Exam Name___________________________________ Find the volume of the indicated region by an iterated integration. 1) The solid cut from the first octant by the surface z = 9 - x2 - y 1) Find the volume by using polar coordinates. 2) The region bounded by the paraboloid z = x2 + y2 , the cylinder x2 + y2 = 25, and the xy-plane Evaluate the integral. 9 9 3) sin (x2) dx dy 0 y ∫ ∫ 2) 3) Calculate the surface area of the given surface. 4) The parabolic cylinder with equation z = y2 and lying over the triangle in the xy-plane with vertices (0, 0), (0, 4), and (4, 4). 4) Find all local extreme values of the given function and identify each as a local maximum, local minimum, or saddle point. 5) f(x, y) = x3 + y3 - 48x - 147y + 8 5) MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Find div F. 6) F(x, y, z) = ei + ln(2y + z)j + xyez k 1 A) + ez ln(2y + z) 6) B) C) ei + ln(2y + z)j + xyez k 2 + xyez ln(2y + z) D) e + 2 + xyez ln(2y + z) Find curl F. 7) F(x, y, z) = ei + ln(2y + z)j + xyez k 1 A) xez i -yez j + 0k (2y + z)2 C) xez - 7) 1 i - yez j + 1k 2y + z B) xez + 1 i + yez j + 1k 2y + z D) xez - 1 i - yez j + 0k 2y + z Evaluate the line integral. 8) ∫ C x+y+z 4 4 5 ds ; C is the curve x = 3t, y = (5 cos t), z = (5 sin t), 0 ≤ t ≤ π 5 5 5 4 A) 75 2 π + 25 32 B) 75 25 + 32 4 C) 1 75 π 32 8) D) 75 2 25 π + 32 4 9) ∫ y2 dx + x dy ; C is the curve x = t2 - 1, y = 6t, 0 ≤ t ≤ 1 9) C A) 72 10) ∫ B) 14 C) 5 6 D) 26 (2x - 4y + 9z) dx + (3x - 6y - 3z) dy + (5x +y - z) dz ; C is the line segment path from (0, 0, 0) to C (1, 0, 0) to (1, 2, 0) to (1, 2, 4) A) 40 B) 39 C) 15 D) 16 Determine whether F is conservative. 11) F(x,y,z) = 7i + -ez j - yezk 11) A) conservative B) not conservative Find f so that F = ∇f. If the fuction is not conservative state so. 12) F(x,y) = (x - 3y + 7)i + (-3x + 3y + 8)j x2 3y2 x2 3y2 A) f(x, y) = B) f(x, y) = - 3xy + +C + 3xy - 7x + +C 2 2 2 2 C) f(x, y) = x2 3y2 - 3xy + 7x + + 8y + C 2 2 ∫ ∫ (3, π/2) 12) D) not conservative Evaluate the integral. (4, 2) 13) (3x2 y - y2) dx + (x3 - 2xy) dy (-2, 3) A) 154 B) 346 14) 10) 13) C) 118 D) 246 ex sin y dx + ex cos y dy 14) (-4, 0) A) 0 B) e-4 C) e3 D) e3 - e-4 Apply Green's Theorem to evaluate the integral. 15) C (6y + x) dx + (y + 2x) dy 15) C: The circle (x - 2)2 + (y - 3)2 = 9 A) -120 B) -24 16) C C) -36π D) 36π (y2 + 5) dx + (x2 + 6) dy; C: The triangle bounded by x = 0, x + y = 2, y = 0 A) 0 B) 16 3 C) -24 2 16) D) 32 Using Green's Theorem, calculate the area of the indicated region. 4 17) The area bounded above by y = 4 and below by y = x2 9 A) 32 Evaluate ∫∫ B) 16 C) 0 17) D) 8 g(x, y, z) dS . G 18) g(x, y, z) = xz 2 ; G is the cap cut from the sphere x2 + y2 + z 2 = 9 by the cone z = 27 A) 4π B) 0 19) g(x, y, z) = z; G: y2 + z2 = 49, z ≥ 0, 2 ≤ x ≤ 3 A) 49 B) 98 Use Gauss's Divergence Theorem to calculate ∫ ∫ x2 + y2 C) 12π D) 6π C) 490 D) 14 19) F · n dS . dS 20) F(x, y, z) = zi + xyj + zyk; S: the solid cube cut by the coordinate planes and the planes x = 2, y = 2, and z = 2 A) 16 B) 4 C) 32 D) 2 Use Stokes's Theorem to calculate ∫∫ 18) 20) (curl F) · n dS . S 2 2 5 21) F = -3x yi + 3xy j + z k; S is the portion of the paraboloid 1 - x2 - y2 = z that lies above the x-y plane 3 A) 6 B) 1π C) π D) 6π 2 22) F = (x-y)i + (x-z)j + (y-z)k; S is the portion of the cone z = 5 x2 + y2 below the plane z = 1 2 2 4 4 A) π B) π C) π D) 25 25 25 25 21) 22) Evaluate the given double integral by changing it to an iterated integral. 