Cu(H2O)62+ 11 Co(H2O)62+ Ni(H2O)62+ Fe(H2O)62+ Coordination Chemistry III: Electronic Spectra Wheel of Color absorption spectrum of [Cu(H2O)6]2+ Beer-Lambert Law -log(I/I0) = A = elc : Absorbance I/I0 : transmittance e : molar absorptivity (Lmol-1cm-1) Wheel of Color absorption spectrum of [Cu(H2O)6]2+ Beer-Lambert Law -log(I/I0) = A = elc : Absorbance I/I0 : transmittance e : molar absorptivity (Lmol-1cm-1) Wheel of Color absorption spectrum of [Cr(NH3)6]3+ (d3) eg t2g absorption spectrum of [Cu(H2O)6]2+ eg Why 4 or 2 bands? t2g Wheel of Color Because the transitions occur between states. An electron configuration can have several states. Possible states (microstates) of carbon (1s22s22p2) absorption spectrum of [Cr(NH3)6]3+ (d3) eg absorption spectrum of [Cu(H2O)6]2+ and many others ..... 2 (think Pc and Pe) Why 4 or bands? t2g eg t2g Strategy to understand the electronic spectra of complexes 1. Determine free-ion (or in uniform field) term symbols. 2. Determine how these terms split in a weak field. 3. Determine how these terms split in a strong field. 4. Correlate these with Tanabe-Sugano diagram. Terms : energy levels (or states) of a particular configuration Quantum numbers of single electron atoms (ions) Terms (Term Symbols) Quantum numbers of single electron atoms (ions) Y = Rnl(r)·Q lm (q)·Flm (f)·ym l l s n : principal quantum number (n = 1,2,3,4....) l : (orbital) angular momemtum quantum number (l = 0, 1,...., n-1) ml : angular momemtum magnetic quantum number (l = -n, -n+1,...., n) ms : spin magnetic quatum number (ms = -½ , ½ ) Terms (Term Symbols) Quantum numbers of multielectron atoms (ions) Quantum numbers of multielectron atoms (ions) Two schemes for describing interactions (couplings) between electrons 1. Russell-Saunders coupling (L-S coupling) a. Orbit-orbit interaction (coupling) : ML = Sml L : total orbital angular momentum quantum number b. Spin-spin interaction (coupling) : MS = Sms S : total spin angular momentum quantum number c. L-S coupling : J = L + S : total angular moment quantum number 2. j-j coupling (spin-orbit interaction) jn = ln + sn J = Sjn : total angular moment quantum number In light atoms, the interactions between the orbital angular momenta of individual electrons is stronger than the spin-orbit coupling between the spin and orbital angular momenta. These cases are described by "L-S coupling". However, for heavier elements with larger nuclear charge, the spin-orbit interactions become as strong as the interactions between individual spins or orbital angular momenta. We won't study the latter in this course. Terms (Term Symbols) Quantum numbers of multielectron atoms(ions) Quantum numbers of multielectron atoms (ions) Russell-Saunders coupling (L-S coupling) a. Orbit-orbit interaction (coupling) : ML = Sml L : total orbital angular momentum quantum number b. Spin-spin