RM0345 Reference manual SPC563M64CAL144 calibration adapter board for SPC563M64xx devices Introduction The SPC563M64CAL144 (rev.B) system is designed to enable the use of new enhanced automotive calibration and debug tools on the SPC563M64xx family of automotive microcontrollers. The SPC563M64CAL144 (rev.B) can be fitted onto the application printed circuit board (PCB) in place of the standard SPC563M64xx family microcontroller in LQFP144 package. SPC563M64CAL144 (rev.B) hardware is designed to support two standardized tool connectors, allowing a variety of calibration and debug hardware to be connected and reused Figure 1. SPC563M64CAL144 (rev.B) *$3*5, Table 1. September 2013 Board summary Order code On board device Target footprint SPC563M64CAL144 SPC563M64xx QFP144 Doc ID 024080 Rev 3 1/38 www.st.com Contents RM0345 Contents 1 Calibration system overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.1 Features overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2 Power supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 3 Reset and configuration signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 4 Calibration bus interface and External Memory . . . . . . . . . . . . . . . . . . 12 4.1 External memory specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 4.2 SRAM supply and data retention function . . . . . . . . . . . . . . . . . . . . . . . . 12 4.3 Calibration bus interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 5 Development connector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 6 Calibration connector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 7 Tool IO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 8 CAN interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 9 Calibration software compatibility and configuration . . . . . . . . . . . . . 22 9.1 9.2 Calibration bus sw configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 9.1.1 Cal Bus PCR Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 9.1.2 Cal Bus ECCR Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 9.1.3 Cal Bus EBI Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 Example Configuration CODE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 Appendix A Calibration base footprints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 Appendix B Mechanical constrains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 Appendix C Schematic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 Appendix D Options placement. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 2/38 Doc ID 024080 Rev 3 RM0345 Contents Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 Doc ID 024080 Rev 3 3/38 List of tables RM0345 List of tables Table 1. Table 2. Table 3. Table 4. Table 5. Table 6. Table 7. Table 8. Table 9. Table 10. Table 11. Table 12. Table 13. Table 14. Table 15. Table 16. 4/38 Board summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 J15, J2 and J14 option cut traces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Reset and configuration signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 J11 configuration of SRAM supply for retention mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 J3, J5 and J10 option cut traces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Nexus signals on AMP 38 Mictor connector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Nexus signals on AMP 38 Mictor connector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 J12, J13 FlexCAN interface selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 J6, J17 and J7 FlexCAN interface selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 CAN transceiver operating voltage selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Calibration bus signals configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 EBDF field definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 EBI_MCR register setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 EBI_CAL_BRx register setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 EBI_CAL_BOx register setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 Doc ID 024080 Rev 3 RM0345 List of figures List of figures Figure 1. Figure 2. Figure 3. Figure 4. Figure 5. Figure 6. Figure 7. Figure 8. Figure 9. Figure 10. Figure 11. Figure 12. Figure 13. Figure 14. Figure 15. Figure 16. Figure 17. Figure 18. Figure 19. Figure 20. SPC563M64CAL144 (rev.B). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Power supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Supply signals from the QFP144 footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Test points on J4 connector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Supply signals on SPC563M64xx CSP496 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 SRAM supply circuitry. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 SRAM schematic diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 JP1 development connector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 AMP 38 Mictor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 J9 Calibration connector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Calibration triggers TOOL_IO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 CAN schematic diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 TQPACK144SD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 Top and side view drawing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 Side and bottom view drawing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 Complete system side view drawing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 SPC563M64xx in CSP package schematic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 Polypod-TQ144 connector schematic. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 Memory, CAN and connectors schematic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 Options placement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 Doc ID 024080 Rev 3 5/38 Calibration system overview 1 RM0345 Calibration system overview The Calibration Adapter board features 2 Mbytes of SRAM in order to substitute to the SPC563M64xx internal Flash during calibration. A voltage regulator is also integrated upon the board to generate, from selectable 5 V source, the 3.3 V voltage for the RAM and the calibration bus interface. Development connector (Mictor AMP38) is providing the interface for the debug and trace tools. A calibration connector (ERNI 154819) is providing an interface optimized for calibration usage. A high speed CAN transceiver is connected to the FlexCAN of the mcu device. The components chosen in the design of this board are automotive qualified to allow system evaluation over the full automotive evaluation range (-40 °C to 125 °C). 1.1 Features overview calibration systems include these distinctive features: 6/38 ● Use 100% production silicon, ensuring full hardware and software compatibility between production and calibration systems; ● Support LQFP144 MCU production package allowing calibration systems to be built without requiring modifications to the standard production system housing; ● 2MByte static RAM organized as 1024K words by 16 bits; ● On-board latch providing a 16-bit de-multiplexed bus interface from the SPC563M64xx 16-bit multiplexed calibration interface; ● Support for Nexus-based debug tools even if application PCB does not include Nexus connector; ● Nexus functionality with 12 Message Data Out (MDO) signals; ● Support for full-feature calibration tools, via availability of comprehensive set of device signals available on the connectors; ● ERNI 154819 connector optimized for calibration; ● High speed CAN transceiver with signals protection; ● Allows system calibration without impacting standard MCU I/O resources; ● Allows system calibration regardless of availability of standard MCU external bus; ● Uses tried and tested technology. Doc ID 024080 Rev 3 RM0345 Power supply The Calibration boards requires a +5 V to supply the on board CAN transceiver and a +3.3 V to supply the SPC563M64xx calibration bus interface and for the external RAM. The 3.3 V supply is generated on the SPC563M64CAL144 (rev.B) via the very low drop voltage regulator by using the +5V. A LED (D1) will light when the board is powered. Power supply 5 9 8 & & X) Q ,1 9 /)&'775< *1' Figure 2. 