23) ∫∫ S A) 1 1 dA; S is the region bounded by the x-axis, the line x = 9, and the curve y = ln x ln x B) 8 C) 10 D) 9 Find the volume of the indicated region by an iterated integration. 24) The region bounded by the surface z = x2 + y2 , the cylinder x2 + y2 = 100, and the xy-plane 5000 10000 A) 5000π B) 2500π C) π D) π 3 3 Find the area of the region specified in polar coordinates. 25) The region inside both r = 8 sin θ and r = 8 cos θ A) 8(π - 2) B) 8(π - 1) 23) 24) 25) C) 16(π - 1) 3 D) 16(π - 2) Find the volume by using polar coordinates. 26) The region bounded by the paraboloid z = x2 + y2 , the cylinder x2 + y2 = 25, and the xy-plane 625 625 625 625 A) π B) π C) π D) π 4 3 2 6 Write an iterated integral for ∫∫∫ 26) f(x, y, z) dV. S 27) S is the region in the first octant bounded by the cylinder y2 + z2 = 1 and the planes x = 5 and x = 7. 7 1 7 1 1 - z2 1 - z2 A) f(x, y, z) dx dz dy B) f(x, y, z) dy dz dx 5 0 5 0 0 0 ∫ ∫ ∫ 7 C) 1 ∫ ∫ ∫ 5 0 27) ∫ ∫ ∫ 1 - z2 7 f(x, y, z) dy dz dx D) ∫ ∫ ∫ 5 0 Evaluate the integral. 1 1 1 28) (8x + 7y + 4z) dz dy dx 0 0 0 19 A) 58 B) 6 1 0 1 - y2 f(x, y, z) dx dy dz 0 ∫ ∫ ∫ 28) C) 19 2 D) 19 3 Solve the problem. 29) Find the volume of the region enclosed by the paraboloids z = x2 + y2 - 4 and z = 46 - x2 - y2 . A) 625π B) 1875π C) 1250π D) 2500π 29) 30) Find the volume of the region that lies inside the sphere x2 + y2 + z 2 = 64 and outside the cylinder x2 + y2 = 4 30) A) 2(512 - 603/2)π 3 B) 3(512 - 603/2)π 2 C) 5(512 - 603/2)π 2 D) 4(512 - 603/2)π 3 Use the given transformation to evaluate the integral. 31) u = x + y, v = -2x + y; 31) ∫ ∫ -5x dx dy, R where R is the parallelogram bounded by the lines y = -x + 1, y = -x + 4, y = 2x + 2, y = 2x + 5 A) -10 B) 10 C) 5 D) -5 Solve the problem. 32) Find the direction in which the function is increasing or decreasing most rapidly at the point p. f(x, y) = xy2 - yx2, p = (2, -1) A) -8 i+ 89 5 j 89 B) C) 5 i+ 89 8 j 89 D) 5 89 i + -8 89 j 4 5 i+ 89 -8 j 89 32) Find the equation of the tangent plane to the given surface at the indicated point. 33) ex sin(yz) - 5x = 0, (0, 3π, 3) A) 5x - 3(y - 3π) = -3π(z - 3) C) -5x + 3(y - 3π) + 3π(z - 3) = 0 33) B) 5x - 1(y - 3π) - 3(z - 3) = 0 D) -5x - 3(y - 3π) - 3π(z - 3) = 0 Find the derivative of the function at the point p in the direction of a. 34) f(x, y) = 4x2 - xy + 5y2 , p = (-3, -5), a = i - 2j A) 1 3 Find 3 C) 5 B) 25 3 34) 5 D) 15 5 dw by using the Chain Rule. Express your final answer in dt s 35) w = y2 - x ln y; x = st, y = t 2 s A) s2 1 - ln 3 t t 35) B) s 1 - 2s s - ln 3 t t C) s 1 + 2s s - ln 3 t t D) s 1 - 2 s - ln 3 t t Provide an appropriate answer. 36) Find A) xy2 u ∂w when u = -6 and v = -4 if w(x, y, z) = , x = , y = u + v, and z = u · v. v z ∂u 15 ∂w =2 ∂u B) 5 ∂w =8 ∂u C) 5 ∂w =4 ∂u D) 36) ∂w 10 = 27 ∂u Find the equation of the tangent plane (or tangent "hyperplane" for a function of three variables) at the given point p. 37) x2 + 6xyz + y2 = -8z 2 , p = (1, 1, 1). 37) A) -8x - 8y + 10z = -6 C) x + y + z = 1 B) x + y + z = -6 D) -8x - 8y + 10z = 1 Solve the problem. 