interaction (coupling) : MS = Sms S : total spin angular momentum quantum number c. L-S coupling : J = L + S : total angular moment quantum number J = |L-S|, |L-S|+1, ... , L+S Terms (Term Symbols) Free Ion Term Symbols Quantum numbers of multielectron atoms (ions) Russell-Saunders coupling (L-S coupling) a. Orbit-orbit interaction (coupling) : ML = Sml L : total orbital angular momentum quantum number b. Spin-spin interaction (coupling) : MS = Sms S : total spin angular momentum quantum number c. L-S coupling : J = L + S : total angular moment quantum number J = |L-S|, |L-S|+1, ... , L+S Term symbol 2S+1L J 2S+1 : spin multiplicity States : L = 0 (S), 1(P), 2(D), 3(F), 4(G), 5(H), 6(I),... Terms (Term Symbols) Free Ion Term Symbols 1S MS = 0 2S MS = -1/2 MS = +1/2 ML=0 x ML=0 x x 1 microstate 2 microstates 3P MS = 1 MS = 0 MS = -1 ML=1 x x x ML=0 x x x ML=-1 x x x 9 microstates Term symbol 2S+1L J 2S+1 : spin multiplicity States : L = 0 (S), 1(P), 2(D), 3(F), 4(G), 5(H), 6(I),... Terms (Term Symbols) Free Ion Term Symbols A systematic approach to term symbols 1. Determine the possible values of ML and MS. 2. Determine the electron configurations that are allowed by the Pauli principle. 3. Set up a chart of microstates. 4. Resolve the chart of microstates into appropriate atomic states (terms). Possible states (microstates) of carbon (1s22s22p2) 1s 2s 2p ml 0 0 1 0 ms +½ -½ +½ -½ +½ +½ (1+, 0+) -1 1s 2s 2p 0 0 1 +½ -½ +½ -½ +½ -½ 0 (1+, 1-) -1 p2 Terms (Term Symbols) Free Ion Term Symbols A systematic approach to term symbols 1. Determine the possible values of ML and MS. 2. Determine the electron configurations that are allowed by the Pauli principle. 3. Set up a chart of microstates. 4. Resolve the chart of microstates into appropriate atomic states (terms). p2 l1 = l2 = 1 s1 = s 2 = ½ ML = 2, 1, 0, -1, -2 MS = 1, 0, -1 Terms (Term Symbols) Free Ion Term Symbols A systematic approach to term symbols 1. Determine the possible values of ML and MS. 2. Determine the electron configurations that are allowed by the Pauli principle. 3. Set up a chart of microstates. 4. Resolve the chart of microstates into appropriate atomic states (terms). 1. Max MS = 0 : S = 0 MS = 0 Max ML = 2 : L = 2 ML = 2,1,0,-1,-2 1D ( 5 microstates) 2. Max MS = 1 : S = 1 MS = 1,0,-1 Max ML = 1 : L = 1 ML = 1,0,-1 3P ( 9 microstates) 3. Max MS = 0 : S = 0 MS = 0 Max ML = 0 : L = 0 ML = 0 1S ( 1 microstate) Terms (Term Symbols) Free Ion Term Symbols A systematic approach to term symbols 1. Determine the possible values of ML and MS. 2. Determine the electron configurations that are allowed by the Pauli principle. 3. Set up a chart of microstates. 