2 Power supply 287 & & X) Q *1' *$3*5, By default the 5V is taken from the target application through the VDDREG supply level (supply input for the internal voltage regulators of the SPC563M64xx). Gauge J14 enables the powering from the application board. Table 2 shows its option configuration. In case that no additional power loading could be applied to the application system during calibration, the +5V can be supplied externally via J4 connector (+5V test point, see Figure 4) and the gauge J14 (see Figure 3) must be open. Doc ID 024080 Rev 3 7/38 Power supply RM0345 QFP144 footprint Figure 3. Supply signals from the QFP144 footprint VDDEH1.A VDDEH1B VDDEH1 C VDDE H1B VDDEH VDDE H6A4 VDDEH6A VDDEH6B VDDEH7 VDDEH7 VDDPLL VDDREG VRC33 VRCCTL VSSPLL VSSA0 VSTBY VDDA0 VSUP 24 VDDEH1A 34 VDDEH1B 46 61 VDDEH6A 78 93 VDDEH6B 102 VDDEH7 113 74 VDDSYN 10 VDDREG 13 11 VRCCTL 77 7 12 VSTBY 6 VDDA0 79 +5V J14 Default = CLOSE J15 Default = CL C46 1uF VSSA VSSSYN GND GND GAPGRI00341 Figure 4. Test points on J4 connector - 9 9 9' ' &21 *1' *$3*5, All power signals and voltage references of the SPC563M64xx QFP144 footprint from the application board are directly connected to the respective calibration device signals. The VDDE12 supply used to power the dedicated SPC563M64xx calibration bus interface is connected to the upon board +3.3 V voltage regulator. 8/38 Doc ID 024080 Rev 3 RM0345 ' ) + - / / / / 0 1 3 & 9''(+ 9''(+ 9''(+ 9''(+ 9''(+ 9''(+ 9''(+ 9''(+ 9''(+ 9''(+ 9''(+ 9''(+ 9''(+ &B5'B:5 &B:( &B:( &B2( &B76 &B0&.2 &B(972 : < $$ $' $$ + * &YUFSOBM#VT*OUFSGBDF&#* &B5'B:5 &B:( &B:( &B2( &B76 &B0&.2 &B(972 &B$'' &B$'' &B$'' &B$'' &B$'' &B$'' &B$'' &B$'' &B$'' &B$'' &B$'' &B'$7 &B'$7 &B'$7 &B'$7 &B'$7 &B'$7 &B'$7 &B'$7 &B'$7 &B'$7 &B'$7 &B'$7 &B'$7 &B'$7 &B'$7 &B'$7 $''5 $''5 $''5 $''5 $''5 $''5 $''5 $''5 $''5 $''5 $''5 '$7$ '$7$ '$7$ '$7$ '$7$ '$7$ '$7$ '$7$ '$7$ '$7$ '$7$ '$7$ '$7$ '$7$ '$7$ '$7$ Supply signals on SPC563M64xx CSP496 0 0 9 / 7 . / 8 9 $% $% : < 9 : 8 8 7 7 $$ $% $$ $% $$ $% $$ $% Figure 5. Power supply 9''(+ $ 9''(+ % 9''(+ 1& 9''(+$% 9''(+%$ 95& 95& 95& 95& 95& 9''( 9''( 9''( 9''( 9''( 9''( 9''( 9''( 9''( 9''( 9''( 9''( 9''( 9''( 9''( 9''( 9''( 9''( 9''( 9''( 9''( 9''( 9''( 9''( 9''( 9''( 9''( 8 63&0 - * $' 9 . % ' : $( $) $$ $$ $% $% $( $* $* . 1 5 5 5 5 5 5 7 7 7 7 8 8 8 8 9 9 9 9 9''(+$ 9''(+% &ORVH[&87 2SHQ[&87 - 9''(+% 9''(+% 9''(+$ 95& - 9 9 *$3*5, The VRC33 signal of the CSP496 is connected to its respective signal of the QFP144 target application via the J15 cut trace option. The VRC33 can be also connected to the on board +3.3V by closing the J2 gauge. In this case the gauge J15 must be open (Table 2). Doc ID 024080 Rev 3 9/38 Power supply RM0345 Table 2. Option name J15, J2 and J14 option cut traces(1) Function Value open J15 J2 VRC33 VRC33 VRC33 signal is connected to the target application board open (default) VRC33 signal is disconnected from the on board +3.3V signal open +5V supply VRC33 signal is disconnected from the target application board close (default) close J14 Note close (default) VRC33 signal is connected to the on board +3.3V signal +5V is powered from J4 connector +5V is powered from target application via VDDREG pin of the QFP144 target footprint 1. Refer to Chapter Appendix D: Options placement for layout Jumper placement 10/38 Doc ID 024080 Rev 3 RM0345 3 Reset and configuration signals Reset and configuration signals Calibration and debug tools may use the reset signals included in the connectors to have visibility of when the SPC563M64xx device has been reset. Debug tools may also require the ability to force device reset. All signals of the SPC563M64xx QFP144 footprint from the application board are directly connected to the respective calibration device signals. This includes the following signals on the Table 3. Table 3. Reset and configuration signals Signal name Function Notes Reset / Configuration (5) /RESET /RSTOUT BOOTCFG[1] PLLREF WKPCFG External reset input The /RESET pin is an active low input. The RESET pin is asserted by an external device