dpg15ref.tex; VTEX/zk p. 142 aid: dpg15ref pii: S0166-2635(07)15094-5 docsubty: MISC 142 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 References Smith, P.E., Evensen, N.M., York, D., Moorbath, S., 2005. Oldest reliable terrestrial 40 Ar39 Ar age from pyrite crystals at Isua, west Greenland. Geophysical Research Letters 32, L21318, 1–4. Smithies, R.H., 2000. The Archaean tonalite-trondhjemite-granodiorite (TTG) series is not an analogue of Cenozoic adakite. Earth and Planetary Science Letters 182, 115–125. Smithies, R.H., Champion, D.C., 1999. Late Archaean felsic alkaline igneous rocks in the Eastern Goldfields, Yilgarn Craton, Western Australia: a result of lower crustal delamination. Journal of the Geological Society of London 156, 561–576. Smithies, R.H., Champion, D.C., 2000. The Archaean high-Mg diorite suite: Links to tonalite-trondhjemite-granodiorite magmatism and implications for early Archaean crustal growth. Journal of Petrology 41, 1653–1671. Smithies, R.H., Champion, D.C., Cassidy, K.F., 2003. Formation of Earth’s early Archaean continental crust. Precambrian Research 127, 89–101. Smithies, R.H., Champion, D.C., Sun, S-.S., 2004a. Evidence for early LILE-enriched mantle source regions: diverse magmas from the c 3.0 Ga Mallina Basin, Pilbara Craton, NW Australia. Journal of Petrology 45, 1515–1537. Smithies R.H., Champion D.C., Sun S-.S., 2004b. The case for Archaean boninites. Contributions to Mineralogy and Petrology 147, 705–721. Smithies, R.H., Champion, D.C., Van Kranendonk, M.J., Howard, H.M., Hickman, A.H., 2005a. Modern-style subduction processes in the Mesoarchaean: geochemical evidence from the 3.12 Ga Whundo intraoceanic arc. Earth and Planetary Science Letters 231, 221–237. Smithies, R.H., Van Kranendonk, M.J., Champion, D.C., 2005b. It started with a plume – early Archaean basaltic proto-continental crust. Earth and Planetary Science Letters 238, 284–297. Smithies, R.H., Van Kranendonk, M.J., Champion, D.C., 2007a. The Mesoarchaean emergence of modern style subduction. Gondwana Research 11, 50–68. Smithies, R.H., Champion, D.C., Van Kranendonk, M.J., Hickman, A.H., 2007b. Geochemistry of ultramafic to felsic volcanic units of the northern Pilbara Craton. Western Australia Geological Survey, Record, in press. Smithson, S.B., Pierson, W.R., Wilson, S.L., et al., 1985. Seismic reflection results from Precambrian crust. In: The Deep Proterozoic Crust in the North Atlantic Provinces. In: NATO ASI Series, Series C: Mathematical and Physical Sciences, vol. 158. D. Reidel Publishing Company International, pp. 21–37. Smoliar, M.I., 1993. A survey of Rb-Sr systematics of eucrites. Meteoritics 28, 105–113. Smoliar, M.I., Walker, R.J., Morgan, J.W., 1996. Re-Os ages of group IIA, IIIA, IVA and IVB iron meteorites. Science 271, 1099–1102. Smrekar, S.E., Kiefer, W.S., Stofan, E.R., 1997. Large volcanic rises on Venus. In: Bouger, S.W., Hunten, D.M., Phillips, R.J. (Eds.), Venus II. University of Arizona Press, Tucson, AZ, pp. 845–879. Smrekar, S.E., Stofan, E.R., 1997. Corona formation and heat loss on Venus by coupled upwelling and delamination. Science 277, 1289–1294. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 dpg15 v.2007/06/04 Prn:5/06/2007; 11:41 F:dpg15ref.tex; VTEX/zk p. 143 aid: dpg15ref pii: S0166-2635(07)15094-5 docsubty: MISC References 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 143 Snape, I.S., Black, L.P., Harley, S.L., 1997. Refinement of the timing of magmatism and high-grade deformation in the Vestfold Hills, East Antarctica, from new Shrimp U-Pb zircon geochronology. In: Ricci, C.A. (Ed.), The Antarctic Region: Geological Evolution and Processes. Terra Antartica Publication, Siena, pp. 139–148. Snelson, C.M., Henstock, T.J., Keller, G.R., Miller, K.C., Levander, A., 1998. Crustal and uppermost mantle structure along the Deep Probe seismic profile. Rocky Mountain Geology 33 (2), 181–198. Snyder, D., 2002. Cooling of lava flows on Venus: The coupling of radiative and convective heat transfer. Journal of Geophysical Research 107, 5080–5088. Sobotovich, E.V., Kamenev, Y.N., Komaristyy, A.A., Rudnik, V.A., 1976. The oldest rocks of Antarctic (Enderby Land). International Geology Review 18, 371–388. Solomatov, V.S., Moresi, L.N., 1996. Stagnant lid convection on Venus. Journal of Geophysical Research 101, 4737–4753. Solomon, M., Eastoe, C.J., Walshe, J.L., Green, G.R., 1988. Mineral deposits and sulfur isotope abundances in the Mount Read volcanics between Que River and Mount Darwin, Tasmania. Economic Geology 83, 1307–1328. Solomon, S.C., 1993. The geophysics of Venus. Physics Today 46, 48–55. Solomon, S.C., Head, J.W., Kaula, W.M., McKenzie, D., Parsons, B., Phillips, R.J., Schubert, G., Talwani, M., 1991. Venus tectonics: Initial analysis from Magellan. Science 252, 297–312. Solomon, S.C., Smrekar, S.E., Bindschadler, D.L., Grimm, R.E., Kaula, W.M., McGill, G.E., Phillips, R.J., Saunders, R.S., Schubert, G., Squyres, S.W., Stofan, E.R., 1992. Venus tectonics: An overview of Magellan observations. Journal of Geophysical Research 97, 13199–13255. Solomon, S.C. et al, 2005. New Perspectives on Ancient Mars. Science 30, 1214–1220. Solvang, M., 1999. An investigation of metavolcanic rocks from the eastern part of the Isua greenstone belt, Western Greenland. Geological Survey of Denmark and Greenland (GEUS) Internal Report, Copenhagen, Denmark, 62 pp. Song, B., 1992. Isotope geochronology, REE characteristics and genesis of Miyun rapakivi granite. Bulletin of the Chinese Academy of Geological Sciences 25, 137–157 (in Chinese with English abstract). Song, B., Nutman, A.P., Liu, D., Wu, J., 1996. 3800 to 2500 Ma crustal evolution in the Anshan area of Lianoning Province, NW China. Precambrian Research 78, 79–94. Souders, A.K., Frost, C.D., 2006. In suspect terrane? Provenance of the Late Archean Phantom Lake Metamorphic Suite, Sierra Madre, Wyoming. Canadian Journal of Earth Sciences 43, xxx-xxx in press. Southwick, D.L., Chandler, V.W., 1996. Block and shear-zone architecture of the Minnesota River Valley Subprovince: implications for late Archean accretionary tectonics. Canadian Journal of Earth Sciences 33, 831–847. Spaggiari, C.V., 2006. Interpreted bedrock geology of the northern Murchison Domain, Youanmi Terrane, Yilgarn Craton. Western Australia. Geological Survey of Western Australia, Record 2006/10. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 dpg15 v.2007/06/04 Prn:5/06/2007; 11:41 F:dpg15ref.tex; VTEX/zk p. 144 aid: dpg15ref pii: S0166-2635(07)15094-5 docsubty: MISC 144 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 References Spaggiari, C.V., in press a. Structural and lithological evolution of the Jack Hills greenstone belt, Narryer Terrane, Yilgarn craton. Western Australia Geological Survey, Record 2007/x. Spaggiari, C.V., in press b. The Jack Hills greenstone belt, Western Australia, Part 1: Structural and tectonic evolution over >1.5 Ga. Precambrian Research. Spaggiari, C.V, Pidgeon, R.T., Wilde, S.A. 2004. Structural and Tectonic framework of >4.0 Ga detrital zircons from the Jack Hills Belt, Narryer Terrane, Western Australia. Geoscience in a Changing World, GSA Conference Denver 2004, Abstracts with Programs 36 (5), 207 (CD-ROM). Spaggiari, C.V., Pidgeon, R.T., Wilde, S.A., in press. The Jack Hills greenstone belt, Western Australia, Part 2: Lithological relationships and implications for the deposition of >4.0Ga detrital zircons. Precambrian Research. Spaggiari, C.V., Wartho, J.-A., Wilde, S.A., Bodorkos, S., in review. Proterozoic development of the northern margin of the Archean Yilgarn Craton. Precambrian Research. Spear, F.S., 1993. Metamorphic Phase Equilibria and Pressure-Temperature-Time Paths. Mineralogical Society of America, Washington. Spencer, J., 2001. Possible giant metamorphic core complex at the center of Artemis Corona, Venus. Bulletin of Geological Society of America 113, 333–345. Spiridonov, V.G., Karpenko, S.F., Lyalikov, A.V., 1993. Sm-Nd age and geochemistry of ganulites in the Anabar shield. Geochemistry International 10, 1412–1427. Spötl, C., Houseknecht, D.W., Jaques, R.C., 1998. Kerogen maturation and incipient graphitization of hydrocarbon source rocks in the Arkoma Basin, Oklahoma and Arkansas: A combined petrographic and Raman spectrometric study. Organic Geochemistry 28, 535–542. Spray, J.G., 1985. Dynamothermal transition between Archaean greenstone and granitoid gneiss at Lake Dundas, Western Australia. Journal of Structural Geology 7, 187–203. Sproule, R.A., Lesher, C., Ayer, J.A., Thurston, P.C., Herzberg, C.T., 2002. Spatial and temporal variations in the geochemistry of komatiites and komatiitic basalts in the Abitibi greenstone belt. Precambrian Research 115, 153–186. Squyres, S.W., Janes, D.M., Baer, G., Bindschadler, D.L., Schubert, G., Sharpton, V.L., Stofan, E.R., 1992a. The morphology and evolution of coronae on Venus. Journal of Geophysical Research 97, 13611–13634. Squyres, S.W., Jankowski, D.G., Simons, M., Solomon, S.C., Hager, B.H., McGill, G.E., 1992b. Plains tectonism on Venus: The deformation belts of Lavinia Planitia. Journal of Geophysical Research 97, 13579–13599. Srinivasan, G., Sahijpal, S., Ulyanov, A.A., Goswami, J.N., 1996. Ion microprobe studies of Efremovka CAIs: potassium isotope composition and 41 Ca in the early solar system. Geochimica et Cosmochimica Acta 60, 1823–1835. Srinivasan, G., Goswami, J.N., Bhandari, N., 1999. Al-26 in eucrite Piplia Kalan: plausible heat source and formation chronology. Science 284, 1348–1350. Stanistreet, I.G., De Wit, M.J., Fripp, R.E.P., 1981. Do graded units of accretionary spheroids in the Barberton greenstone belt indicate Archaean deep water environment? Nature 293, 280–284. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 dpg15 v.2007/06/04 Prn:5/06/2007; 11:41 F:dpg15ref.tex; VTEX/zk p. 145 aid: dpg15ref pii: S0166-2635(07)15094-5 docsubty: MISC References 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 145 Staudigel, H., 2003. Hydrothermal alteration processes in the oceanic crust. In: Treatise on Geochemistry, vol. 3. Elsevier, Amsterdam, pp. 511–535. Staudigel, H., Hart, S.R., 1983. Alteration of basaltic glass: mechanisms and significance for the oceanic crust-seawater budget. Geochimica et Cosmochimica Acta 47, 337–350. Staudigel, H., Plank, T., White, W., Schmincke, H.-U., 1996. Geochemical fluxes during seafloor alteration of the basaltic upper oceanic crust: DSDP sites 417 and 418. In: Bebout, G., Scholl, D.W., Kirby, S.H., Platt, J.P. (Eds.), Subduction: Top to Bottom. In: Geophysical Monograph, vol. 96, pp. 19–37. Staudigel, H., Furnes, H., Banerjee, N.R., Dilek, Y., Muehlenbacks, K., 2006. GSA Today 16 (10), 4–10. Stein, M., 2003. Tracing the plume material in the Arabian-Nubian shield. Precambrian Research 123, 223–234. Stein, M., Hofmann, A.W., 1992. Fossil plume head beneath the Arabian lithosphere? Earth and Planetary Science Letters 114, 193–209 Stein, M., Hofmann, A.W., 1994. Mantle plumes and episodic crustal growth. Nature 372, 63–68. Stepanov, L.L., 1974. Radiogenic age of polymetamorphic rocks in the Anabar shield. In: Early Precambrian Formations in the Central Part of the Arctic and Related Mineral Resources. Arctic Institute Publication, Leningrad, pp. 76–83 (in Russian). Stepanyuk, L.M. 1991. U-Pb age of the microcline granites in the Anabar shield. Doklady Earth Sciences 10, 127–129 Stepanyuk, L.M., Ponomarenko, A.N., Yakovlev, B.G., 1993. Genesis and age of zircons in granulites (the Daldyn mafic granulite of the Anabar shield as an example). Mineralogical Journal 15 (2), 40–52. Stern, R.A., Bleeker, W., 1998. Age of the world’s oldest rocks refined using Canada’s SHRIMP: The Acasta Gneiss Complex, Northwest Territories. Geoscience Canada 25, 27–31. Stern, R.A., Hanson, G.N., 1991. Archaean high-Mg granodiorites: a derivative of light rare earth enriched monzodiorite of mantle origin. Journal of Petrology 32, 201–238. Stern, R.A., Percival, J.A., Mortensen, J.K., 1994. Geochemical evolution of the Minto block: a 2.7 Ga continental magmatic arc built on the Superior proto-craton. Precambrian Research 65, 115–153. Stern, R.J., 2005. Evidence from ophiolites, blueschists, and ultrahigh-pressure metamorphic terranes that the modern episode of subduction tectonics began in Neoproterozoic time. Geology 33, 557–560. Stetter, K.O., 1996. Hyperthermophiles in the history of life. In: CIBA Foundation Symposia 202, 1–18. Stetter, K.O., Gaag, G., 1983. Reduction of molecular sulfur by methanogenic bacteria. Nature 305, 309–311. Stevens, G., Droop, T.R., Armstrong, R.A., Anhaeusser, C.R., 2002. Amphibolite-facies metamorphism in the Schapenburg schist belt: a record of the mid-crustal response to ∼3.23 Ga terrane accretion in the Barberton greenstone belt. South African Journal of Geology 105, 271–284. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 dpg15 v.2007/06/04 Prn:5/06/2007; 11:41 F:dpg15ref.tex; VTEX/zk p. 146 aid: dpg15ref pii: S0166-2635(07)15094-5 docsubty: MISC 146 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 References Stevenson, D.J., 1988. Planetary evolution – Greenhouses and magma oceans. Nature 335, 587–588 Stevenson, D.J., 1990. Fluid dynamics of core formation. In: Newsome, H.E., Jones, J.H. (Eds.), Origin of the Earth. Oxford University Press, New York, pp. 231–249. Stevenson, D.J., Lunine, J.I., 1988. Rapid formation of Jupiter by diffuse redistribution of water vapour in the solar nebula. Icarus 75, 146–155. Stevenson, I.M., 1968. A Geological Reconnaissance of Leaf River Map-Area, New Quebec and Northwest Territories. Geological Survey of Canada, Memoire 356. Stevenson, R.K., 1995. Crust and mantle evolution in the late Archean: Evidence from a Sm-Nd isotopic study of the North Spirit Lake greenstone belt, northwestern Ontario. Bulletin of Geological Society of America 107, 1458–1467. Stevenson, R.K., Bizzarro, M., 2006. Petrology and petrogenesis of the Eoarchean Nuvvuagittuq tonalite suite. Geological Association of Canada, Abstracts vol. 31. Stevenson, R.K., Patchett, P.J., 1990. Implications for the evolution of continental crust from Hf isotope systematics of Archean detrital zircons. Geochimica et Cosmochimica Acta, 54, 1683–1697. Stevenson, R.K., Turek, A., 1992. An isotopic study of the Island Lake greenstone belt, Manitoba: crustal evolution and progressive cratonization in the Late Archean. Canadian Journal of Earth Sciences 29, 2200–2210. Stevenson, R.K., David, J., Parent, M., 2006. Crustal evolution in the western Minto Block, northern Superior Province, Canada. Precambrian Research 145, 229–242. Stewart, B.W., Papanastassiou, D.W., Wasserburg, G.J., 1994. Sm-Nd chronology and petrogenesis of mesosiderites. Geochimica et Cosmochimica Acta 58, 3487–3509. St-Onge, M.R., King, J.E., Lalonde, A.E., 1988. Geology, east-central Wopmay Orogen, District of Mackenzie, Northwest Territories. Geological Survey of Canada, Open-File Report 1923, 3 sheets, scale 1:125,000. Stofan, E.R., Anderson, S.W., Crown, D.A., Plaut, J.J., 2000. Emplacement and composition of steep-sided domes on Venus. Journal of Geophysical Research 105, 26,757– 26,772. Stofan, E.R., Hamilton, V.E., Janes, D.M., Smrekar, S.E., 1997. Coronae on Venus: Morphology and origin. In: Bouger, S.W., Hunten, D.M., Phillips, R.J. (Eds.), Venus II. University of Arizona Press, Tucson, AZ, pp. 931–968. Stofan, E.R., Sharpton, V.L., Schubert, G., Baer, G., Bindschadler, D.L., Janes, D.M., Squyres, S.W., 1992. Global distribution and characteristics of coronae and related features on Venus: Implications for origin and relation to mantle processes. Journal of Geophysical Research 97, 13347–13378. Stofan, E.R., Tapper, S., Guest, J.E., Smrekar, S.E., 2001. Preliminary analysis of an expanded database of coronae on Venus. Geophysical Research Letters 28, 4267–4270. Stolz, G.W., Nesbitt, R.W., 1981. The komatiite nickel sulfide association at Scotia: A petrochemical investigation of the ore environment. Economic Geology 76, 1480–1502. Stone, D., 1998. Precambrian geology of the Berens River area, northwest Ontario. Ontario Geological Survey, Open File Report 5963, 115 pp. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 dpg15 v.2007/06/04 Prn:5/06/2007; 11:41 F:dpg15ref.tex; VTEX/zk p. 147 aid: dpg15ref pii: S0166-2635(07)15094-5 docsubty: MISC References 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 147 Stone, D., 2000. Temperature and pressure variations in suites of Archean felsic plutonic rocks, Berens River area, northwest Superior Province, Ontario, Canada. Canadian Mineralogist 38, 455–470. Stone, D., Tomlinson, K.Y., Davis, D.W., Fralick, P., Hallé, J., Percival, J.A., Pufahl, P., 2002. Geology and tectonostratigraphic assemblages, South–central Wabigoon Subprovince. Ontario Geological Survey, Preliminary Map P.3448 or Geological Survey of Canada, Open File 4284, scale: 1:250,000. Stone, D., Corkery, M.T., Hallé, J., Ketchum, J., Lange, M., Skulski, T., Whalen, J., 2004. Geology and tectonostratigraphic assemblages, eastern Sachigo Subprovince, Ontario and Manitoba. Ontario Geological Survey, Preliminary Map P.3462 or Manitoba Geological Survey Open File OF2003-2 or Geological Survey of Canada, Open File 1582, scale: 1:250,000. Stott, G.M., 1997. The Superior Province, Canada. In: de Wit, M.J., Ashwal, L.D. (Eds.), Greenstone Belts. In: Oxford Monograph on Geology and Geophysics, vol. 35. Clarendon, Oxford, pp. 480–507. Stott, G.M., Corfu, F., 1991. Uchi subprovince. In: Thurston, P.C., Williams, H.R., Sutcliffe, R.H., Stott, G.M. (Eds.), Geology of Ontario. In: Ontario Geological Survey, Special Volume 4, Part 1, pp. 145–238. Stott, G.M., Corfu, F., Breaks, F.W., Thurston, P.C., 1989. Multiple orogenesis in northwestern Superior Province. Geological Association of Canada Abstracts 14, A56. Stowe, C.W., 1984. The early Archaean Selukwe nappe, Zimbabwe. In: Kröner, A., Greilings, R. (Eds.), Precambrian Tectonics Illustrated. E. Schweizerbart Verlagsbuchhandlung, Stuttgart, pp. 41–56. Strauss, H., 1997. The isotopic composition of sedimentary sulfur through time. Palaeogeography Palaeoclimatology Palaeoecology 132, 97–118. Strauss, H., 2003. Sulphur isotopes and the early Archaean sulphur cycle. Precambrian Research 126, 349–361. Strauss, H., Moore, T.B., 1992. Abundances and isotopic compositions of carbon and sulfur species in whole rock and kerogen samples. In: Schopf, J.W., Klein, C. (Eds.), The Proterozoic Biosphere. Cambridge University Press, pp. 709–798. Strom, R.G., Schaber, G.G., Dawson, D.D., 1994. The global resurfacing of Venus. Journal of Geophysical Research 99, 10899–10926. Stumm, W., Morgan, J.J., 1996. Aquatic Chemistry. Wiley-Interscience, New York, 1022 pp. Sudo, A., 1988. Stability of phlogopite in the upper mantle: implications for subduction zone magmatism. M.Sc. thesis. Kyoto University, Kyoto, Japan. Sukhanov, M.K., Spiridonov, V.G., Karpenko, S.F., 1990. First isochron Sm-Nd dating of the anorthosites in the Anabar shield. Doklady Earth Sciences 310 (2), 448. Summons, R.E., Jahnke, L.L., Hope, J.M., Logan, G.A., 1999. 2-Methylhopanoids as biomarkers for cyanobacterial oxygenic photosynthesis. Nature 400, 554–557. Sun, D.Z., Jin, W.S., Bai, J., Wang, W.Y., Jiang, Y.N., Yang, C.L., 1984. The Early Precambrian Geology of Eastern Hebei. Tianjin Science and Technology Press, Tianjin, 273 pp. (in Chinese with English abstract). 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 dpg15 v.2007/06/04 Prn:5/06/2007; 11:41 F:dpg15ref.tex; VTEX/zk p. 148 aid: dpg15ref pii: S0166-2635(07)15094-5 docsubty: MISC 148 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 References Sun, D.Z., Li, H.M., Lin, Y.X., Zhou, H.F., Zhao, F.Q., Tang, M., 1991. Precambrian geochronology, chronotectonic framework and model of chronocrustal structure of the Zhongtiao Mountains. Acta Geologica Sinica 65, 216–231(in Chinese with English abstract). Sun, S.-S., Hickman, A.H., 1998. New Nd-isotopic and geochemical data from the west Pilbara – implications for Archaean crustal accretion and shear zone development. Australian Geological Survey Organisation, Research Newsletter, June 1998. Sun, S.-S., McDonough, W.F., 1989. Chemical and isotopic systematics of oceanic basalts: implications for mantle compositions and processes. In: Saunders, A.D., Norry, M.J. (Eds.) Magmatism in Ocean Basins. In: Geological Society of London, Special Publication 42, pp. 313–345. Surkov, Y.A., Moskalyova, L.P., Kharyukova, V.P., Dudin, A.D., Smirnov, G.G., Zaitseva, S.Y., 1986. Venus rock composition at the Vega-2 landing site. Journal of Geophysical Research 91, E215-E218. Sutherland, W.M., Hausel, W.D., 2002. Preliminary geologic map of the Rattlesnake Hills 1:100,000 Quadrangle, Fremont and Natrona Counties, central Wyoming. Wyoming State Geological Survey Mineral Report 2002-2. Sutton, J., Watson, J.V., 1951. The pre-Torridonian history of the Loch Torridon and Scourie areas of the north-west Highlands and its bearing on the chronological classification of the Lewisian. Journal of the Geological Society of London 106, 241–296. Suyehiro, K., Takahashi, N., Arie, Y., Yokoi, Y., Hino, R., Shinohara, M., Kanazawa, T., Hirata, N., Tokuyama, H., Tara, A., 1996. Continental crust, crustal underplating and low-Q upper mantle beneath an ocean island arc. Science, 272, 390–392. Swager, C.P., Griffin, T.J., Witt, W.K., Wyche, S., Ahmat, A.L., Hunter, W.M., McGoldrick, P.J., 1995. Geology of the Archaean Kalgoorlie Terrane – an explanatory note. Western Australia Geological Survey, Report 48, 26 pp. Sweetapple, M.T., Collins, P.L.F., 2002. Genetic framework for the classification and distribution of Archean rare metal pegmatites in the North Pilbara Craton, Western Australia. Economic Geology 97, 873–896. Swindle, T.D., Kring, D.A., Burkland, M.K., Hill, D.H., Boynton, W.V., 1998. Noble gases, bulk chemistry, and petrography of olivine-rich achondrites Eagle Nest and Lewis Cliff 88763: comparison to brachinites. Meteoritics and Planetary Science 33, 31–48. Swindle, T.D., Cafee, M.W., Hohenberg, C.M., Lindstrom, M.M., Taylor, G.I. 1991. Iodine-xenon studies of petrographically and chemically characterized Chainpur chondrules. Geochimica et Cosmochimica Acta 55, 861–880. Swindle, T.D., Davis, A.M., Hohenberg, C.M., MacPherson, G.J., Nyquist, L.E., 1996. Formation times of chondrules and Ca-Al-rich inclusions: constraints from short-lived radionuclides. In: Hewins, R.H., Jones, R.H., Scott, E.R.D. (Eds.), Chondrules and the Protoplanetary Disk. Cambridge University Press, New York, pp. 77–86. Sylvester, P.J., Campbell, I.H., Bowyer, D.A., 1997. Niobium/Uranium evidence for early formation of the continental crust. Science 275, 521–523. Syme, E.C., Corkery, M.T., Bailes, A.H., Lin, S., Skulski, T., Stern, R.A., 1999. Towards a new tectonostratigraphy for the Knee Lake greenstone belt, Sachigo subprovince, 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 dpg15 v.2007/06/04 Prn:5/06/2007; 11:41 F:dpg15ref.tex; VTEX/zk p. 149 aid: dpg15ref pii: S0166-2635(07)15094-5 docsubty: MISC References 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 149 Manitoba. In: Harrap, R.M., Helmstaedt, H. (Eds.), Western Superior Transect Fifth Annual Workshop. In: Lithoprobe Report 70, Lithoprobe Secretariat, University of British Columbia, pp. 124–131. Symonds, R.B., Rose, W.I., Bluth, G.J.S., Gerlach, T.M., 1994. In: Carroll, M.R., Halloway, J.R. (Eds.), Volatiles in Magmas. Mineralogical Society of America, Reviews in Mineralogy 30, pp.1–66. Takahashi, K., Masuda, A., 1990. Young ages of two diogenites and their genetic implications. Nature 343, 540–542. Takeda, H., Bogard, D.D., Mittlefehldt, D.W., Garrison, D.H., 2000. Mineralogy, petrology, chemistry and 39 Ar-40 Ar and exposure ages of the Caddo County IAB iron: evidence for early partial melt segregation of a gabbro area rich in plagioclase-diopside. Geochimica et Cosmochimica Acta 64, 1311–1327. Talbot, C.J., 1973. A plate tectonic model for the Archaean crust. Philosophical Transactions of the Royal Society of London A273, 413–427. Tan, F.C., 1988. Stable carbon isotopes in dissolved inorganic carbon in marine and estuarine environments. In: Fritz, P., Fontes, J.C. (Eds.), Handbook of Enviromental Isotope Geochemistry, vol. 3. Elsevier, Amsterdam, p. 171–190. Tanaka, K.L., Moore, H.J., Schaber, G.G., Chapman, M.G., Stofan, E.R., Campbell, D.B., Davis, P.A., Guest, J.E., McGill, G.E., Rogers, P.G., Saunders, R.S., Zimbelman, J.R., 1994. The Venus Geologic Mappers’ Handbook, 2nd ed. Open-File Report, 94-438, USGS, 50 pp. Tang, Y-J., Zhang, H-F., Ying, J-F., 2006. Asthernosphere-lithospheric mantle interaction in an extnsionla regime: implications from the geochemistry of Cenzoic basalt from Taihang Mounatins, North China Craton. Chemical Geology 233, 309–327. Tarney, J., Dalziel, I.W.D., de Wit, M.J., 1976. Marginal basin ‘Rocas Verdes’ complex from S. Chile: a model for Archaean greenstone belt formation. In: Windley, B.F. (Ed.), The Early History of the Earth. Wiley, London, pp. 131–146. Tatsumi, Y., 1989. Migration of fluid phases and genesis of basalt magmas in subduction zones. Journal of Geophysical Research 94, 4697–4707. Tatsumi, Y., Eggins, S., 1995. Subduction Zone Magmatism. Blackwell, Oxford. Taylor, B., 2006. The single largest oceanic plateau: Ontong-Java-Manihiki-Hikurangi. Earth and Planetary Science Letters 241, 372–380. Taylor, P., 2006. The single largest oceanic plateau: Ontong-Java-Manihiki-Hikurangi. Earth and Planetary Science Letters 241, 372–397. Taylor, S.R., 2001. Solar System Evolution: A New Perspective, 2nd ed. Cambridge University Press, 460 pp. Taylor, S.R., 2004. Why can’t planets be like stars? Nature 430, 509. Taylor, S.R., McLennan, S.M., 1985. The Continental Crust: Its Composition and Evolution. Blackwell Scientific Publications, 312 pp. Taylor, S.R., Norman, M.D., 1990. Accretion of differentiated planetesimals to the Earth. In: Newsom, H.E., Jones, J.H. (Eds.), Origin of the Earth. Oxford University Press, New York, pp. 29–43. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 dpg15 v.2007/06/04 Prn:5/06/2007; 11:41 F:dpg15ref.tex; VTEX/zk p. 150 aid: dpg15ref pii: S0166-2635(07)15094-5 docsubty: MISC 150 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 References Taylor, S.R., Taylor, G.J., Taylor, A.L., 2006. The Moon: A Taylor perspective. Geochimica et Cosmochimica Acta 70, 5904–5918. Tegtmeyer, A., 1989. Geochronologie und Geochemie im Präkambrium des südlichen Afrika. Unpublished doctoral dissertation, University of Mainz, Germany, 270 pp. Tegtmeyer, A.R., Kröner, A., 1987. U-Pb zircon ages bearing on the nature of early Archean greenstone belt evolution, Barberton Moutainland, Southern Africa. Precambrian Research 36, 1–20. Tera, F., Wasserburg, G.J., 1974. U-Th-Pb systematics on lunar rocks and inferences about lunar evolution and the age of the Moon. In: Proceedings Lunar Science Conference 5th, pp. 1571–1599. Tera, F., Papanastassiou, D.A., Wasserburg, G.J., 1974. Isotopic evidence for a terminal lunar cataclysm. Earth and Planetary Science Letters 22, 1–21. Tera, F., Carlson, R.W., Boctor, N.Z., 1997. Radiometric ages of basaltic achondrites and their relation to the early history of the solar system. Geochimica et Cosmochimica Acta 61, 1713–1731. Terabayashi, M., Masada, Y., Ozawa, H., 2003. Archean ocean-floor metamorphism in the North Pole area, Pilbara Craton, Western Australia. Precambrian Research 127, 167– 180. Terabayashi, M., Masada, Y., Ozawa, H., 2003. Archean ocean-floor metamorphism in the North Pole area, Pilbara Craton, Western Australia. Precambrian Research 127, 167– 180. Thamdrup. B., Finster, K., Hansen, J.W., Bak, F., 1993. Bacterial disproportionation of elemental sulfur coupled to chemical-reduction of iron or manganese. Applied and Environmental Microbiology 59, 101–108. Thériault, R., Chevé, S., 2001. Géologie de la région du Lac Hurault (SNRC 23L). Ministère des Ressources naturelles, Québec, RG 2000-11, 49 pp. Thieblement, D., Delor, C., Cocherie, A., Lafon, J.M., Goujou, J.C., Balde, A., Bah, M., Sane, H., Fanning, C., 2001. A 3.5 Ga granite-gneiss basement in Guinea: further evidence for early Archean accretion within the West African craton. Precambrian Research 108, 179–194. Thiemens, M.H., 1999. Atmospheric science – mass-independent isotope effects in planetary atmospheres and the early solar system. Science 283, 341–345. Thode, H.G., McNamara, J., Collins, C.B., 1949. Natural variations in the isotopic content of sulphur and their significance. Canadian Journal of Research 27B, 361. Thommes, E.W., Duncan, M.J., Levison, H.F., 2002. The formation of Uranus and Neptune among Jupiter and Saturn. Astronomical Journal 121, 2862–2883. Thordarson, Y., Self, S., 1998. The Roza Member, Columbia River Basalt Group: A gigantic pahoehoe lava flow field formed by endogenous processes? Journal of Geophysical Research 103, 27,411–27,445. Thorpe, R.A., Hickman, A.H., Davis, D.W., Mortensen, J.K., Trendall, A.F., 1992a. U-Pb zircon geochronology of Archaean felsic units in the Marble Bar region, Pilbara Craton, Western Australia. Precambrian Research 56, 169–189. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 dpg15 v.2007/06/04 Prn:5/06/2007; 11:41 F:dpg15ref.tex; VTEX/zk p. 151 aid: dpg15ref pii: S0166-2635(07)15094-5 docsubty: MISC References 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 151 Thorpe, R.I., Hickman, A.H., Davis, D.W., Mortensen, J.K., Trendall, A.F., 1992b. Constraints to models for Archaean lead evolution from precise U-Pb geochronology from the Marble Bar region, Pilbara Craton, Western Australia. In: Glover, J.E., Ho, S. (Eds.), The Archaean: Terrains, Processes and Metallogeny. Geology Department and University Extension, Publication 22. The University of Western Australia, pp. 395–408. Thorstenson, D.C., 1970. Equilibrium distribution of small organic molecules in natural waters. Geochimica et Cosmochimica Acta 34, 745. Thurston, P.C., 1994. Archean volcanic patterns. In: Condie, K.C. (Ed.), Archean Crustal Evolution. Elsevier, Amsterdam, pp. 45–84. Thurston, P.C., 2002. Autochthonous development of Superior Province greenstone belts? Precambrian Research 115, 11–36. Thurston, P.C., Chivers, K.M., 1990. Secular variation in greenstone sequence development emphasising Superior Province, Canada. Precambrian Research 46, 21–58. Thurston, P.C., Ayres, L.D., Edwards, G.R., Gélinas, L., Ludden, J.N., Verpaelst, P., 1985. Archean bimodal volcanism. In: Ayres, L.D., Card, K.D., Weber, W. (Eds.), Evolution of Archean Supracrustal Sequences. In: Geological Association of Canada, Special Publication 28, pp. 7–21. Thurston, P.C., Osmani, I.A., Stone, D., 1991. Northwestern Superior Province: review and terrane analysis. In: Thurston, P.C., Williams, H.R., Sutcliffe, R.H., Stott, G.M. (Eds.), Geology of Ontario. In: Ontario Geological Survey, Special Volume 4, Part 1, pp. 81– 142. Tian, W., Liu, S.W., Liu, C.H., Yu, S.Q., Liu, Q.G., Wang, Y.R., 2006. Zircon SHRIMP dating and geochemistry of TTG rocks of Shushui Complex in Zhongtiaoshan, Shanxi Province. Progress in Natural Sciences 15, 1476–1484 (in Chinese with English abstract). Tian, Z-Y., Han, P., Xu, K-D., 1992. The Mesozoic-Cenozoic East China rift system. Tectonophysics 208, 341–363. Tice, M.M., Lowe, D.R., 2004. Photosynthetic microbial mats in the 3416-Myr-old ocean. Nature 431, 549–552. Tice, M.M., Lowe, D.R., 2006a. Hydrogen-based carbon fixation in the earliest known photosynthetic organisms. Geology 34, 37–40. Tice, M.M., Lowe, D.R., 2006b. The origin of carbonaceous matter in pre-3.0 Ga greenstone terrains: A review and new evidence from the 3.42 Ga Buck Reef Chert. Earth Science Reviews 76, 259–300. Tice, M.M., Bostick, B.C., Lowe, D.R., 2004. Thermal history of the 3.5–3.2 Ga Onverwacht and Fig Tree Groups, Barberton greenstone belt, South Africa, inferred by Raman microspectroscopy of carbonaceous material. Geology 32, 37–40. Tingey, R.J., 1982. The geologic evolution of the Prince Charles Mountains – an Antarctic Archaean cratonic block. In: Craddock, C. (Ed.), Antarctic Geoscience. University of Wisconsin Press, Madison, pp. 455–464. Tingey, R.J., 1991. The regional geology of Archaean and Proterozoic rocks in Antarctica. In: Tingey, R.J. (Ed.), The Geology of Antarctica. Oxford University Press, Oxford, pp. 1–73. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 dpg15 v.2007/06/04 Prn:5/06/2007; 11:41 F:dpg15ref.tex; VTEX/zk p. 152 aid: dpg15ref pii: S0166-2635(07)15094-5 docsubty: MISC 152 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 References Tomilenko, A.A., 2006. Fluid regime of mineral formation at high and middle pressures in the continental lithosphere estimated from fluid inclusion study. Dissertation thesis. Institute of the Earth Crust, Irkutsk, 33 pp. (in Russian). Tomkinson, M.J., Lombard, A., 1990. Structure, metamorphism, and mineralization in the New Consort Gold Mines, Barberton greenstone belt, South Africa. In: Glover, J.E., Ho, S.E. (Eds.), Third International Archean Symposium, Perth, 1990. Extended Abstract Volume, Geoconferences (W.A.) Inc., Perth, pp. 377–379. Tomlinson, K.Y., Dickin, A.P., 2003. Geochemistry and neodymium isotopic character of granitoid rocks in the Lac Seul region of the Winnipeg River subprovince, northwestern Ontario. In: Summary of Field Work and Other Activities, 2003, Ontario Geological Survey, Open File Report 6120, pp. 13-1–13-8. Tomlinson, K.Y., Percival, J.A., 2000. Geochemistry and Nd isotopes of granitoid rocks in the Shikag-Garden lakes area, Ontario: recycled Mesoarchean crust in the central Wabigoon Subprovince. In: Geological Survey of Canada, Current Research 2000-E12, 11 pp. Tomlinson, K.Y., Stevenson, R.K., Hughes, D.J., Hall, R.P., Thurston, P.C., Henry, P., 1998. The Red Lake greenstone belt, Superior Province: evidence of plume-related magmatism at 3 Ga and evidence of an older enriched source. Precambrian Research 89, 59–76. Tomlinson, K.Y., Hughes, D.J., Thurston, P.C., Hall, R.P., 1999. Plume magmatism and crustal growth at 2.9 to 3.0 Ga in the Steep Rock and Lumby Lake area, western Superior Province. Lithos 46, 103–136. Tomlinson, K.Y., Sasseville, C., McNicoll, V., 2001. New U-Pb geochronology and structural interpretations from the Wallace Lake greenstone belt (North Caribou terrane): implications for new regional correlations. In: Harrap, R.M., Helmstaedt, H. (Eds.), Western Superior Transect Seventh Annual Workshop. In: Lithoprobe Report 80, Lithoprobe Secretariat, University of British Columbia, pp. 8–9. Tomlinson, K.Y., Davis, D.W., Percival, J.A., Hughes, D.J., Thurston, P.C., 2002. Mafic to felsic magmatism and crustal recycling in the Obonga Lake greenstone belt, Western Superior Province: evidence from geochemistry, Nd isotopes and U-Pb geochronology. Precambrian Research 114, 295–325. Tomlinson, K.Y., Davis, D.W., Stone, D., Hart, T., 2003. New U-Pb and Nd isotopic evidence for crustal recycling and Archean terrane development in the south-central Wabigoon Subprovince, Canada. Contributions to Mineralogy and Petrology 144, 684– 702. Tomlinson, K.Y., Stott, G.M., Percival, J.A., Stone, D., 2004. Basement terrane correlations and crustal recycling in the western Superior Province: Nd isotopic character of granitoid and felsic volcanic rocks in the Wabigoon subprovince, N. Ontario, Canada. Precambrian Research 132, 245–274. Tonks, W.B., Melosh, H.J., 1990. The physics of crystal settling and suspension in a turbulent magma ocean. In: Newsome, H.E., Jones, J.H. (Eds.), Origin of the Earth. Oxford University Press, New York, pp. 151–174. Torigoye-Kita, N., Tatsumoto, M., Meeker, G.P., Yanai, K., 1995. The 4.56 Ga age of the MET 78008 ureilite. Geochimica et Cosmochimica Acta 59, 2319–2329. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 dpg15 v.2007/06/04 Prn:5/06/2007; 11:41 F:dpg15ref.tex; VTEX/zk p. 153 aid: dpg15ref pii: S0166-2635(07)15094-5 docsubty: MISC References 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 153 Torigoye, N., Shima, M., 1993. Evidence for a late thermal event of unequilibrated enstatite chondrites: a Rb-Sr study of Quingzhen and Yamato 6901 (EH3) and Khairpur (EL6). Meteoritics 28, 515–527. Toulkeridis, T., Clauer, N., Kroner, A., Reimer, T., Todt, W. 1999. Characterization, provenance, and tectonic setting of Fig Tree greywackes from the Archaean Barberton Greenstone Belt, South Africa. Sedimentary Geology 124 (1–4), 113–129. Towe, K.M., 1990. Aerobic respiration in the Archean. Nature 348, 54–56. Trail, D., Mojzsis, S.J., Harrison, T.M., Schmitt, A.K., Watson, E.B., Young, E.D., 2007. Constraints on Hadean protoliths from oxygen isotopes and Ti-thermometry (in revisions to G3). ??? Trendall, A.F., 2002. The significance of iron-formation in the Precambrian stratigraphic record. In: Altermann, W., Corocron, P.L. (Eds.), Precambrian Sedimentary Environments: A Modern Approach to Ancient Depositonal Systems. Blackwell Science, Oxford, pp. 33–66. Trendall, A.F., Compston, W., Nelson, D.R., de Laeter, J.R., Bennett, V.C., 2004. SHRIMP zircon ages constraining the depositional history of the Hamersley Group, Western Australia. Australian Journal of Earth Sciences 51, 621–644. Trieloff, M., Jessberger, E.K., Herrwerth, I., Hoppe, J., Fieni, C., Ghelis, Bourot-Denise, M., Pellas, P., 2003. Structure and thermal history of the H-chondrite asteroid revealed by thermochronometry. Nature 422, 502–506. Tuinstra, F., Koenig, J.L., 1970. Raman spectra of graphite. Journal of Chemical Physics 53, 1126–1130. Turcotte, D.L., 1993. An episodic hypothesis for Venusian tectonics. Journal of Geophysical Research 98, 17,061–17,068. Turcotte, D.L., Morein, G., Malamud, B.D., 1999. Catastrophic resurfacing and episodic subduction on Venus. Icarus 139, 49–57. Turek, A., Carson, T.M., Smith, P.E., Van Schmus, W.R., Weber, W., 1986. U-Pb zircon ages for rocks from the Island Lake greenstone belt, Manitoba. Canadian Journal of Earth Sciences 23, 92–101. Turek, A., Sage, R.P., Van Schmus, W.R., 1992. Advances in the U-Pb zircon geochronology of the Michipicoten greenstone belt, Superior Province, Ontario. Canadian Journal of Earth Sciences 29, 1154–1165. Turekian, K.K., Wedepohl, K.H., 1991. Distribution of the elements in some major units of the Earth’s crust. Bulletin of Geological Society of America 72, 175–192. Turkina, O.M., 2001. Geochemistry of granulites of the Arban massif (Sharyzhalgay uplift of the Siberian platform). Russian Geology and Geophysics 42 (5), 815–830. Turkina, O.M., 2004. The amphibolite-plagiogneiss complex of the Onot block, Sharyzhalgay uplift: isotopic-geochemical evidence for the Early Archean evolution of the continental crust. Doklady Earth Sciences 399A (9), 1296–1300. Turner, G., 1988. Dating of secondary events. In: Kerridge, J.F., Matthews, M.S. (Eds.), Meteoritics and the Early Solar System. University of Arizona Press, Tucson, AZ, pp. 276–288. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 dpg15 v.2007/06/04 Prn:5/06/2007; 11:41 F:dpg15ref.tex; VTEX/zk p. 154 aid: dpg15ref pii: S0166-2635(07)15094-5 docsubty: MISC 154 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 References Turner, G., Enright, M.C., Cadogan, P.H., 1978. The early history of chondrite parent bodies inferred from 40 Ar-39 Ar ages. In: Proceedings of the 9th Lunar and Planetary Science Conference, pp. 989–1025. Turner, G., Knott, S.F., Ash, R.D., Gilmour, J.D., 1997. Ar-Ar chronology of the Martian meteorite ALH84001: Evidence for the timing of the early bombardment of Mars. Geochimica et Cosmochimica Acta 61 (18), 3835–3850. Turner, G., Harrison, T.M., Holland, G., Mojzsis, S.J., Gilmour, J., 2004. Extinct 244 Pu in ancient zircons. Science 306, 89–91. Tyler, I.M., Fletcher, I.R., de Laeter, J.R., Williams, I.R., Libby, W.G., 1992. Isotope and rare earth element evidence for a late Archaean terrane boundary in the southeastern Pilbara Craton, Western Australia. Precambrian Research 54, 211–229. Ueno, Y., Isozaki, Y., Yurimoto, H., Maruyama, S., 2001a. Carbon isotopic signatures of individual Archaean Microfossils(?) from Western Australia. International Geology Reviews 43, 196–212. Ueno, Y., Maruyama, S., Isozaki, Y., Yurimoto, Y., 2001b. Early Archean (ca. 3.5 Ga) microfossils and 13 C-depleted carbonaceous matter in the North Pole area, Western Australia: field occurrence and geochemistry. In: Nakashima, S., Maruyama, S., Brack, A., Windley, B.F. (Eds.), Geochemistry and the Origin of Life. Universal Academy Press, Tokyo, pp. 203–236. Ueno, Y., Yurimoto, H., Yoshioka, H., Komiya, T., Maruyama, S. 2002. Ion microprobe analysis of graphite from ca. 3.8 Ga metasediments, Isua supracrustal belt, West Greenland: Relationship between metamorphism and carbon isotopic composition. Geochimica et Cosmochimica Acta 66, 1257–1268. Ueno, Y., Rumble, D., Ono, S., Hu, G., Maruyama, S., 2003. Multiple sulfur isotopes of Early Archean hydrothermal deposits from Western Australia. Geochimica et Cosmochimica Acta 67, A500. Ueno, Y., Yoshioka, H., Maruyama, S., Isozaki, Y., 2004. Carbon isotopes and petrography in ∼3.5 Ga hydrothermal silica dykes in the North Pole area, Western Australia. Geochimica et Cosmochimica Acta 68, 573–589. Ueno, Y., Yamada, K., Yoshida, N., Maruyama, S., Isozaki, Y., 2006. Evidence from fluid inclusions for microbial methanogenesis in the early Archaean era. Nature 440, 516– 519. Unrug, R., 1997. Rodinia to Gondwana: the geodynamic map of Gondwana supercontinent assembly. GSA Today 7, 1–6. Urey, H.C., 1947. The thermodynamic properties of isotopic substances. Journal of the Chemical Society (Resumed) 1947, 562–581. Valley, J.W., 2003. Oxygen isotopes in zircon. In: Hanchar, J.M., Hoskin, P.W.O. (Eds.), Zircon. In: Reviews in Mineralogy and Geochemistry, vol. 53, pp. 343–386. Valley, J.W., 2005. A cool early Earth. Scientific American, October, 58–66. Valley, J.W., 2006. Early Earth. Elements 2, 201–204. Valley, J.W., Chiarenzelli, J.R., McLelland, J.M., 1994. Oxygen isotope geochemistry of zircon, Earth and Planetary Science Letters 126, 187–206. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 dpg15 v.2007/06/04 Prn:5/06/2007; 11:41 F:dpg15ref.tex; VTEX/zk p. 155 aid: dpg15ref pii: S0166-2635(07)15094-5 docsubty: MISC References 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 155 Valley, J.W., Peck, J.H., King, E.M., Wilde, S.A., 2002. A cool early Earth. Geology 30, 351–354. Valley, J.W., Lackey, J.S., Cavosie, A.J., Clechenko, C.C., Spicuzza, M.J., Basei, M.A.S., Bindeman, I.N., Ferreira, V.P., Sial, A.N., King, E.M., Peck, W.H., Sinha, A.K., Wei, C.S., 2005. 4.4 billion years of crustal maturation: oxygen isotope ratios of magmatic zircon. Contributions to Mineralogy and Petrology 150, 561–580. Valley, J.W., Cavosie, A.J., Fu, B., Peck, W.H., Wilde, S.A., 2006. Comment on “Heterogeneous hadean hafnium: Evidence of continental crust at 4.4 to 4.5 Ga”. Science 312, 5777. van den Kerkhof, A.M., Kronz, A., Simon, K., Riganti, A., Scherer, T., 2004. Origin and evolution of Archean quartzites from the Nondweni greenstone belt (South Africa): inferences from a multidisciplinary study. South African Journal of Geology 107, 559– 576. van der Hilst, R.D., Kárason, K., 1999. Compositional heterogeneity in the bottom 1000 km of Earth’s mantle: towards a hybrid convection model. Science 283, 1885–1888. van der Laan, S.R., Wyllie, P.J., 1992. Constraints on Arechean trondhjemite genesisfrom hydrous crystallization experiments on Nuk Gneiss at 10–17 kbar. Journal of Geology 100, 57–68. van Haaften, W.M., White, S.H., 1998. Evidence for multiphase deformation in the Archean basal Warrawoona Group in the Marble Bar area, East Pilbara, Western Australia. Precambrian Research 88, 53–66. Van Kranendonk, M.J., 1998. Litho-tectonic and structural components of the NORTH SHAW 1:100,000 sheet, Archaean Pilbara Craton. Annual Review 1997–1998. Western Australian Geological Survey, pp. 63–70. Van Kranendonk, M.J., 2000. Geology of the North Shaw 1:100,000 sheet. Western Australia Geological Survey, 1:100,000 Series Explanatory Notes, 89 pp. Van Kranendonk, M.J., 2003a. Stratigraphic and tectonic significance of eight local unconformities in the Fortescue Group, Pear Creek Centrocline, Pilbara Craton, Western Australia. In: Annual Review 2001–2002. Western Australia Geological Survey, pp. 70–79. Van Kranendonk, M.J., 2003b. Geology of the Tambourah 1:100,000 sheet. Western Australia Geological Survey, 1:100,000 Geological Series Explanatory Notes, 59 pp. Van Kranendonk, M.J., 2004a. Archaean tectonics 2004: A review. Precambrian Research 131, 143–151. Van Kranendonk, M.J., 2004b. Geology of the Carlindie 1:100,000 sheet. Western Australia Geological Survey, 1:100,000 Geological Series Explanatory Notes, 45 pp. Van Kranendonk, M.J., 2006. Volcanic degassing, hydrothermal circulation and the flourishing of early life on Earth: new evidence from the Warrawoona Group, Pilbara Craton, Western Australia. Earth Science Reviews 74, 197–240. Van Kranendonk, M.J., Collins, W.J., 1998. Timing and tectonic significance of Late Archaean, sinistral strike-slip deformation in the Central Pilbara Structural Corridor, Pilbara Craton, Western Australia. Precambrian Research 88, 207–232. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 dpg15 v.2007/06/04 Prn:5/06/2007; 11:41 F:dpg15ref.tex; VTEX/zk p. 156 aid: dpg15ref pii: S0166-2635(07)15094-5 docsubty: MISC 156 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 References Van Kranendonk, M.J., Morant, P., 1998. Revised Archaean stratigraphy of the North Shaw 1:100,000 sheet, Pilbara Craton. In: Western Australia Geological Survey, Annual Review 1997–1998, pp. 55–62. Van Kranendonk, M.J., Pirajno, F., 2004. Geological setting and geochemistry of metabasalts and alteration zones associated with hydrothermal chert ± barite deposits in the ca. 3.45 Ga Warrawoona Group, Pilbara Craton, Australia. Geochemistry: Exploration, Environment, Analysis 4, 253–278. Van Kranendonk, M.J., Saint-Onge, M.R., Henderson, J.R., 1993. Paleoproterozoic tectonic assembly of Northeast Laurentia through multiple indentations. Precambrian Research 63, 325–347. Van Kranendonk, M.J., Hickman, A.H., Collins, W.J., 2001. Comment on “Evidence for multiphase deformation in the Archaean basal Warrawoona Group in the Marble Bar area, East Pilbara, Western Australia”. Precambrian Research 105, 73–78. Van Kranendonk, M., Hickman A.H., Williams, I.R., Nijman, W., 2001b. Archaean Geology of the East Pilbara Granite–Greenstone Terrane Western Australia – A Field Guide. Western Australia Geological Survey, Record 2001/9, 134 pp. Van Kranendonk, M.J., Hickman, A.H., Smithies, R.H., Nelson, D.R., 2002. Geology and tectonic evolution of the Archean North Pilbara terrain, Pilbara Craton, Western Australia. Economic Geology 97, 695–732. Van Kranendonk, M.J., Webb, G.E., Kamber, B.S., 2003. Geological and trace element evidence for a marine sedimentary environment of deposition and biogenicity of 3.45 Ga stromatolitic carbonates in the Pilbara Craton, and support for a reducing Archean ocean. Geobiology 1, 91–108. Van Kranendonk, M.J., Collins, W.J., Hickman, A.H., Pawley, M.J., 2004. Critical tests of vertical vs horizontal tectonic models for the Archaean East Pilbara Granite-Greenstone Terrane, Pilbara Craton, Western Australia. Precambrian Research 131, 173–211. Van Kranendonk, M.J., Smithies, R.H., Hickman, A.H., Bagas, L., Williams, I.R., Farrell, T.R., 2005. Event stratigraphy applied to 700 m.y. of Archaean crustal evolution, Pilbara Craton, Western Australia. In: Western Australia Geological Survey, Annual Review 2003–2004, pp. 49–61. Van Kranendonk, M.J., Hickman, A.H., Smithies, R.H., Williams, I.R., Bagas, L., Farrell T.R., 2006a. Revised lithostratigraphy of Archean supracrustal and intrusive rocks in the northern Pilbara Craton, Western Australia. In: Western Australia Geological Survey, Record 2006/15, 57 pp. Van Kranendonk, M.J., Hickman, A.H., Huston, D.L., 2006b. Geology and Mineralization of the East Pilbara – A Field Guide. In: Western Australia Geological Survey, Record 2006/16, 94 pp. Van Kranendonk, M.J., Philippot, P., Lepot, K., 2006c. The Pilbara Drilling Project: c. 2.72 Ga Tumbiana Formation and c. 3.49 Ga Dresser Formation, Pilbara Craton, Western Australia. In: Western Australia Geological Survey, Record 2006/14, 25 pp. Van Kranendonk, M.J., Smithies, R.H., Hickman, A.H., Champion, D.C., 2007a. Secular tectonic evolution of Archaean continental crust: interplay between horizontal and vertical processes in the formation of the Pilbara Craton, Australia. Terra Nova 19, 1–38. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 dpg15 v.2007/06/04 Prn:5/06/2007; 11:41 F:dpg15ref.tex; VTEX/zk p. 157 aid: dpg15ref pii: S0166-2635(07)15094-5 docsubty: MISC References 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 157 Van Kranendonk, M.J., Huston D.L., Hickman A.H, 2007b. From plumes to accretion: Changing mineralization styles through ∼800 million years of crustal evolution in the Pilbara Craton, Western Australia. In: Western Australia Geological Survey, Record 2007/2, pp. 23–25. Van Kranendonk, M.J., Philippot, P., Lepot, K., 2007c. A felsic volcanic caldera setting for Earth’s oldest fossils in the c. 3.5 Ga Dresser Formation of the Warrawoona Group, Pilbara Craton, Western Australia: evidence from outcrops and diamond drillcore. Precambrian Research, in press. Van Schmus, W.R., Wood, J.A., 1967. A chemical-petrological classification for the chondritic meteorites. Geochimica et Cosmochimica Acta 31, 747–765. van Zuilen, M., Lepland, A., Arrhenius, G., 2002. Reassessing the evidence for the earliest traces of life. Nature 418, 627–630. van Zuilen, M.A., Lepland, A., Teranew, J., Finarelli, J., Wahlen, M., Arrhenius, G., 2003. Graphite and carbonates in the 3.8 Ga old Isua Supracrustal Belt, southern West Greenland. Precambrian Research 126, 331–348. van Zuilen, M.A., Mathew, K., Wopenka, B., Lepland, A., Marti, B., Arrhenius, G., 2005. Nitrogen and argon isotopic signatures in graphite from the 3.8-Ga-old Isua Supracrustal Belt, Southern West Greenland. Geochimica et Cosmochimica Acta 69, 1241–1252. van Zuilen, M., Chaussidon, M., Rollion-Bard, C., Luais, B., Marty, B., 2006. Carbonaceous cherts of the Barberton Greenstone belt, South Africa. Geophysical Research Abstracts 8, 04975. Varela, M.E., Kurat, G., Zinner, E., Hoppe, P., Natflos, T., Nazarov, M.A., 2005. The nonigneous genesis of angrites: Support from trace lement distribution between phases in D’Orbigny. Meteoritics and Planetary Science 40, 409–430. Vearncombe, J.R., Barley, M.E., Eisenlohr, B.N., Groves, D.I., Houstoun, S.M., Skwarnecki, M.S., Grigson, M.W., Partington, G.A., 1989 Structural controls on mesothermal gold mineralization: examples from the Archean terranes of southern Africa and Western Australia. In: Economic Geology Monograph, vol. 6, pp. 124–134. Vearncombe, S.E., 1995. Volcanogenic massive sulphide-sulfate mineralisation at Strelley, Pilbara Craton, Western Australia. Unpublished Ph.D. thesis. University of Western Australia, 152 pp. Vearncombe, S., Kerrich, R., 1999. Geochemistry and geodynamic setting of volcanic and plutonic rocks associated with Early Archaean volcanogenic massive sulphide mineralization, Pilbara Craton. Precambrian Research 98, 243–270. Vearncombe, S., Barley, M.E., Groves, D.I., McNaughton, N.J., Mikucki, E.J., Vearncombe, J.R., 1995. 3.26 Ga black smoker-type mineralisation in the Strelley Belt, Pilbara Craton, Western Australia. Geological Society of London Journal 152, 587–590. Vearncombe, S., Vearncombe, J.R., Barley, M.E. 1998. Fault and stratigraphic controls on volcanogenic massive sulphide deposits in the Strelley Belt, Pilbara Craton, Western Australia. Precambrian Research 88, 67–82. Veizer J., Compston, W., Hoefs, J., Nielsen, H., 1982. Mantle buffering of the early oceans. Naturwissenschaften 69, 173–180 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 dpg15 v.2007/06/04 Prn:5/06/2007; 11:41 F:dpg15ref.tex; VTEX/zk p. 158 aid: dpg15ref pii: S0166-2635(07)15094-5 docsubty: MISC 158 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 References Veizer, J., Hoefs, J., Lowe, D.R., Thurton, P.C., 1989. Geochemistry of Precambrian carbonates: II. Archean greenstone belts and Archean sea water. Geochimica et Cosmochimica Acta 53, 859–871. Veizer et al., 1999. 