4. Resolve the chart of microstates into appropriate atomic states (terms). p2 1D 1D 2 3P 3P ,3P ,3P 2 1 0 1S 1S 0 mJ = 0 mJ = 0 mJ = 2,1,0,-1,-2 mJ = 1,0,-1 mJ = 2,1,0,-1,-2 How about energy levels? Terms (Term Symbols) Free Ion Term Symbols Hund's rule (for groundstate term symbol) 1. The term with maximum multiplicity lies lowest in energy 2. For a given multiplicity, the term with the largest value of L lies lowest in energy. 3. For atoms with less than half-filled shells, the level with the lowest value of J lies lowest in energy. When the shell is more than half full, the opposite rule holds (highest J lies lowest). p2 1S 1S 0 1S, 1D 1D 1D 1D 2 3P 2 3P 1S 1D 2 p2 3P 3P 3P 1 3P 0 3P ,3P ,3P 2 1 0 1S 0 mJ = 0 mJ = 0 mJ = 2,1,0,-1,-2 mJ = 1,0,-1 mJ = 2,1,0,-1,-2 How about energy levels? Terms (Term Symbols) p1 p2 p3 l1 = 1 s1 = ½ L=1 S=½ 2P (2P Free Ion Term Symbols 3/2, 2P 1/2) 1D(1D ), 3P(3P ,3P ,3P ), 1S(1S ) 2 2 1 0 0 l1 = l2 = l3 = 1 s 1 = s 2 = s3 = ½ ML = 3, 2, 1, 0, -1, -2, -3 MS = 3/2, 1/2, -1/2, -3/2 2D (2D , 2D ), 2P(2P , 5/2 3/2 3/2 p3 MS 3/2 ML 2P1/2) 4S (4S3/2) 1/2 -1/2 2 1+,1-,0+ 1+,1-,0- 1 (1+,0+,0-) (1+, 1-,-1+) (1-,0+,0-)(1+,1-,-1-) 1+,0+,-11+,0-,-1+ 1-,0+,-1+ 1+,0-,-11-,0+,-11-,0-,-1+ -1 xx xx -2 x x 0 1+,0+,-1+ -3/2 1-,0-,-1- Terms (Term Symbols) p1 p2 p3 l1 = 1 s1 = ½ L=1 S=½ l1 = l2 = l3 = 1 s 1 = s 2 = s3 = ½ same as p2 p5 same as p1 s1 d1 d1 2P (2P 3/2, 2P 1/2) 1D(1D ), 3P(3P ,3P ,3P ), 1S(1S ) 2 2 1 0 0 p4 p6 Free Ion Term Symbols L =0, S = 0 l1 = 0, l2 = 2 s1 = s 2 = ½ l1 = 2 s1 = ½ ML = 3, 2, 1, 0, -1, -2, -3 MS = 3/2, 1/2, -1/2, -3/2 1S (1S 0) L=2 S = 1, 0 L=2 S=½ 2D (2D , 2D ), 2P(2P , 5/2 3/2 3/2 3D (3D , 3D 3D ) 3 2, 1 1D (1D ) 2 2D (2D , 2P ) 5/2 3/2 2P1/2) 4S (4S3/2) Terms (Term Symbols) d2 l1 = l2 = 2 s1 = s 2 = ½ ML = 4, 3, 2, 1, 0, -1, -2, -3, -4 MS = 1, 0, -1 d2 terms MS 1 0 -1 1G 2+,2- 4 ML Free Ion Term Symbols 3 2+,1+ 2+,12-,1+ 2-,1- 3F 2 2+,0+ 2+,0- 2-,0+ 1+,1- 2-,0- 3P 1+,0+ 2+,-1+ 1+,0- 1-,0+ 2+,-1- 2-,-1+ 1-,02-,-1- 1+,-1+ 2+,-2+ 0+,01+,-1- 1-,-1+ 2+,-2- 2-,-2+ 1-,-12-,-2- 1 0 1S -1 x x x x x x x x -2 x x x x x -3 x x x x -4 x 1D 1S 1D d2 1G 3P 3F Terms (Term Symbols) d2 l1 = l2 = 2 s1 = s 2 = ½ Free Ion Term Symbols ML = 4, 3, 2, 1, 0, -1, -2, -3, -4 MS = 1, 0, -1 terms 1S 1G 1G d2 3F 3P 1D 1D 3P 3F 1S in reality 1S 1D by Hund's rule d2 1G 3P 3F Terms (Term Symbols) Free Ion Term Symbols Short-cut to ground-state term symbols : make max S and max L ml 2 1 0 -1 -2 d1 S = ½ , L=2 2D d2 S = 1 , L=3 3F d4 S = 2 , L=2 5D d7 S = 3/2 , L=3 4F Strategy to understand the electronic spectra of complexes 1. Determine free-ion (or in uniform field) term symbols. 2. Determine how these terms split in a weak field. 3. Determine how these terms split in a strong field. 