38) Write parametric equations for the tangent line to the surface x + y2 + 8z = 10 at the point (1, 1, 1) whose projection on the xy-plane is parallel to the y-axis. A) x = 1, y = 16t + 1, z = -2t + 1 B) x = 1, y = 16t + 1, z = -t + 1 C) x = 1, y = 8t + 1, z = -t + 1 D) x = 1, y = 8t + 1, z = -2t + 1 Find the indicated limit or state that it does not exist. x2 39) lim cos 2 x + y2 (x, y) → (0, 0) A) 0 40) lim (x, y) → (0, 1) A) 0 B) 38) 39) π 2 C) 1 D) No limit y3 sin x x 40) B) ∞ C) 1 5 D) No limit Solve the problem. 41) Find the slope of the tangent to the curve of the intersection of the surface 400z = 16x2 + 25y2 and the plane x = -5 at the point -5, -4, 2 1 5 8 2 A) B) C) D) 2 8 25 5 Find all the second order partial derivatives of the given function. 42) f(x, y) = xy2 + yex2 + 5 41) 42) A) fxx(x, y) = 2yex2; fyy(x, y) = 2x; fyx(x, y) = fxy(x, y) = 2y + 2xex2 B) fxx(x, y) = 2yex2; fyy(x, y) = 2x; fyx(x, y) = fxy(x, y) = 2xex2 C) fxx(x, y) = yex2 (1 + 2x2 ); fyy(x, y) = x; fyx(x, y) = fxy(x, y) = y + xex2 D) fxx(x, y) = 2yex2(1 + 2x2 ); fyy(x, y) = 2x; fyx(x, y) = fxy(x, y) = 2y + 2xex2 Solve the problem. 43) Find symmetric equations for the line through the points P(-1, -1, -3) and Q(2, -5, -5). x+ 1 y- 1 z+ 3 x- 1 y+1 z+ 3 A) B) = = = = 3 3 -4 -2 -4 -2 C) x- 1 y- 1 z+ 3 = = 3 -4 -2 D) x+ 1 y+1 z+ 3 = = 3 -4 -2 Find the curvature κ for the given function. 44) r(t) = -3i + (10 + 2t)j + (t2 + 4)k C) κ = 44) 1 A) κ = - B) κ = 2(t2 + 1)3/2 1 2 t2 + 1 D) κ = 1 (t2 + 1)3/2 1 2(t2 + 1)3/2 Find parametric equations for the line described below. 45) The line through the point P(5, -1, -5) parallel to the vector -6i + 5j - 5k A) x = 6t - 5, y = 5t + 1, z = -5t + 5 B) x = 6t + 5, y = 5t - 1, z = -5t - 5 C) x = -6t + 5, y = 5t - 1, z = -5t - 5 D) x = -6t - 5, y =5t + 1, z = -5t + 5 Find the curvature κ and radius of curvature R for the curve at the given point. π 2 46) y = cos x, , 4 2 A) κ = C) k = 2 3 ,R= 2 3 B) κ = 3 3 2 , R= 2 3 3 D) κ = 2 3 3 3 2 3 B) (3, -9) C) (-9, 3) 6 45) 46) ,R= 3 3 2 ,R= 2 3 3 Find the point of the curve at which the curvature is at a maximum. 47) y = x2 - 6x A) (-3, 9) 43) 47) D) (9, -3) Find T, N, and B for the given space curve. 48) r(t) = (8t sin t + 8cos t)i + (8t cos t - 8 sin t)j - 6k A) T = (-cos t)i - (sin t)j; N = sin(t)i - (cos t)j; B = 6k B) T = (-cos t)i - (sin t)j; N = (sin t)i - (cos t)j; B = k C) T = (-cos t)i + (sin t)j; N = (sin t)i + (cos t)j; B = -k D) T = (-cos t)i - (sin t)j; N = (sin t)i - (cos t)j; B = -k 48) For the curve r(t), write the acceleration in the form a TT + a NN. 49) r(t) = (4t sin t + 4 cos t)i + (4t cos t - 4 sin t)j + 9k A) a = 4T + 4tN 49) B) a = 4tN C) a = 1 N 4t D) a = 4T + 1 N 4t Find two paths of approach from which one can conclude that the function has no limit as (x, y) approaches (0, 0). x2 y 50) f(x, y) = 50) x4 + y2 7 Answer Key Testname: CALII FINAL REVIEW 1) 324 5 2) 625 π 2 3) 1 (1 - cos 81) 2 4) 1 (653/2 - 1) 12 5) (4, 7); local minimum; (4, -7); saddle point; (-4, 7); saddle point; (-4, -7); local maximum 6) B 7) D 8) D 9) B 10) C 11) A 12) C 13) C 14) C 15) C 16) A 17) B 18) B 19) B 20) A 21) C 22) B 23) B 24) A 25) A 26) C 27) B 28) C 29) A 30) D 31) C 32) B 33) D 34) D 35) B 36) C 37) A 38) D 39) D 40) C 41) A 42) D 43) D 44) D 45) C 8 Answer Key Testname: CALII FINAL REVIEW 46) B 47) B 48) B 49) A 50) Answers will vary. One possibility is Path 1: x = t, y = t ; Path 2: x = t, y = t2 9
© Copyright 2025 Paperzz