87 Sr/86 Sr, δ 13 C and δ 18 O evolution of Phanerozoic seawater. Chemical Geology 161, 59–88. Veizer, J., Goddéris, Y., Francois, L., 2000. Evidence for decoupling of atmospheric CO2 and global climate during the Phanerozoic eon. Nature 408, 698–701. Veizer, J., Mackenzie, F.T., 2003. Evolution of sedimentary rocks. In: Mackenzie, F.T. (Ed.), Treatise on Geochemistry, vol. 7: Sediments, Diagenesis, and Sedimentary Rocks. Elsevier, Amsterdam, pp. 369–407. Vennemann, T.W., Smith, H.S., 1999. Geochemistry of mafic and ultramafic rocks in the Kromberg Formation in its type section, Barberton Greenstone Belt, South Africa. In: Lowe, D.R., Byerly, G.R. (Eds.), Geologic Evolution of the Barberton Greenstone Belt, South Africa. In: Geological Society of America, Special Paper 329, pp. 133–150. Vernikovsky V.A., Vernikovskaya, A.E., Kotov, A.B., Salnikova,. E.B., Kovach, V.P., 2003. Neoproterozoic accretionary and collisional events on the western margin of the Siberian craton: new geological and geochronological evidence from the Yenisey Ridge. Tectonophysics 375 (1–4), 147–168. Versfeld, J.A., 1988. The geology of the Nondweni greenstone belt, Natal. Ph.D. thesis. University of Natal, Pietermaritzburg, 298 pp. Versfeld, J.A., Wilson, A.H., 1992a. Nondweni Group. In: Johnson, M.R. (Ed.), Catalogue of South African Stratigraphic Units. South African Commission for Stratigraphy, Council for Geoscience, Pretoria, pp. 19–20. Versfeld, J.A., Wilson, A.H., 1992b. Toggekry Formation. In: Johnson, M.R. (Ed.), Catalogue of South African Stratigraphic Units. South African Commission for Stratigraphy, Council for Geoscience, Pretoria, pp. 29–30. Vervoort, J.D., Patchett, J.P., 1996. Behavior of hafnium and neodymium isotopes in the crust: constraints from Precambrian crustally derived granites. Geochimica et Cosmochimica Acta 60, 3717–3733. Vervoort, J.D., Blichert-Toft, J., 1999. Evolution of the depleted mantle: Hf isotope evidence from juvenile rocks through time. Geochimica et Cosmochimica Acta 63, 533– 556. Vervoort, J.D., Patchett, P.J., Gehrels, G.E., Nutman, A.P., 1996. Constraints on early Earth differentiation from hafnium and neodymium isotopes. Nature 379, 624–627. Vielzeuf, D., Schmidt, M.W., 2001. Melting reactions in hydrous systems revisited: application to metapelites, metagreywackes and metabasalts. Contribution to Mineralogy and Petrology 141, 251–267. Viljoen, M.J., Viljoen, R.P., 1969a. The geology and geochemistry of the lower ultramafic unit of the Onverwacht Group and a proposed new class of igneous rocks. In: Geological Society of South Africa, Special Publication 2, pp. 55–86. Viljoen, R.P., Viljoen, M.J., 1969b. The geological and geochemical significance of the upper formations of the Onverwacht Group. In: Geological Society of South Africa, Special Publication 2, pp. 113–152. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 dpg15 v.2007/06/04 Prn:5/06/2007; 11:41 F:dpg15ref.tex; VTEX/zk p. 159 aid: dpg15ref pii: S0166-2635(07)15094-5 docsubty: MISC References 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 159 Viljoen, M.J., Viljoen, R.P., 1969c. An introduction to the geology of the Barberton granitegreenstone terrain. In: Geological Society of South Africa, Special Publication 2, pp. 9–28. Viljoen, M.J., Viljoen, R.P., 1969d. A proposed new classification of the granitoid rocks of the Barberton region. In: Geological Society of South Africa, Special Publication 2, pp. 153–188. Viljoen, R.P., Saager, R., Viljoen, M.J., 1969. Metallogenesis and ore control in the Steynsdorp Goldfield, Barberton Mountain Land, South Africa. Economic Geology 64, 778– 797. Viljoen, M.J., Viljoen, R.P., Smith, H.S., Erlank, A.J., 1983. Geological, textural, and geochemical features of komatiitic flows from the Komati Formation. In: Geological Society of South Africa, Special Publication 9, pp. 1–20. Vishnevskiy, A.N., 1978. Metamorphic Complexes of the Anabar Crystalline Shield. Nedra, Leningrad, 214 pp. (in Russian). Vita-Finzi, C., Howarth, R.J., Tapper, S.W., Robinson, C.A., 2005. Venusian craters, size distribution and the origin of coronae. In: Foulger, G.R., Natland, J.H., Presnall, D.C., Anderson, D.L. (Eds.), Plates, Plumes, and Paradigms. In: Geological Society of America, Special Paper 388, pp. 815–824. Wächtershäuser, G., 1988. Before enzymes and templates – theory of surface metabolism. Microbiological Reviews 52, 452–484. Wächtershäuser, G., 1992. Groundworks for an evolutionary biochemistry – the iron sulfur world. Progress in Biophysics and Molecular Biology 58, 85–201. Wächtershäuser, G., 2000. Life as we don’t know it. Science 289, 1307–1308. Wadhwa, M., Shukolyukov, A., Lugmair, G.W., 1998. 53Mn-53Cr systematics in Brachina: A record of one of the earliest phases of igneous activity on an asteroid. In: 29th Lunar and Planetary Science Conference, abstract #1480 (CD-ROM). Wagener, J.H.F., Wiegand, J., 1986. The Sheba gold mine, Barberton greenstone belt. In: Anhaeusser, C.R., Maske, S. (Eds.), Mineral Deposits of Southern Africa. In: Geological Society of South Africa, Special Publication ???, pp. 155–161. Waight, T.E., Maas, R., Nicholls, I.A., 2000. Fingerprinting feldspar phenocrysts using crystal isotopic composition stratigraphy: implications for crystal transfer and magma mingling in S-type granites, Contributions to Mineralogy and Petrology 139, 227–239. Wakita, K., Metcalfe, I., 2005. Ocean plate stratigraphy in East and Southeast Asia. Journal of Asian Earth Sciences 24, 679–702. Walker, G.P.L., 1991. Structure, and origin by injection of lava under surface crust, of tumuli, “lava rises”, “lava-rise pits”, and “lava-inflation clefts” in Hawaii. Bulletin of Volcanology 53, 546–558. Walker, J.C.G., 1990. Precambrian evolution of the climate system. Global and Planetary Change 82, 261–289. Wallace, P.J., Frey, F.A., Weis, D., Coffin, M.F., 2002. Origin and evolution of the Kerguelen Plateau, Broken Ridge and Kerguelen archipelago: editorial. Journal of Petrology 43, 1105–1118. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 dpg15 v.2007/06/04 Prn:5/06/2007; 11:41 F:dpg15ref.tex; VTEX/zk p. 160 aid: dpg15ref pii: S0166-2635(07)15094-5 docsubty: MISC 160 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 References Wallmann, K., 2001. The geological water cycle and the evolution of marine δ 18 O. Geochimica et Cosmochimica Acta 65, 2469–2485. Walsh, M.M., 1992. Microfossils and possible microfossils from the early Archean Onverwacht Group, Barberton Mountain Land, South Africa. Precambrian Research 54, 271–293. Walsh, M.M., Lowe, D.R., 1999. Modes of accumulation of carbonaceous matter in the Early Archean: A petrographic and geochemical study of the carbonaceous cherts of the Swaziland Supergroup. In: Lowe, D.R., Byerly, G.R. (Eds.), Geological Evolution of the Barberton Greenstone Belt, South Africa. In: Geological Society of America, Special Paper 329, pp. 115–132. Walter, M.J., 1998. Melting of garnet peridotite and the origin of komatiite and depleted lithosphere. Journal of Petrology 39, 29–60. Walter, M.R., 1983. Archean stromatolites: evidence of the Earth’s oldest benthos. In: Schopf, J.W. (Ed.), Earth’s Earliest Biosphere. Princeton University Press, pp. 187–213. Walter, M.R., Buick, R., Dunlop, J.S.R., 1980. Stromatolites 3400–3500 Myr old from the North Pole area, Western Australia. Nature 248, 443–445. Wan, Y.S., 1993. The Formation and Evolution of the Iron-Bearing Rock Series of the Gongchangling area, Liaoning Province. Beijing Science and Technology Publishing House, Beijing, 108 pp. (in Chinese with English abstract). Wan, Y.S., Zhang, Z.Q., Wu, J.S., Song, B., Liu, D.Y., 1997. Geochemical and Nd isotopic characteristics of some rocks from the Paleoarchaean Chentaigou supracrustal, Anshan area, NE China. Continental Dynamics 2, 39–46. Wan, Y.S., Liu, D.Y., Wu, J.S., Zhang, Z.Q., Song, B., 1998. The origin of Mesoarchaean granitic rocks from the Anshan-Benxi area: constraints from geochemistry and Nd isotopes. Acta Petrologica Sinica 14, 278–288 (in Chinese with English abstract). Wan, Y.S., Song, B., Wu, J.S., Zhang, Z.Q., Liu, D.Y., 1999. Geochemical and Nd and Sr isotopic compositions of 3.8 Ga trondhjemitic rocks from the Anshan area and their significance. Acta Geologica Sinica 73, 25–36 (in Chinese with English abstract). Wan, Y.S., Song, B., Liu, D.Y., Li, H.M., Yang, C., Zhang, Q.D., Yang, C.H., Geng, Y.S., Shen, Q.H., 2001. Geochronology and geochemistry of a 3.8–2.5 Ga ancient rock belt in the Dongshan scenic park, Anshan area. Acta Geologica Sinica 75, 363–370 (in Chinese with English abstract). Wan, Y.S., Song, B., Liu, D.Y., 2002. Zircon SHRIMP age of Mesoarchaean meta-argilloarenaceous rock in the Anshan area and its geological significance. Science in China Series B 45, 121–129. Wan, Y.S., Zhang, Q.D., Song, T.R., 2003a. SHRIMP ages of detrital zircons from the Changcheng System in the Ming Tombs area, Beijing: Constraints on the protolith nature and maximum depositional age of the Mesoproterozoic cover of the NCC. Chinese Science Bulletin 4, 2500–2506. Wan, Y.S., Song, B., Liu, D.Y., 2003b. Early Precambrian Geochronological Framework in the Eastern China. Geological Report of China Geological Survey, 219 pp. (in Chinese). Wan, Y.S., Liu, D., Song, B., Wu, J., Yang, C., Zhang, A., Geng, Y., 2005a. Geochemical and Nd isotopic compositions of 3.8 Ga meta-quartz dioritic and trondhjemitic rocks 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 dpg15 v.2007/06/04 Prn:5/06/2007; 11:41 F:dpg15ref.tex; VTEX/zk p. 161 aid: dpg15ref pii: S0166-2635(07)15094-5 docsubty: MISC References 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 161 from the Anshan area and their geological significance. Journal of Asian Earth Science 24, 563–575. Wan, Y.S., Song, B., Yang, C., Liu, D.Y., 2005b. Zircon SHRIMP U–Pb geochronology of Archaean rocks from the Fushun-Qingyuan area, Liaoning Province and its geological significance. Acta Geologica Sinica 79, 78–87 (in Chinese with English abstract). Wan, Y.S., Song, B., Geng, Y.S., Liu, D.Y., 2005c. Geochemical characteristics of Archaean basement in the Fushun-Qingyuan area, northern Liaoning Province and its geological significance. Geological Review 51, 128–137 (in Chinese with English abstract). Wan, Y.S, Song, B., Liu, D.Y., Wilde, S.A., Wu, J.S., Shi, Y.R., Yin, X.Y., Zhou, H.Y., 2006. SHRIMP U-Pb zircon geochronology of Palaeoproterozoic metasedimentary rocks in the NCC: evidence for a major Late Palaeoproterozoic tectonothermal event. Precambrian Research 149, 249–271. Wang, F., Zhou, X.-H., Zhang, L.-C., Ying, J.-F., Zhang, Y.-T., Wu, F.-Y., Zhu, R.-X., 2006. Late Mesozoic volcanism in the Great Xing’an Range (NE China): timing and implications for the dynamic setting of NE Asia. Earth and Planetary Science Letters 251, 179–198. Wang, L.G., Qiu, Y.M., McNaughton, N.J., Groves, D.I., Luo, Z.K., Huang, J.Z., Miao, L.C., Liu, Y.K., 1998. Constraints on crustal evolution and gold metallogeny in the northwestern Jiaodong, China from SHRIMP U-Pb zircon studies of granitoids. Ore Geology Reviews 13, 275–291. Wang, X.D., Lindh, A., 1996. Temperature-pressure Investigation of the Southern Part of the Southwest Swedish Granulite Region. European Journal of Mineralogy 8, 51–67. Wang, Z.J., Shen, Q.H., Wan, Y.S., 2004. SHRIMP U-Pb zircon geochronology of the Shipaihe “meta-diorite mass” from Dengfeng County, Henan Province. Acta Geoscientica Sinica 25, 295–298 (in Chinese with English abstract). Ward, J.H.W., 1999. The Metallogeny of the Barberton Greenstone Belt, South Africa and Swaziland. Geological Survey of South Africa, Memoir 86, 116 pp. Warneck, P., 1988. Chemistry of the Natural Atmosphere. International Geophysical Series, vol. 41. Academic Press, New York, 757 pp. Wasserburg, G.J., 1985. Short-lived nuclei in the early solar system. In: Black, D.C., Matthews, M.S. (Eds.), Protostars and Planets II. University of Arizona Press, Tucson, AZ, pp. 703–737. Wasson, J.T., Kallemeyn, G.W., 1988. Compositions of chondrites. Philosophical Transactions of the Royal Society of London Ser. A – Mathematical Physical and Engineering Sciences 325, 535–544. Watanabe, Y., Naraoka, H., Wronkiewicz, D.J., Condie, K.C., Ohmoto, H., 1997. Carbon, nitrogen and sulfur geochemistry of the Archean and Proterozoic shales of the Kaapvaal Craton, South Africa. Geochimica et Cosmochimica Acta 61, 3441–3459. Watson, E.B., 1996. Dissolution, growth and survival of zircons during crustal fusion: kinetic principals, geological models and implications for isotopic inheritance. Transactions Royal Society Edinburg, Earth Sciences 87, 43–56. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 dpg15 v.2007/06/04 Prn:5/06/2007; 11:41 F:dpg15ref.tex; VTEX/zk p. 162 aid: dpg15ref pii: S0166-2635(07)15094-5 docsubty: MISC 162 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 References Watson, E.B., Cherniak, D.J., 1997. Oxygen diffusion in zircon, Earth and Planetary Science Letters 148, 527–544. Watson, E.B., Harrison, T.M., 1983. Zircon saturation revisited: temperature and composition effects in a variety of different crustal magma types. Earth and Planetary Science Letters 64, 295–304. Watson, E.B., Harrison, T.M., 2005. Zircon thermometer reveals minimum melting conditions on earliest Earth. Science 308, 841–844. Watson, E.B., Harrison, T.M., 2006. Response to comments on “Zircon thermometer reveals minimum melting conditions on earliest Earth”. Science 311, doi:10.1126/ science.112.1080. Weaver, B.L., Tarney, J., 1981. Lewisian gneiss geochemistry and Archaean crustal development models. Earth and Planetary Science Letters 55 (1), 171–180. Weber, W., 1978. Natawahunan lake. Report of Field Activities 1978, Manitoba Department of Mines, Resources and Environmental Management, Mineral Resources Division, pp. 47–53 (plus Preliminary Map 1978 U-2, scale 1:50,000). Weber, W., 1983. The Pikwitonei granulite domain: a lower crustal level along the Churchill-Superior boundary in central Manitoba. In: Ashwal, L.D., Card, K.D. (Eds.), A Cross-Section of Archean Crust. Lunar and Planetary Institute, Houston, TX, Technical Report 83-03, pp. 95–97. Weber, W., Scoates, R.F.J., 1978. Archean and Proterozoic metamorphism in the northwestern Superior Province and along the Churchill-Superior boundary, Manitoba. In: Fraser, J.A., Heywood, W.W. (Eds.), Metamorphism in the Canadian Shield. In: Geological Survey of Canada, Paper 78-10, pp. 5–16. Weber, D., Schultz, L., Weber, H.W., Clayton, R.N., Mayeda, T.K., Bischoff, A., 1997. Hammadah al Hamra 119 – A new unbrecciated Saharan Rumuruti chondrite. Lunar and Planetary Science XXVIII, 1511–1512 (abstract). Weber, H.W., Schultz, L., 1995. Noble gases in Rumuruti-group chondrites. Meteoritics 30, 596. Wedepohl, K.H., Muramatsu, Y., 1979. The chemical composition of kimberlites compared with the average composition of three basaltic magma types. In: Boyd, F.R., Meyer, H.O.A. (Eds.), Kimberlites, Diatremes, and Diamonds: Their Geology, Petrology and Geochemistry. Proceedings of the Second International Kimberlite Conference, vol. 1. American Geophysical Union, Washington, DC, 399 pp. Wedepohl, K.H., 1995. The composition of the continental crust. Geochimica et Cosmochimica Acta 59, 1217–1232. Weisberg, M.K., Prinz, M., Kojima, H., Yanai, K., Clayton, R.N., Mayeda, T.K., 1991. The Carlisle Lakes- type chondrites: A new grouplet with high ∂17O and evidence for nebula oxidation. Geochimica et Cosmochimica Acta 55, 2657–2669. Weisberg, M.K., Prinz, M., Clayton, R.N., Mayeda, T.K., Grady, M.M., Franchi, I., Pillinger, C.T., Kallemeyn, G.W., 1996. The K (Kakangari) chondrite grouplet. Geochimica et Cosmochimica Acta 61, 4253–4263. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 dpg15 v.2007/06/04 Prn:5/06/2007; 11:41 F:dpg15ref.tex; VTEX/zk p. 163 aid: dpg15ref pii: S0166-2635(07)15094-5 docsubty: MISC References 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 163 Wendt, J.I., 1993. Early Archean crustal evolution in Swaziland, southern Africa, as revealed by combined use of zircon geochronology, Pb-Pb and Sm-Nd systematics. Unpublished doctoral dissertation. University of Mainz, Germany, 123 pp. West, G.F., Mareschal, J.C., 1979. Model for Archean tectonism 1. Thermal conditions. Canadian Journal of Earth Sciences 16, 1942–1950. Westall, F., Folk, R.L., 2003. Exogenous carbonaceous microstructures in Early Archaean cherts and BIFs from the Isua greenstone belt: Implications for the search for life in ancient rocks. Precambrian Research 126, 313–330. Westall, F., de Wit, M.J., Dann, J.C., van der Gaast, S., de Ronde, C.E.J., Gerneke, D., 2001. Early Archean fossil bacteria and biofilms in hydrothermally influenced sediments, Barberton Greenstone Belt, South Africa. Precambrian Research 106, 93–116. Westraat, J.D., Kisters, A.F.M., Poujol, M., Stevens, G., 2005. Transcurrent shearing, granite sheeting and the incremental construction of the tabular 3.1 Ga Mpuluzi batholith, Barberton granite-greenstone terrane, South Africa. Journal of the Geological Society London 162, 373–388. Wetherill, G.W., 1980. Formation of the terrestrial planets. Annual Review Astron. Astrophys. 18, 77–113. Wetherill, G.W., 1985. Occurrence of giant impacts during the growth of the terrestrial planets. Science 228, 877–879. Wetherill, G.W., 1990. Formation of the Earth. Annual Review of Earth and Planetary Science 18, 205–256. Whalen, J.B., Percival, J.A., McNicoll, V.J., Longstaffe, F.J., 2002. A mainly crustal origin for tonalitic granitoid rocks, Superior Province, Canada: Implications for late archean tectonomagmatic processes. Journal of Petrology 43 (8), 1551–1570. Whalen, J.B., Percival, J.A., McNicoll, V., Longstaffe, F.J., 2003. Intra-oceanic production of continental crust in a Th-depleted ca. 3.0 Ga arc complex, western Superior Province, Canada. Contributions to Mineralogy and Petrology 156, 78–99. Whalen, J.B., Percival, J.A., McNicoll, V., Longstaffe, F.J., 2004. Geochemical and isotopic (Nd-O) evidence bearing on the origin of late- to post-orogenic high-K granitoid rocks in the Western Superior Province: Implications for late Archean tectonomagmatic processes. Precambrian Research 132, 303–326. Whitby, J.A., Ash, R.D., Gilmour, J.D., Prinz, M., Turner, G. 1997. Iodine-xenon dating of chondrules and matrix from the Qingzhen and Kota-Kota EH3 chondrites. Meteoritics and Planetary Science 32 (Supplement), A140. Whitby, J.A., Burgess, R., Turner, G., Gilmour, J., Bridges, J., 2000. Extinct 129 I in halite from a primitive meteorite; evidence for evaporite formation in the early Solar System. Science 288, 1819–1821. White, A.J.R., Chappell, B.W., 1977. Ultrametamorphism and granitoid genesis. Tectonophysics 43, 7–22. White, D.J., Lucas, S.B., Bleeker, W., Hajnal, Z., Lewry, J.F., Zwanzig, H.V., 2002. Suturezone geometry along an irregular Paleoproterozoic margin: The Superior boundary zone, Manitoba, Canada. Geology 30, 735–738. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 dpg15 v.2007/06/04 Prn:5/06/2007; 11:41 F:dpg15ref.tex; VTEX/zk p. 164 aid: dpg15ref pii: S0166-2635(07)15094-5 docsubty: MISC 164 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 References White, D.J., Musacchio, G., Helmstaedt, H.H., Harrap, R.M., Thurston, P.C., van der Velden, A., Hall, K., 2003. Images of a lower-crustal oceanic slab: Direct evidence for tectonic accretion in the Archean western Superior province. Geology 31, 997–1000. White, J.C., 2003. Trace-element partitioning between alkali feldspar and peralkalic quartz trachyte to rhyolite magma: Part II: Empirical equations for calculating trace-element coefficients of large-ion lithophile, high field strength, and rare earth elements. American Mineralogist 88, 330–337. White, R.V., Crowley, J.L., Myers, J.S., 2000. Earth’s oldest well-preserved mafic dyke swarms in the vicinity of the Isua greenstone belt, southern West Greenland. Geology of Greenland Survey Bulletin 186, 65–72. Whitehouse, M.J., 1988. Granulite facies Nd-isotopic homogenisation in the Lewisian Complex of Northwest Scotland. Nature 331, 705–707. Whitehouse, M.J., Fedo, C.M., 2003. Deformation features and critical field relationships of early Archaean rocks, Akilia, southwest Greenland. Precambrian Research 126, 259– 271. Whitehouse, M.J., Kamber, B.S., 2002. On the overabundance of light rare earth elements in terrestrial zircons and its implications for Earth’s earliest magmatic differentiation. Earth and Planetary Science Letters 204, 333–346. Whitehouse, M.J., Kamber, B., 2005. Assigning dates to thin gneissic veins in high-grade metamorphic terranes: a cautionary tale from Akilia, southwest Greenland. Journal of Petrology 46, 291–318. Whitehouse, M.J., Fowler, M.B., Friend, C.R.L., 1996. Conflicting mineral and whole-rock isochron ages from the Late-Archaean Lewisian Complex of northwestern Scotland: Implications for geochronology in polymetamorphic high-grade terrains. Geochimica et Cosmochimica Acta 60 (16), 3085–3102. Whitehouse, M.J., Kamber, B., Moorbath, S., 1999. Age significance of U-Th-Pb zircon data from early Archaean rocks of west Greenland – a reassessment based on combined ion-microprobe and imaging studies. Chemical Geology 160, 201–224. Whitehouse, M.J., Kamber, B.S., Moorbath, S., 1999. Age significance of U-Th-Pb zircon data from early Archaean rocks of west Greenland – a reassessment based on combined ion-microprobe and imaging studies. Chemical Geology 160, 201–224. Whitehouse, M.J., Kamber, B.S., Fedo, C.M., Lepland, A., 2005. Integrated Pb- and Sisotope investigation of sulphide minerals from the early Archaean of southwest Greenland. Chemical Geology 222, 112–131. Whitehouse, M.J., Nagler, T.F., Moorbath, S., Kramers, J.D., Kamber, B.S., Frei, R., 2001. Priscoan (4.00–4.03 Ga) orthogneisses from northwestern Canada – by Samuel A. Bowring and Ian S. Williams: Discussion. Contributions to Mineralogy and Petrology 141, 248–250. Widdel, F., Schnell, S., Heising, S., Ehrenreich, A., Assmus, B., Schink, B., 1993. Ferrous iron oxidation by anoxygenic phototrophic bacteria. Nature 362, 834–836. Wiedenbeck, M., 1990. The duration of tectono-thermal episodes in the late Archaean: constraints from the northwestern Yilgarn Craton, Western Australia. In: Third International Archaean Symposium, Extended Abstracts, Geoconferences, Perth, pp. 477–479. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 dpg15 v.2007/06/04 Prn:5/06/2007; 11:41 F:dpg15ref.tex; VTEX/zk p. 165 aid: dpg15ref pii: S0166-2635(07)15094-5 docsubty: MISC References 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 165 Wijbrans, J.R., McDougall, I., 1987. On the metamorphic history of an Archaean granitoid greenstone terrane, East Pilbara, Western Australia, using the 40 Ar/39 Ar age spectrum technique. Earth and Planetary Science Letters 84, 226–242. Wilde, S.A., 1980. The Jimperding Metamorphic Belt in the Toodyay area and the Balingup Metamorphic Belt and associated granitic rocks in the Southwestern Yilgarn Block. Geological Society of Australia, W.A. Division, Excursion Guide, 41 pp. Wilde, S.A., 2001. Jimperding and Chittering metamorphic belts, southwestern Yilgarn Craton, Western Australia – a field guide. In: Western Australia Geological Survey, Record 2001/12, 24 pp. Wilde, S.A., Low, G.H., 1978. Perth, W.A. Western Australia Geological Survey, 1:250,000. Geological Series Explanatory Notes, 36 pp. Wilde, S.A., Pidgeon, R.T., 1990. Geology of the Jack Hills metasedimentary rocks, In: Ho, S.E., Glover, J.E., Myers J.S., Muhling, J. (Eds.), Third International Archaean Symposium, Perth, Excursion Guidebook, University of Western Australia Publication 21, pp. 82–92. Wilde, S.A., Middleton, M.F., Evans, B.J., 1996. Terrane accretion in the southwestern Yilgarn Craton: evidence from a deep seismic crustal profile. Precambrian Research 78, 179–196. Wilde, S.A., Cawood, P.A., Wang, K.Y., 1997. The relationship and timing of granitoid evolution with respect to felsic volcanism in the Wutai Complex, NCC. In: Proceedings of the 30th International Geological Congress, Beijing, vol. 17. VSP International Science Publishers, Amsterdam, 75–87. Wilde, S.A., Valley, J.W., Peck, W.H., Graham, C.M., 2001. Evidence from detrital zircons for the existence of continental crust and oceans on the Earth 4.4 Gyr ago. Nature 409, 175–178. Wilde, S.A., Cawood, P.A., Wang, K.Y., Nemchin, A.A., 2005. Granitoid evolution in the Late Archaean Wutai Complex, NCC. Journal of Asian Earth Sciences 24, 597–613. Wilhelmij, H.R., Dunlop, J.S.R. 1984. A genetic stratigraphic investigation of the Gorge Creek Group in the Pilgangoora syncline. In: Muhling, J.R., Groves, D.I., Blake, T.S. (Eds.), Archaean and Proterozoic Basins of the Pilbara, Western Australia: Evolution and Mineralisation Potential. Geology Department and University Extension, Publication 9. University of Western Australia, pp. 68–88. Wilhelms, D.E., 1987. The Geological History of the Moon. United States Geological Survey, Professional Paper 1348, 302 pp. Wilhelms, D.E., 1990. Geologic mapping. In: Greeley, R., Batson, R.M. (Eds.), Planetary Mapping. Cambridge University Press, New York, pp. 208–260. Williams, D.A.C., Furnell, R.G., 1979. A reassessment of part of the Barberton type area. Precambrian Research 9, 325–347. Williams, H.R., Stott, G.M., Thurston, P.C., Sutcliffe, R.H., Bennett, G., Easton, R.M., Armstrong, D.K., 1992. Tectonic evolution of Ontario: Summary and synthesis. In: Thurston, P.C., Williams, H.R., Sutcliffe, R.H., Stott, G.M. (Eds.), Geology of Ontario. In: Ontario Geological Survey, Special Volume 4, Part 2, pp. 1255–1332. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 dpg15 v.2007/06/04 Prn:5/06/2007; 11:41 F:dpg15ref.tex; VTEX/zk p. 166 aid: dpg15ref pii: S0166-2635(07)15094-5 docsubty: MISC 166 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 References Williams, I.R., 1999. Geology of the Muccan 1:100,000 sheet. Western Australia Geological Survey, 1:100,000 Geological Series Explanatory Notes, 39 pp. Williams, I.R., 2001. Geology of the Warrawagine 1:100,000 sheet. Western Australia Geological Survey, 1:100,000 Geological Series Explanatory Notes, 33 pp. Williams, I.R., 2002. Geology of the Cooragoora 1:100,000 sheet. Western Australia Geological Survey, 1:100,000 Geological Series Explanatory Notes, 23 pp. Williams, I.R., Myers, J.S., 1987. Archaean geology of the Mount Narryer region Western Australia. Western Australia Geological Survey, Report 22, 32 pp. Williams, I.R., Walker, I.M., Hocking, R.M., Williams, S.J., 1983. Byro, W.A. Western Australia Geological Survey, 1:250,000 Geological Series Explanatory Notes, 1st ed., 27 pp. Williams, I.S., 2001. Response of detrital zircon and monazite, and their U-Pb isotopic systems, to regional metamorphism and host-rock partial melting, Cooma Complex, southeastern Australia. Australian Journal of Earth Sciences 48, 557–580. Williams, I.S., Collins, W.J., 1990. Granite-greenstone terranes in the Pilbara Block, Australia, as coeval volcano-plutonic complexes; evidence from U-Pb zircon dating of the Mount Edgar batholith. Earth and Planetary Science Letters 97, 41–53. Williams, I.S., Compston, W., Black, L.P., Ireland, T.R., Foster, J.J., 1984. Unsupported radiogenic Pb in zircon: a cause of anomalously high Pb-Pb, U-Pb and Th-Pb ages. Contributions to Mineralogy and Petrology 88, 322–327. Williams, S.J., 1986. Geology of the Gascoyne Province Western Australia. Western Australia Geological Survey, Report 15, 85 pp. Williams-Jones, G., Williams-Jones, A.E., Stix, J., 1998. The nature and origin of Venusian canali. Journal of Geophysical Research 103, 8545. Wilson, A.C. (Comp.) 1982. 