4. Correlate these with Tanabe-Sugano diagram. Terms : energy levels (or states) of a particular configuration Splittings of free-ion terms in a chemical environment 2S+1E eg d In Weak Field g (doubly degenerate) spin multiplicity remains the same. 2S+1D t2g 2S+1T Oh Oh 2g (triply degenereate) Splittings of free-ion terms in a chemical environment In Weak Field Splitting of One-Electron Levels in Various Symmetries Levels Oh Td D4h s a1g a1 a1g p t1u t2 a2u+eu d eg+t2g e+t2 a1g+b1g+b2g+eg f a2u+t1u+t2u a2+t1+t2 a2u+b1u+b2u+2eu g a1g+eg+t1g+t2g a1+e+t1+t2 2a1g+a2g+b1g+b2g+2eg h eu+2t1u+t2u e+t1+2t2 a1u+2a2u+b1u+b2u+3eu i a1g+a2g+eg+t1g+2t2g a1+a2+e+t1+2t2 2a1g+a2g+2b1g+2b2g+3eg Splittings of free-ion terms in a chemical environment In Weak Field Splitting of Multi-Electron Levels in Various Symmetries Terms Oh Td D4h S A1g A1 A1g P T1g T1 A2g+Eg D Eg+T2g E+T2 A1g+B1g+B2g+Eg F A2g+T1g+T2g A2+T1+T2 A2g+B1g+B2g+2Eg G A1g+Eg+T1g+T2g A1+E+T1+T2 2A1g+A2g+B1g+B2g+2Eg H Eg+2T1g+T2g E+2T1+T2 A1g+2A2g+B1g+B2g+3Eg I A1g+A2g+Eg+T1g+2T2g A1+A2+E+T1+2T2 2A1g+A2g+2B1g+2B2g+3Eg * Assuming all free-ion terms arising from dn configurations. Splittings of free-ion terms in a chemical environment In Weak Field Splitting of Multi-Electron Levels in Various Symmetries Terms Oh S A1g P T1g D Eg+T2g F A2g+T1g+T2g G A1g+Eg+T1g+T2g 1S 1G d2 3P 1D 3F free-ion terms H Eg+2T1g+T2g I A1g+A2g+Eg+T1g+2T2g free-ion electron configuration in weak field (Oh) Strategy to understand the electronic spectra of complexes 1. Determine free-ion (or in uniform field) term symbols. 2. Determine how these terms split in a weak field. 3. Determine how these terms split in a strong field. 4. Correlate these with Tanabe-Sugano diagram. Terms : energy levels (or states) of a particular configuration Splittings of free-ion terms in a chemical environment In Strong Field eg2 t2geg d2 t2g2 In extremely (∞) strong field What will happen when the field relaxes? (Looking for splittings in strong field) Splittings of free-ion terms in a chemical environment eg2 In Strong Field (Oh) t2g2 T2g 3 0 1 -1 -1 3 -1 0 -1 1 T2g x T2g 9 0 1 1 1 9 1 0 1 1 T2g x T2g = A1g + Eg + T1g + T2g t2geg d2 number of the microstates of t2g2 configuration = 15 assume the spin multiplicities of the irreducible representations as T2g x T2g = aA1g + bEg + cT1g + dT2g t2g2 possible combinations of a, b, c, d number of microstates = a+2b+3c+3d (1,1,1,3), (1,1,3,1), (3,3,1,1), (2,2,2,1), (2,2,1,2), (1,1,2,2) In extremely (∞) strong field t2g2 1A1g + 1Eg + 1T1g +3T2g 1A + 1E + 3 T + 1T 1g g 1g 2g 3A + 3E + 1 T + 1T 1g g 1g 2g 2A + 2E + 2 T + 1T 1g g 1g 2g 2A + 2E + 1 T + 2T 1g g 1g 2g 2A + 2E + 1T + 2T 1g g 1g 2g no spin doublet in the free-ion terms 3 possiblities Splittings of free-ion terms in a chemical environment eg2 eg2 In Strong Field (Oh) Eg 2 -1 0 0 2 2 0 -1 2 0 Eg x Eg 4 1 0 0 4 4 0 1 4 0 Eg x Eg = A1g + A2g + Eg t2geg d2 number of the microstates of eg2 configuration = 6 assume the spin multiplicities of the irreducible representations as Eg x Eg = aA1g + bA2g + cEg t2g2 possible combinations of a, b, c number of microstates = a+b+2c (1,1,2), (2,2,1), (3,1,1), (1,3,1) In