during a power-on or external reset. The internal reset signal asserts only if the RESET pin asserts for 10 clock cycles. Assertion of the RESET pin while the device is in reset causes the reset cycle to start over. External reset output The RSTOUT pin is an active low output that uses a push/pull configuration. The RSTOUT pin is driven to the low state by the MCU for all internal and external reset sources. There is a delay between initiation of the reset and the assertion of the RSTOUT pin. Boot configuration input The BOOTCFG field holds the value of the BOOTCFG[1] pin that was latched on the last negation of the RSTOUT pin. The BOOTCFG field is used by the BAM program to determine the location of the Reset Configuration Word. FMPLL Mode Selection PLLREF is used to select whether the oscillator operates in xtal mode or external reference mode from reset. If RSTCFG is 0, External reference clock selected. If RSTCFG is 1, Xtal oscillator mode is selected Weak Pull Configuration The signal on the WKPCFG pin determines whether weak pull up or pull down devices are enabled after reset on the eTPU and eMIOS pins. 0: Weak pulldown applied to eTPU and eMIOS pins at reset 1: Weak pullup applied to eTPU and eMIOS pins at reset. Doc ID 024080 Rev 3 11/38 Calibration bus interface and External Memory 4 RM0345 Calibration bus interface and External Memory The SPC563M64xx features a 16-bit de-multiplexed calibration bus interface that is connected to an external 2Mbyte SRAM thanks to an on board latch. 4.1 External memory specification The calibration board provides a SRAM with the following characteristics: – 2Mbyte static RAMs organized as 1024K words by 16 bits; – 16-bit data width; – Fully static operation: no clock or refresh required; – 3.3V input supply; – /CE power-down; – High-speed access time (10ns); – Full automotive temperature range; – Lead-free. When /CE is HIGH (deselected), the device assumes a standby mode at which the power dissipation can be reduced down with CMOS input levels. 4.2 SRAM supply and data retention function The circuitry in Figure 6 has been implemented on the calibration board to protect the memory and to guarantee that the Working Page is valid after a power fail of the target application by putting the SRAM in standby powered. The 3.3 V supply of the SRAM (Vmem) is gated by the RESET and RSTOUT signals of the SPC563M64xx. The memory enable is driven via the SPC563M64xx chip select C_CS0 “and” the RESETs signals combination. 12/38 Doc ID 024080 Rev 3 RM0345 Calibration bus interface and External Memory SRAM supply circuitry R1 +5V U2 1 330 C34 C35 4.7uF 100n OUT STT5PF20V Vmem 3 C31 C36 C37 2.2uF 100n Q1 2 D1 LED +3.3V LF33CDT-TRY IN GND Figure 6. 1uF GND GND 5 Vmem /RSOUT 2 /RESET 1 U7 4 3 74V1G00CTR GND 5 Vmem U8 2 4 /CE_RAM 1 74V1G32CTR 3 /CS0 GND ECU_Vstby 1 +3.3V 2 3 J11 D2 20CJQ060 VSTBY GAPGRI00344 The jumper J11 (see Figure 6) allows to select the standby operation of the SRAM. The standby voltage can be selected between: ● SPC563M64xx Vstby pin: same standby voltage as the internal RAM; ● the 3.3V generated on the ● ECU_Stby supplied by the calibration connector J9 (see Figure 10). Table 4. calibration board; J11 configuration of SRAM supply for retention mode J11 SRAM standby supply source all open ECU_Stby: standby voltage on J9 calibration connector 1-2 closed Upon the board +3.3V generated 2-3 closed VSTBY input pin of the SPC563M64xx from the target application Doc ID 024080 Rev 3 13/38 Calibration bus interface and External Memory 4.3 RM0345 Calibration bus interface The calibration bus is made up of address bus, data bus, and bus control signals, and is used on the calibration board to access the upon board memory. The calibration board supports a 16-bit de-mulitplexed calibration bus. This is derived from the multiplexed bus on the SPC563M64xx, where the majority of address lines are derived from the data lines (CAL_DATA on SPC563M64 device), by using an onboard external latch controlled by the C_TS signal. The ALE functionality of this signal indicates to the external latch when to capture the address signals Figure 7. SRAM