1:250,000 Geological Map of Swaziland. Geological Survey and Mines Department, Mbabane, Swaziland. Wilson, A.H., 2003. A new class of silica enriched, highly depleted komatiites in the southern Kaapvaal Craton, South Africa. Precambrian Research 127, 125–141. Wilson, A.H., Carlson, R.W., 1989. A Sm-Nd and Pb isotope study of Archaean greenstone belts in the southern Kaapvaal Craton, South Africa. Earth and Planetary Science Letters 96 (1–2), 89. Wilson, A.H., Versfeld, J.A., 1992a. Magongolozi Formation. In: Johnson, M.R. (Ed.), Catalogue of South African Stratigraphic Units. South African Commission for Stratigraphy, Council for Geoscience, Pretoria, pp. 21–28. Wilson, A.H., Versfeld, J.A., 1992b. Witkop Formation. In: Johnson, M.R. (Ed.), Catalogue of South African Stratigraphic Units. South African Commission for Stratigraphy, Council for Geoscience, Pretoria, pp. 35–37. Wilson, A.H., Versfeld, J.A., 1994a. The early Archaean Nondweni greenstone belt, southern Kaapvaal Craton, South Africa, Part I: stratigraphy, sedimentology, mineralization and depositional environment. Precambrian Research 67, 243–276. Wilson, A.H., Versfeld, J.A., 1994b. The early Archaean Nondweni greenstone belt, southern Kaapvaal Craton, South Africa, Part II: characteristics of the volcanic rocks and constraints on magma genesis. Precambrian Research 67, 277–320. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 dpg15 v.2007/06/04 Prn:5/06/2007; 11:41 F:dpg15ref.tex; VTEX/zk p. 167 aid: dpg15ref pii: S0166-2635(07)15094-5 docsubty: MISC References 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 167 Wilson, A.H., Riganti, A., 1998. A fractionated komatiitic basalt lava lake sequence in the Nondweni greenstone belt. In: International Volcanological Conference. IAVCEI, Cape Town, p. 70. Wilson, A.H., Versfeld, J.A., Hunter, D.R., 1989. Emplacement, crystallization and alteration of spinifex-textured komatiitic basalt flows in the Archaean Nondweni greenstone belt, southern Kaapvaal Craton, South Africa. Contributions to Mineralogy ad Petrology 101, 301–317. Wilson, A.H., Shirey, S.B., Carlson, R.W., 2003. Archaean ultra-depleted komatiites formed by hydrous melting of cratonic mantle. Nature 423, 858–861. Wilson, J.F., 1981. The granite-greenstone shield, Zimbabwe. In: Hunter, D.R. (Ed.), Precambrian of the Southern Hemisphere, Elsevier, Amsterdam, pp. 454–488. Wilson, J.T., 1963. Continental drift. Scientific American 208, 86–100. Wilson, J.T., 1988. Convection tectonics: some possible effects upon the Earth’s surface of flow from the deep mantle. Canadian Journal of Earth Sciences 25, 1199–1208. Wilson, M., Downes, H., 1991. Tertiary-Quaternary extension-related alkaline magmatism in Western and Central Europe. Journal of Petrology 32, 811–849. Wilson, W.E., Murthy, V.R., 1976. Rb-Sr geochronology and trace element geochemistry of granulite facies rocks near Granite Falls, in the Minnesota River Valley. In: Proceedings and Abstracts, Institute on Lake Superior Geology, Annual Meeting no. 22, p. 69. Windley, B.F., 1995. The Evolving Continents, 3rd ed. John Wiley and Sons, Chichester, 526 pp. Windley, B.F., Bridgwater, D., 1971. The evolution of Archaean low- and high-grade terrains. In: Geological Society of Australia, Special Publication 3, pp. 33–46. Wingate, M.T.D., Morris, P.A., Pirajno, F., Pidgeon, R.T., 2005. Two large igneous provinces in Late Mesoproterozoic Australia. In: Wingate, M.T.D., Pisarevsky, S.A. (Eds.), Supercontinents and Earth Evolution Symposium. In: Geological Society of Australia, Abstracts, vol. 81, p. 151. Wingate, M.T.D., Pirajno, F., Morris, P.A., 2004. Warakurna large igneous province: a new Mesoproterozoic large igneous province in west-central Australia. Geology 32, 105– 108. Winther, T.K., Newton, R.C., 1991. Experimental melting of an hydrous low-K tholeiite: evidence on the origin of Archaean cratons. Bulletin of the Geological Society of Denmark 39. Winther, T.K., 1996. An experimentally based model for the origin of tonalitic and trondhjemitic melts. Chemical Geology 127, 43–59. Woese, C.R., Fox, G.E., 1977. Phylogenetic structure of Prokaryotic Domain – primary kingdoms. Proceedings of the National Academy of Sciences of the United States of America 74, 5088–5090. Woese (2000. Interpreting the universal phylogenetic tree. Proceedings of the National Academy of Sciences of the United States of America 97, 8392–8396. Wolf, R., Anders, E., 1980. Moon and Earth: Compositional differences inferred from siderophiles, volatiles and alkalies in basalts. Geochimica et Cosmochimica Acta 44, 2111–2124. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 dpg15 v.2007/06/04 Prn:5/06/2007; 11:41 F:dpg15ref.tex; VTEX/zk p. 168 aid: dpg15ref pii: S0166-2635(07)15094-5 docsubty: MISC 168 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 References Wood, B.E., Müller, H.-R., Zank, G.P., Linsky, J.L., 2002. Measured mass-loss rates of solar-like stars as a function of age and activity. Astrophysical Journal 574, 412–425. Wooden, J.L., Mueller, P.A., 1988. Pb, Sr, and Nd isotopic compositions of a suite of Late Archean, igneous rocks, eastern Beartooth Mountains: implications for crust-mantle evolution. Earth and Planetary Science Letters 87, 59–72. Wooden, J.L., Goldich, S.S., Suhr, N.H., 1980. Origin of the Morton Gneiss, southwestern Minnesota: part 2. Geochemistry. In: Geological Society of America, Special Paper 182, pp. 57–76. Wooden, J.L., Mueller, P.A., Mogk, D., 1988a. A review of the geochemistry and geochronology of the Archean rocks of the northern part of the Wyoming Province. In: Ernst, W. (Ed.), Metamorphism and Crustal Evolution in the Western US. Prentice Hall, Englewood Cliffs, NJ, pp. 383–410. Wooden, J.L., Mueller, P.A., Mogk, D., Bowes, D.R., 1988b. A review of the geochemistry and geochronology of the Archean rocks of the Beartooth Mountains. In: Montana Bureau of Mines and Geology, Special Publication 96, pp. 23–42. Woosley, S.E., Weaver, T.A., 1986. The physics of supernova explosions. Annual Review of Astronomy and Astrophysics 24, 205–253. World Impact List. Geological Survey of Canada and University of New Brunswick. Wronkiewicz, D.J., Condie, K.C., 1987. Geochemistry of Archean shales from the Witwatersrand Supergroup, South Africa: Source-area weathering and provenance. Geochimica et Cosmochimica Acta 51, 2401–2416. Wu, C.M., Zhang, J., Ren, L.D., 2004. Empirical garnet-biotite-plagioclase-quartz (GBPQ) geobarometry in medium- to high-grade metapelites. Journal of Petrology 45, 1907– 1921. Wu, F.Y., Zhao, G.C., Wilde, S.A., Sun, D.Y. 2005a. Nd isotopic constraints on crustal formation in the North China Craton. Journal of Asian Earth Sciences 24, 523–545. Wu, F.Y., Yang, J.H., Liu, X.M., Li, T.S., Xie, L.W., Yang, Y.H., 2005b. Hf isotopes of the 3.8 Ga zircons in eastern Hebei Province, China: Implications for early crustal evolution of the NCC. Chinese Science Bulletin 50, 2473–2480. Wu, J.S., Geng, Y.S., Shen, Q.H., Liu, D.Y., Li, Z.L., Zhao, D.M., 1991. Important Geological Events in the Early Precambrian North China Platform. Geological Publishing House, Beijing, 115 pp. (in Chinese). Wu, J.S., Geng, Y.S., Shen, Q.H., Wan, Y.S., Liu, D.Y., Song, B., 1998. Archaean Geology Characteristics and Tectonic Evolution of China-Korea Paleo-Continent. Geological Publishing House, Beijing, 211 pp. (in Chinese). Wünnemann, K., Ivanov, B.A., 2003. Numerical modelling of impact crater depth-diameter dependence in an acoustically fluidised target. Planetary and Space Science 51, 831– 845. Wuth, M., 1980. The geology and mineralization potential of the Oorschot-Weltevreden schist belt south-west of Barberton - Eastern Transvaal. M.Sc. thesis. University of the Witwatersrand, Johannesburg, 185 pp. Wyatt, B.A., Mitchell, M., White, B., Shee, S.R., Griffin, W.L., Tomlinson, N., 2002. The Brockman Creek kimberlite, east Pilbara, Australia. In: Extended Abstracts of the 4th 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 dpg15 v.2007/06/04 Prn:5/06/2007; 11:41 F:dpg15ref.tex; VTEX/zk p. 169 aid: dpg15ref pii: S0166-2635(07)15094-5 docsubty: MISC References 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 169 International Archean Symposium, AGSO – Geoscience Australia Record 2001/37, pp 208–211. Wyche, S., 2003. Menzies, W.A. Western Australia Geological Survey, 1:250,000 Geological Series Explanatory Notes, 2nd ed., 38 pp. Wyche, S., Nelson, D.R., Riganti, A., 2004. 4350–3130 Ma detrital zircons in the Southern Cross granite-greenstone terrane, Western Australia: implications fr the early evolution of the Yilgarn Craton. Australian Journal of Earth Sciences 51, 31–45. Wyllie, P.J., 1971. The Dynamic Earth. John Wiley & Sons, Inc., New York, 416 pp. Wyllie, P.J., 1977. Effects of H2O and CO2 on magma generation in the crust and the mantle. Journal of the Geological Society London 134, 215–234. Wyllie, P.J., Wolf, M.B., van der Laan, S.R., 1997. Conditions for formation of tonalites and trondhjemites: magmatic sources and products. In: de Wit, M.J., Ashwahl, L.D. (Eds.), Tectonic Evolution of Greenstone Belts. Oxford University Press, pp. 256–266. Wyman, D.A., Kerrich, R., 2002. Formation of Archean continental lithospheric roots: the role of mantle plumes. Geology 30, 543–546. Wyman, D.A., Kerrich, R., Polat, A., 2002. Assembly of Archean cratonic mantle lithosphere and crust: plume-arc interaction in the Abitibi-Wawa subduction-accretion complex. Precambrian Research 115, 37–62. Wu, F-Y., Sun, D-Y., Li, H-M, Jahn, B-M., Wilde, S.A., 2002. A-type granites in northeastern China: Age and geochemical constraints on their petrogenesis. Chemical Geology 187, 143–173. Xia, L.-Q., Xu, X.-Y., Xia, Z.-C., Li, X.-M., Ma, Z.-P., Wang, L.-S., 2003. Carboniferous post-collisional rift volcanism of the Tianshan mountains, northwestern China. Acta Geological Sinica 77, 338–360. Xiao, L., Xu, Y.G., Mei, H.J., Zheng, Y.F., He, B., Pirajno, F., 2004. Distinct mantle sources of low-Ti and high Ti basalts from the western Emeishan large igneous province, SW China: implications for plume-lithosphere interaction. Earth and Planetary Science Letters 228, 525–546. Xie, X., Byerly, G.R., Ferrell, R.E., 1997. IIb trioctahedral chlorite from the Barberton greenstone belt: crystal structure and rock composition constraints with implications for geothermometry. Contributions Mineralogy and Petrology 126, 275–291. Xiong, J., Fischer, W.M., Inoue, K., Nakahara, M., Bauer, C.E., 2000. Molecular evidence for the early evolution of photosynthesis. Science 289, 1724–1730. Xiong, X.L., Adam, J., Green, T.H., 2005. Rutile stability and rutile/melt HFSE partitioning during partial melting of hydrous basalt: implications for TTG genesis. Chemical Geology 218, 339–359. Xu, W.L., Wang, Q.H., Liu, X.C., Wang, D.Y., Guo, J.H., 2004a. Chronology and sources of Mesozoic intrusive complexes in the Xuzhou-Huainan region, central China, constraints from SHRIMP zircon U-Pb dating. Acta Geologica Sinica 78, 96–106. Xu, W.L., Wang, Q.H., Wang, D.S., Pie, F.P., Gao, S., 2004b. Processes and mechanism of Mesozoic lithospheric thinning in eastern NCC: Evidence from Mesozoic igneous rocks and deep-seated xenoliths. Earth Science Frontiers 11, 309–317 (in Chinese with English abstract). 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 dpg15 v.2007/06/04 Prn:5/06/2007; 11:41 F:dpg15ref.tex; VTEX/zk p. 170 aid: dpg15ref pii: S0166-2635(07)15094-5 docsubty: MISC 170 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 References Xu, Y-G., 2001. Thermo-tectonic destruction of the Archaean lithospheric keel beneath the Sino-Korean Craton in China: evidence, timing and mechanism. Physics and Chemistry of the Earth 26, 747–757. Yamaguchi, A., Taylor, G.J., Keil, K., 1996. Global crustal metamorphism of the eucrite parent body. Icarus 124, 97–112. Yamaguchi, A., Taylor, G.J., Keil, K., 1997. Metamorphic history of the eucrite crust of 4 Vesta. Journal of Geophysical Research 102, 13,381–13,386. Yang, S.-F., Chen, H.-L., Li, Z.-L., Dong, C.-W., Jia, C.-Z., Wei, G.