extremely (∞) strong field eg2 1A1g + 1A2g + 2A + 2A + 1g 2g 3A + 1A + 1g 2g 1A + 3A + 1g 2g 2E g 1E g 1E g 1E g no spin doublet in the free-ion terms 2 possiblities Splittings of free-ion terms in a chemical environment eg2 t2g1 eg1 Eg 2 -1 0 0 2 2 0 -1 2 0 T2g 3 0 1 -1 -1 3 -1 0 -1 1 T2g x Eg 6 0 0 0 -2 6 0 0 -2 0 T2g x Eg = T1g + T2g t2geg d2 In Strong Field (Oh) number of the microstates of t2geg configuration = 24 t2geg 1T1g + 1T2g + 3T1g + 3T2g t2g2 In extremely (∞) strong field Splittings of free-ion terms in a chemical environment eg2 In Strong Field (Oh) 3A + 1A + 1E 1g 2g g 1A + 3A + 1E 1g 2g g t2geg 1T 1g d2 t2g2 + 1T2g + 3T1g + 3T2g 1A + 1E + 1T +3T 1g g 1g 2g 1A + 1E + 3T + 1T 1g g 1g 2g 3A + 3E + 1T + 1T 1g g 1g 2g In extremely (∞) strong field in strong field (Oh) not complete yet but can imagine how to split in strong field !! Strategy to understand the electronic spectra of complexes 1. Determine free-ion (or in uniform field) term symbols. 2. Determine how these terms split in a weak field. 3. Determine how these terms split in a strong field. 4. Correlate these with Tanabe-Sugano diagram. Terms : energy levels (or states) of a particular configuration Splittings of free-ion terms in a chemical environment eg2 Correlation 3A + 1A2g + 1Eg 1A + 3A + 1E 1g 2g g 3A + 1A + 1E 1g 2g g 1A + 3A + 1E 1g 2g g 1g eg2 how to correlate t2geg d2 t2g2 1. 1-to-1 correspondence between the states at weak field and strong field 1T + 1T + 3T + 3T 1g non-crossing 2g 1grule :2g 2. states of the same spin degeneracy and symmetry cannot cross. 1A + 1E + 1T +3T 1g g 1g 2g 1A + 1E + 3T + 1T 1g g 1g 2g 3A + 3E + 1T + 1T 1g g 1g 2g In extremely (∞) strong field in strong field (Oh) in weak field (Oh) 1T 1g + 1T 2g + 3T 1g + 3T 2g 1A + 1E + 1T +3T 1g g 1g 2g 1A + 1E + 3T + 1T 1g g 1g 2g 3A + 3E + 1T + 1T 1g g 1g 2g t2geg t2g2 not complete yet but can imagine how to split in strong field !! In extremely (∞) strong field in strong field (Oh) Splittings of free-ion terms in a chemical environment Correlation Diagram Correlation Tanabe-Sugano Diagrams d2 (Oh) (/10) Tanabe-Sugano Diagrams d2 (Oh) The lowest-energy state is plotted along the horizontal axis. D : ligand field splitting B : Racah parameter, a measure of the repulsion between terms of same multiplicity E : the energy (of excited state) above the ground state 15B (/10) Tanabe-Sugano Diagrams d3 (Oh), d4 (Oh) d3 (Oh) d4 (Oh) (/10) (/10) Tanabe-Sugano Diagrams d5 (Oh) d5 (Oh), d6 (Oh) d6 (Oh) (/10) (/10) Tanabe-Sugano Diagrams d7 (Oh), d8 (Oh) d7 (Oh) d8 (Oh) (/10) (/10) Electronic Spectra Data obtained 1. Transition energies (frequency positions in a spectrum) 2. Intensities of the bands 3. Widths of the bands Selection Rules d2 (Oh) Intensities of the bands (Selection rules) 1. Spin selection rule : DS = 0 2. Laporte selection rule : g ↔ u Relaxation of selection rules 1. Vibronic coupling relaxes Larpote selection rule. Oh, e ~ 10 ~50 for d-d transitions with g ↔ g Td, e ~ 500 for d-d transitions 2. Spin-orbit coupling relaxes spin selection rule. e ≤ 1 for DS≠0 (/10) Any transition expected? Electronic Spectra Selection Rules [V(H2O)6]2+ 3T 1g(F) 3T2g 3T 1g(F) d2 (Oh) 3T 1g(F) 3T1g(P) 3A2g : UV region (/10) Electronic Spectra Selection Rules d3 (Oh) absorption spectrum of [Cr(NH3)6]3+ (d3) (/10) Electronic Spectra [M(H2O)6]3+ Electronic Spectra [M(H2O)6]2+ Electronic Spectra [M(H2O)6]2+ Electronic Spectra Symmetry Labels for Configurations ? Ex T designates a triply degenerate asymmetrically occupied state. E designates a doubly degenerate asymmetrically occupied state. A, B designate a non degenerate symmetrically occupied state. Electronic Spectra d1 Jahn-Teller distortion [Ti(H2O)6]3+ a1g 2A 1g b1g d1 : l1 = 2, s1 = ½ L=2, S = ½ 2D 2E g 2B 2E g eg 1g eg d 2D 2D Oh 2E g b2g 2T 2g t2g 2T 2g Oh 2B Oh 2E g 2T 2g : 1 band ? D4h out of visible range 2T 2g 2E g 2g 2B 2g 2E g 2B 1g 2A 1g Electronic Spectra d9 Jahn-Teller distortion [Cu(H2O)6]2+ a1g 2E Ag1g b1g 2 2, s = ½ L=2, S = ½ 2D d91 : l 1=D 1 22E Tg2g 2B 2g 1g 22E Tg2g eg eg d 2D 2D Oh 2A Eg1g b2g 22T E2g g t2g 22T E2gg Oh Oh 2E g 2T E2g 22TE2gg g D4h out of visible range 2T 2g : 1 band ? 2B 1g 2g 22B B1g2g 22E Ag1g 2B 1g 2g 2E Ag1g Tanabe-Sugano Diagrams d1 (Oh) 2E Hole Formalism d9 (Oh) 2T 2g g d1 • the same free-ion terms • the same splitting pattern in fields but the energy levels are reversed. 2D 2T free ion 2g 2E g 2T 2g d9 2E g dn hole d10-n Tanabe-Sugano Diagrams Hole Formalism d2 (Oh) d8 (Oh) (/10) (/10) Tanabe-Sugano Diagrams d3 (Oh) Hole Formalism d7 (Oh) (/10) (/10) Tanabe-Sugano Diagrams d4 (Oh) (/10) Hole Formalism d6 (Oh) (/10) Tanabe-Sugano Diagrams d1(Td) 2D 2E Hole Formalism d1(Td) d9(Oh) hole (g) 2T 2T 2 2D Td 2T 2(g) Terms Oh Td S A1g A1 P T1g T1 D Eg+T2g E+T2 F A2g+T1g+T2g A2+T1+T2 G A1g+Eg+T1g+T2g A1+E+T1+T2 H Eg+2T1g+T2g E+2T1+T2 I A1g+A2g+Eg+T1g+2T2g A1+A2+E+T1+2 T2 d9(Oh) Oh 2E 2E d1(Td) 2g g d9(Oh) • the same free-ion terms • the same splitting pattern in fields dn(Td) = d10-n(Oh) Tanabe-Sugano Diagrams d2 (Oh) ◄► d8 (Td) d3 (Oh) ◄► d7 (Td) d6 (Oh) ◄► d4 (Td) Hole Formalism d4 (Oh) ◄► d6 (Td) d7 (Oh) ◄► d3 (Td) d5 (Oh) ◄► d5 (Td) d8 (Oh) ◄► d2 (Td) Tanabe-Sugano Diagrams 2E g d1 Do Oh Applications (Determination of Do) d1, d9 2T 2g 2D Do d1 d9 d9 2E g 2T 2g [Ti(H2O)6]3+ Do [Cu(H2O)6]2+ Do Tanabe-Sugano Diagrams d4 (hs) Oh Applications (Determination of Do) d4 (hs), d6 (hs) d6 (hs) [Cr(H2O)6]2+ Do 5E g 5T 2g 5T 2g 5E g Do [Fe(H2O)6]2+ Tanabe-Sugano Diagrams Applications (Determination of Do) Orgel Diagram for d1, d4(hs), d6(hs) d9 Orgel diagram - considers only states with the same spin multiplicity as that of the ground state. - plots the energy levels of the states as LFSE. Do