-Q., 2006. Early to Middle Permian magmatism in the Tarim Basin. In: International Conference on Continental Volcanism, IAVCEI 2006, Guangzhou, China, Abstracts & Program, p. 54. Yanshin, A.L., Borukaev, Ch.B. (Eds.), 1988. Tectonics and Evolution of the Earth’s ăCrust in Siberia. In: Transactions of the Institute of Geology and Geophysics, vol. 173. Nauka, Novosibirsk, 175 pp. (in Russian). Yashchenko, N.Y., Shekhotikin, V.V., 2000. New data on the tectonomagmatic history of the Ukrainian Shield (Ingul-Ingulets region). Litasfera 12, 76–84. Yaxley, G.M., Green, D.H., 1998. Reactions between eclogite and peridotite: mantle refertilisation by subduction of oceanic crust. Schweizerische Mineralogische und Petrographische Mitteilungen 78, 243–255. Yearron, L.M., 2003. Archaean granite petrogenesis and implications for the evolution of the Barberton mountain land, South Africa. Ph.D., thesis. Kingston University, Kingtson, UK, 315 pp. Yin, Q-C., 2005. From dust to planets: The tale told by moderately volatile elements in Chondrites and the Protoplanetary Disk. In: Astronomical Society of the Pacific, Conference Series, vol. 341, pp. 632–644. Yoder, C.F., 1997. Venusian spin dynamics. In: Bouger, S.W., Hunten, D.M., Phillips, R.J. (Eds.), Venus II. University of Arizona Press, Tucson, AZ, pp. 1087–1124. Yokochi, R., Marty, B., 2005. Geochemical constraints on mantle dynamics in the Hadean. Earth and Plateary Science Letters 238, 17–30. York, D., Layer, P.W., Lopez Martinez, M., Kröner, A., 1989. Thermal histories from the Barberton greenstone belt, southern Africa, In: International Geological Congress, Washington, DC, p. 413. Young, C., 1997. Footwall alteration at the Sulphur Springs Zn-Cu volcanic-hosted massive sulfide (VHMS) prospect, east Pilbara, Western Australia. Unpublished B.Sc. Honours thesis. University of Western Australia, Perth, 135 pp. Young, D.A., Hansen, V.L., 2005. Poludnista Dorsa, Venus: History and context of a deformation belt. Journal of Geophysical Research 110, doi:10.1029/2004JE002280. Young, D.L., 1987. A kinematic interpretation of ductile deformation and shear-induced quartz c-axis fabric development in the Montevideo Gneiss near Granite Falls, S.W. Minnesota. M.S. thesis. University of Missouri, Columbia, 201 pp. Young, D.N., Black, L.P., 1991. U-Pb zircon dating of Proterozoic igneous charnockites from the Mawson coast, east Antarctica. Antarctic Science 3, 205–216. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 dpg15 v.2007/06/04 Prn:5/06/2007; 11:41 F:dpg15ref.tex; VTEX/zk p. 171 aid: dpg15ref pii: S0166-2635(07)15094-5 docsubty: MISC References 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 171 Young, E.D., Glay, A., Nagahara, H., 2002. Kinetic and equilibrium mass-dependent isotope fractionation laws in nature and their geochemical and cosmochemical significance. Geochimica et Cosmochimica Acta 66, 1095–1104. Young, E.D., Simon, J.I., Galy, A., Russell, S.S., Tonui, E., Lovera, O., 2005. Supracanonical 26 Al/27 Al and the residence time of CAIs in the solar protoplanetary disk. Science 308, 223–227. Young, G.M., von Brun, V., Gold, D.J.C., Minter, W.E.L., 1998. Earth’s oldest reported glaciation: Physical and chemical evidence from the Archaean Mozzan Group (∼2.9 Ga) of South Africa. Journal of Geology 106, 523–538. Young, M.D., McNicoll, V., Helmstaedt, H., Skulski, T., Percival, J.A., 2006. Pickle Lake revisited: new structural, geochronological and geochemical constraints on greenstone belt assembly, western Superior Province, Canada. Canadian Journal of Earth Sciences 43, 821–847. Zachariah, J.K., 1998. A 3.1 billion year old marble and the 87 Sr/86 Sr of late Archean seawater. Terra Nova 10, 312–316. Zahnle, K.J., 2006. Earth’s earliest atmosphere. Elements 2, 217–222. Zamora, D., 2000. Fusion de la croûte océanique subductée : approche expérimentale et géochimique. Ph.D. thesis. Université Blaise-Pascal, Clermont-Ferrand, France, 314 pp. Zandt, G., Ammon, C.J., 1995. Continental crust composition constrained by measurements of crustal Poisson’s ratio. Nature 374, 152–154. Zartman, R.E., Doe, B.R., l98l. Plumbotectonics – the model. Tectonophysics 75, l35-l62. Zartman, R.E., Jagoutz, E., Bowring, S.A., 2006. Pb-Pb dating of the D’Orbigny and Asuka 881371 angrites and a second absolute time calibration of the Mn-Cr chronometer. Lunar and Planetary Science XXXVII, abstract 1580. Zeh, A., Klemd, R., Buhlmann, S., Barton Jr., J.M., 2004. Pro- and retrograde P-T evolution of granulites of the Beit Bridge Complex (Limpopo Belt, South Africa): constraints from quantitative phase diagrams and geotectonic implications. Journal of Metamorphic Geology 22, 79- 95. Zegers, T.E., 1996. Structural, Kinematic and Metallogenic Evolution Selected Domains of the Pilbara Granitoid-Greenstone Terrain. Geologica Ultraiectina, Mededelingen van de Faculteit Aardwetenschappen, Universiteit Utrecht, No. 146, 208 pp. Zegers, T.E., van Keken, P.E., 2001. Middle Archean continent formation by crustal delamination. Geology 29, 1083–1086. Zegers, T.E., White, S.H., de Keijzer, M., Dirks, P., 1996. Extensional structures during deposition of the 3460 Ma Warrawoona Group in the eastern Pilbara Craton, Western Australia. Precambrian Research 80, 89–105. Zegers, T.E., de Keijzer, M., Passchier, C.W., White, S.H., 1998. The Mulgandinnah shear zone; an Archean crustal-scale strike-slip zone, eastern Pilbara, Western Australia. Precambrian Research 88, 233–248. Zegers, T.E., de Wit, M.J., Dann, J., White, S.H., 1998b. Vaalbara, the Earth’s oldest assembled continent? A combined structural, geochronological, and paleomagnetic test. Terra Nova 10, 250–259. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 dpg15 v.2007/06/04 Prn:5/06/2007; 11:41 F:dpg15ref.tex; VTEX/zk p. 172 aid: dpg15ref pii: S0166-2635(07)15094-5 docsubty: MISC 172 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 References Zegers, T.E., Wijbrans, J.R., White, S.H., 1999. 40 Ar/39 Ar age constraints on tectonothermal events in the Shaw area of the eastern Pilbara granite-greenstone terrain (W. Australia): 700 Ma of Archaean tectonic evolution. Tectonophysics 311, 45–81. Zegers, T.E., Nelson, D.R., Wijbrans, J.R., White, S.H., 2001. SHRIMP U-Pb zircon dating of Archean core complex formation and pancratonic strike-slip deformation in the East Pilbara Granite-Greenstone Terrain. Tectonics 20, 883–908. Zegers, T.E., Barley, M.E., Groves, D.I., McNaughton, N.J., White, S.H., 2002. Oldest gold: deformation and hydrothermal alteration in the early Archean shear-zone hosted Bamboo Creek Deposit, Pilbara, Western Australia. Economic Geology 97, 757–773. Zhai, M., Kampunzu, A.B., Modisi, M.P., Bagai, Z., 2006. Sr and Nd isotope systematics of Francistown plutonic rocks, Botswana: implications for Neoarchaean crustal evolution of the Zimbabwe craton. International Journal of Earth Sciences 95 (3), 355–369. Zhang, S.B., Zheng, Y.F., Wu, Y.B., Zhao, Z.F., Gao, S., Wu, F.Y., 2006. Zircon isotope evidence for 3.5 Ga continental crust in the Yangtze craton of China. Precambrian Research 146 (1–2), 16–34. Zhang, Z-C., Mahoney, J.J., Mao, J-W., Wang, F-S., 2006. Geochemistry of picritic and associated basalt flows of the Western Emeishan Flood Basalt province, China. Journal of Petrology, doi:10.1093/petrology/eg1034. Zhao, G.C., Cawood, P.A., Wilde, S.A., Lu, L.Z., 2001a. High-pressure granulites (retrograded eclogites) from the Hengshan complex, NCC: petrology and tectonic implications. Journal of Petrology 42, 1141–1170. Zhao, G.C., Cawood, P.A., Wilde, S.A., Sun, M., Lu, L.Z., 2000. Metamorphism of basement rocks in the central zone of the NCC: implications for Palaeoproterozoic tectonic evolution. Precambrian Research 103, 55–88. Zhao, G.C., Sun, M., Wilde, S.A., 2003. Major tectonic units of the NCC and their Palaeoproterozoic assembly. Science in China Series D 46, 23–38. Zhao, G.C., Sun, M., Wilde, S.A., Li, S.Z., 2005. Late Archaean to Palaeoproterozoic evolution of the NCC: key issues revisited. Precambrian Research 136, 177–202. Zhao, G.C., Wilde, S.A., Cawood, P.A., Sun, M., 2001b. Archaean blocks and their boundaries in the NCC: Lithological geochemical, structural and P-T path constraints and tectonic evolution. Precambrian Research 107, 45–73. Zhao, G.C., Wilde, S.A., Cawood, P.A., Sun, M., 2002. SHRIMP U-Pb zircon ages of the Fuping complex: implications for Late Archaean to Palaeoproterozoic accretion and assembly of the NCC. American Journal of Science 302, 191–226. Zhao, G.C., Wilde, S.A., Li, S.Z., Sun, M., Grant, M.L., Li, X.P., in press. The Dongwanzi ultramafic-mafic intrusion (North China) is not an Archean ophiolite. Earth and Planetary Science Letters. Zhao, J-X., McCulloch, M.T., Korsch, R.J., 1994. Characterisation of a plume-related ∼800 Ma magmatic event, and its implications for basin formation in central-southern Australia. Earth and Planetary Science Letters 21, 349–367. Zhou, T.-F., Yuan, F., Tan, L.-G., Fan, Y., Yue, S.-C., 2006. Geodynamic significance of the A-type granites in the Sawuer region in west Junggar, Xinjiang: rock geochemistry and SHRIMP zircon age evidence. Science in China Ser. D 49, 113–23 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 dpg15 v.2007/06/04 Prn:5/06/2007; 11:41 F:dpg15ref.tex; VTEX/zk p. 173 aid: dpg15ref pii: S0166-2635(07)15094-5 docsubty: MISC References 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 173 Zhao, T.P., Zhai, M.G., Xia, B., Li, H.M., Zhang, Y.X., Wan, Y.S., 2004. SHRIMP dating of zircon from volcanic rocks of the Xiong’er Group: Constraints on the beginning of cover development in the NCC. Chinese Science Bulletin 49, 2342–2349. Zhao, Z.P., 1993. Precambrian Crustal Evolution of Sino-Korea Platform. Science Press, Beijing, 444 pp. Zheng, J.P., Griffin, W.L., O’Reilly, S.Y., Lu, F.X., Wang, C.Y., Zhang, M., Wang, F.Z., Li, H.M., 2004a. 3.6 Ga lower crust in central China: New evidence on the assembly of the NCC. Geology 32, 229–232. Zheng, J.P., Griffin, W.L., O’Reilly, S.Y., Lu, F.X., Yu, C.M., Zhang, M., Li, H.M., 2004b. U-Pb and Hf-isotope analysis of zircons in mafic xenoliths from Fuxian kimberlites: evolution of the lower crust beneath the NCC. Contributions to Mineralogy and Petrology 148, 79–103. Zheng, J.P., Griffin, W.L., O’Reilly, S.Y., Zhang, M., Pearson, N.J., Luo, Z., 2006a. The lithospheric mantle beneath the southern Tianshan area, NW China. Contributions to Mineralogy and Petrology 151, 457–479. Zheng, J.P., Griffin, W.L., O’Reilly, S.Y., Zhang, M., Pan, Y., Pearson, N.J., Lin, G., 2006b. Widespread Archean basement beneath the Yangtze Craton. Geology 34, 417–420. Zhuravlev, D.Z., Rosen, O.M., 1991. Sm-Nd age of metasediments among granulites of the Anabar shield. Doklady Earth Sciences 317 (1), 189–193. Zhuravlev, D.Z., Puchtel, I.S., Samsonov, A.V., 1989. Sm-Nd age and geochemistry of the Olondo greenstone belt volcanics. Izvestiya Academy of Sciences USSR, Geology Ser. (2), 39–49. Zierenberg, R.A., Schiffman, P., Jonasson, I.R., Tosdal, R., Pickthorn, W., McClain, J., 1995. Alteration of basalt hyaloclastite at the off-axis Sea Cliff hydrothermal field, Gorda Ridge. Chemical Geology 126, 77–99. Zimbelman, J.R., 2001. Image resolution and evaluation of genetic hypotheses for planetary landscapes. Geomorphology 37, 179–199. Zindler, A., Hart, R.A., 1986. Chemical geodynamics. Annual Review of Earth and Planetary Sciences 14, 493–571. Zlobin, V.L., Zhuravlev, D.Z., Rosen, O.M., 1999. Sm-Nd-model age of metacarbonate - gneiss formation of granulite complex in the western Anabar shield, Polar Siberia. Doklady Earth Sciences 368 (1), 95–98. Zmolek, P., Xu, X.P., Jackson, T., Thiemens, M.H., Trogler, W.C., 1999. Large mass independent sulfur isotope fractionations during the photopolymerization of (CS2 )−12 C and (CS2 )−13 C. Journal of Physical Chemistry A 103, 2477–2480. Zolensky, M., Bodnar, R.J., Gibson Jr., E.K., Nyquist, L.E., Reese, Y., Shih, C-Y., Wiesmann, H., 1999. Asteroidal water within fluid inclusion-bearing halite in an H5 chondrite, Monahans (1998). Science 285, 1377–1379. Zonenshain, L.P., Kuzmin, V.I., Natapov, L.M., 1989. Geology of the USSR, a Plate Tectonic Synthesis. In: American Geophysical Union, Geodynamics Series, vol. 21. Washington, DC, 242 pp. Zuber, M.T., 1987. Constraints on the lithospheric structure of Venus from mechanical models and tectonic surface features. Journal of Geophysical Research 92, E541–E551. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 dpg15 v.2007/06/04 Prn:5/06/2007; 11:41 F:dpg15ref.tex; VTEX/zk p. 174 aid: dpg15ref pii: S0166-2635(07)15094-5 docsubty: MISC 174 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 References Zuber, M.T., 1990. Ridge belts: Evidence for regional- and local-scale deformation on the surface of Venus. Geophysical Research Letters 17, 1369–1372. Zwanzig, H.V., 2005. Geochemistry, Sm-Nd isotope data and age constraints of the Bah Lake assemblage, Thompson Nickel Belt and Kisseynew Domain margin: relation to Thompson-type ultramafic bodies and a tectonic model. In: Report of Activities 2005, Manitoba Industry, Economic Development and Mines, Manitoba Geological Survey, pp. 40–53. Zwanzig, H.V., 1990. Kisseynew gneiss belt in Manitoba: stratigraphy, structure, and tectonic evolution. In: Lewry, J.F., Stauffer, M.R. (Eds.), The Early Proterozoic TransHudson Orogen of North America. In: Geological Association of Canada, Special Paper 37, pp. 95–120. Zwanzig, H.V., Böhm, C.O., Etcheverry, J., 2001. Superior Boundary Zone-Reindeer Zone transition in the Pearson Lake-Odei River-Mystery Lake region (parts of NTS 63P and 64O). In: Report of Activities 2001, Manitoba Industry, Trade and Mines, Manitoba Geological Survey, pp. 51–56. Zwanzig, H.V., Böhm, C.O., 2002. Tectonostratigraphy, Sm-Nd isotope and U-Pb age data of the Thompson Nickel Belt and Kisseynew north and east margins (NTS 63J, 63P, 63Q, 64A, 64B). In: Report of Activities 2004, Manitoba Industry, Trade and Mines, Manitoba Geological Survey, pp. 102–114. Zwanzig, H.V., Böhm, C.O., 2004. Northern extension of the Thompson Nickel Belt, Manitoba (NTS 64A3 and 4). In: Report of Activities 2004, Manitoba Industry, Economic Development and Mines, Manitoba Geological Survey, pp. 115–119. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 23 24 24 25 25 26 26 27 27 28 28 29 29 30 30 31 31 32 32 33 33 34 34 35 35 36 36 37 37 38 38 39 39 40 40 41 41 42 42 43 43
© Copyright 2026 Paperzz