d4 (hs) Do Do d6 (hs) Do Orgel Diagram for free-ion D ground state [d1, d4(hs), d6(hs), d9] Applications (Determination of Do) Orgel Diagram for d2, d3, d7(hs), d8 Tanabe-Sugano Diagrams d2 LFSE = 1.2Do LFSE = 0.2Do 15B LFSE = -0.8Do Applications (Determination of Do) Orgel Diagram for d2, d3, d7(hs), d8 Tanabe-Sugano Diagrams d2 Noncrossing rule - the states with the same spin mutiplicity and symmetry cannot cross but may mix LFSE = 1.2Do 1.2D 0.6D 0.8D D 0.2D + 15B -0.2D + 15B 0.2D -0.2D 0.8D D -1.2D oct d3, d8 tet d2, d7 -0.6D LFSE = 0.2Do 15B oct d2, d7 tet d3, d8 0.8D : for the case of extremely strong field LFSE = -0.8Do Applications (Determination of Do) Orgel Diagram for d2, d3, d7(hs), d8 Tanabe-Sugano Diagrams 1.2D D 0.6D - x 0.2D -0.2D D -1.2D oct d3, d8 tet d2, d7 -0.6D - x oct d2, d7 tet d3, d8 Orgel Diagram for free-ion F ground state [d2, d3, d7(hs), d8] Noncrossing rule - the states with the same spin mutiplicity and symmetry cannot cross but may mix Applications (Determination of Do) Orgel Diagram for d2, d3, d7(hs), d8 Tanabe-Sugano Diagrams 1.2D D 0.6D - x 0.2D -0.2D D -1.2D oct d3, d8 tet d2, d7 -0.6D - x oct d2, d7 tet d3, d8 Orgel Diagram for free-ion F ground state [d2, d3, d7(hs), d8] Tanabe-Sugano Diagrams Applications (Determination of Do and B) d2 [V(H2O)6]3+ E/B Do 42 n1= 17,800 cm-1 3T (F) 1g 3T2g 3T (F) 1g n2 = 25,700 cm-1 3T (F) 1g 3T1g(P) 29 3A2g : UV region n2/n1 = 1.44 at Do/B = 31 at Do/B = 31 n1: E/B ~ 29 E = 17,800 cm-1 = 29B B ~ 610 cm-1 n2: E/B ~ 42 E = 25,700 cm-1 = 42B B ~ 610 cm-1 Do = 31B = 19,000 cm-1 Do/B 31 Tanabe-Sugano Diagrams [Cr(NH3)6]3+ Applications (Determination of Do and B) d3 E/B UV 44 33 Do n2= 28,500 cm-1 n1 = 21,500 cm-1 n2/n1 = 1.33 at Do/B = 33 at Do/B = 33 n1: E/B ~ 33 E = Do = 21,500 cm-1 = 33B B ~ 650 cm-1 n2: E/B ~ 44 E = 28,500 cm-1 = 44B B ~ 650 cm-1 Do/B 33 Tanabe-Sugano Diagrams d4 (Oh) d5 (Oh) Applications (Determination of Do and B) d5(hs), d4-d7(ls) d6 (Oh) d7 (Oh) colorless (for example [Mn(H2O)6]2+) d4-d7(ls) : difficult to analyze the electronic spectra because of many excited states with the same spin multiplicity as that of the ground state Charge-Transfer Band [Cr(NH3)6]3+ (d3) LMCT (CTTM) : ligand to metal charge transfer - ligand s (or p)-donor orbital to metal d-orbital [Cu(H2O)6]2+ (d9) CT MLCT (CTTL) : metal to ligand charge transfer - metal d-orbital to ligand p-acceptor orbital (CO, CN-, SCN-, bipy, S2CNR2-) Both: very intense : e ~ 50,000 UV/VIS region LMCT (CTTM) : causes reduction of metal MLCT (CTTL) : causes oxidation of metal Charge-Transfer Band LMCT (CTTM) [IrBr6]3- (d6, Oh) : strong absorption bands at ~250 nm [IrBr6]2- (d5, Oh) : strong absorption bands at ~600 nm and ~270 nm [MnO4]- (do, Td) : intense purple color (pO empty d) MLCT (CTTL) Common for complexes with bipy and phen ligands
© Copyright 2026 Paperzz