schematic diagram 9PHP & Q *1' & X) /DWFKB4 /DWFKB4 /DWFKB4 /DWFKB4 /DWFKB4 /DWFKB4 /DWFKB4 /DWFKB4 8 9PHP 61/9&'**5 & Q *1' & X) 9PHP *1' *1' &(B5$0 &B76 2( /( ' ' ' ' ' ' ' ' 9&& *1' 4 4 4 4 4 4 4 4 '$7$ '$7$ '$7$ '$7$ '$7$ '$7$ '$7$ 8% /DWFKB4 /DWFKB4 /DWFKB4 /DWFKB4 /DWFKB4 /DWFKB4 /DWFKB4 61/9&'**5 /DWFKB4 /DWFKB4 /DWFKB4 /DWFKB4 /DWFKB4 /DWFKB4 /DWFKB4 /DWFKB4 /DWFKB4 /DWFKB4 /DWFKB4 /DWFKB4 /DWFKB4 /DWFKB4 /DWFKB4 $''5 $''5 $''5 $''5 &6 $ $ $ % % & & ' + + + + * * ) ) ( ' + * $ + ( $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ 1& 1& 1& ' ( 9PHP 4 4 4 4 4 4 4 4 9PHP ' ' ' ' ' ' ' ' 9'' 9'' 8$ 9&& *1' *1' '$7$ '$7$ '$7$ '$7$ '$7$ '$7$ '$7$ '$7$ 2( /( ,2 ,2 ,2 ,2 ,2 ,2 ,2 ,2 ,2 ,2 ,2 ,2 ,2 ,2 ,2 ,2 &( :( /% 8% 2( % & & ' ( ) ) * % & & ' ( ) ) * '$7$ '$7$ '$7$ '$7$ '$7$ '$7$ '$7$ '$7$ '$7$ '$7$ '$7$ '$7$ '$7$ '$7$ '$7$ '$7$ % * $ % $ &(B5$0 &B5'B:5 &B:( &B:( &B2( ' ( &(B5$0 &B76 ,6:9%// *1' *1' *$3*5, The Section 9: Calibration software compatibility and configuration shows the necessary software configuration of the SPC563M64xx calibration interface. 14/38 Doc ID 024080 Rev 3 RM0345 Development connector The JTAG signals and Nexus functionality with 12 Message Data Out (MDO) signals are available on the JP1 development connector (Nexus connector). A hardware control bit in the SPC563M64xx Nexus port controller, is used to control whether the added signals for full width trace port are routed to the MDO[4:11] signals, or the CAL_MDO[4:11] signals. This control bit is set by the cut trace J1 (default close) on the NEXUSCFG pin of the SPC563M64xx device, as on the calibration board the CAL_MDO[4:11] signals are routed to the JP1 development connector. JP1 development connector -3 9 & X) '()$8/7 &/26( $''5 - %227&)* 5(6(7 7'2 $''5 7&. 706 7', -&203 $''5 5 . *3,2B9 *1' *1' 9''(+$ - 967%< *3,2B9 1(;86 569' 569' 9(1B,2 9(1B,2 567,1 7'2 9(1B,2 7&. 706 7', -&203 9(1B,2 567287 722/B,2 722/B,2 8%$77 8%$77 722/B,2 9$/75() '()$8/7 &/26( *1' Figure 8. 569' 569' &/.287 9(1B,2 (97, 975() 5'< 0'2 0'2 0'2 0'2 0'2 0'2 0'2 0'2 (972 0&.2 06(2 06(2 '()$8/7 &/26( - &/.287 $''5 $''5 9 $''5 $''5 $''5 $''5 $''5 $''5 $''5 $''5 &B(972 &B0&.2 $''5 $''5 5 Development connector *1' *$3*5, The option cut trace J3, J5 and J10 are listed on Figure 5. Table 5. option name J3 J5 J3, J5 and J10 option cut traces Function CLKOUT VSTBY Value Note open CLKOUT signal is disconnected to the Nexus JP1 connector close (default) CLKOUT signal is connected to the Nexus JP1 connector open VSTBY signal is disconnected to the Nexus JP1 connector close (default) open J10 BOOTCFG1 close (default) VSTBY signal is connected to the Nexus JP1 connector BOOTCFG1 signal is disconnected to the Nexus JP1 connector BOOTCFG1 signal is connected to the Nexus JP1 connector Doc ID 024080 Rev 3 15/38 Development connector RM0345 Figure 6 shows the mapping of the development connector that provides Debug, Nexus trace and calibration signals. The port connector is an AMP 38 pin Mictor style. Figure 9. AMP 38 Mictor SLQQ *$3*5, Table 6. Nexus signals on AMP 38 Mictor connector Pin Description Pin Descriptio 1 nc 2 nc 3 nc 4 nc 5 C_MDO9 6 CLKOUT* 7 BOOTCFG1* 8 C_MDO8 9 /RESET 10 C_EVTI 11 TDO 12 +3.3V 13 C_MDO10 14 RDY 15 TCK 16 C_MDO7 17 TMS 18 C_MDO6 19 TDI 20 C_MDO5 21 JCOMP 22 C_MDO4 23 C_MDO11 24 C_MDO3 25 nc 26 C_MDO2 27 10K pull down resistor 28 C_MDO1 29 TOOL_IO1 30 C_MDO0 31 VDDEH1A 32 C_EVTO 33 VDDEH1A 34 C_MCKO 35 TOOL_IO0 36 C_MSEO1 37 VSTBY* 38 C_MSEO0 *) signal is connected via cut trace option 16/38 Doc ID 024080 Rev 3 RM0345 6 Calibration connector Calibration connector The board is equipped with an ERNI connector to give a more robust solution in terms of physical connectivity for Calibration purpose. Figure 10. J9 Calibration connector - 56287 *1' *1' *1' *1' *1' *1' 5(6(7 *3,2B9 *3,2B9 (&8B9VWE\ % % % % % % % % % % % % % $ $ $ $ $ $ $ $ $ $ $ $ $ -&203 &$/:DNHXS $''5 7'2 706 7&. 7', 9PHP 73 3,17(67 73 569'[ 0'2 3,17(67 9''(+$ (51,B *$3*5, The Table 7 shows the mapping of the calibration connector that provides Debug and calibration signals. The port connector is an ERNI 154819 style. Table 7. Nexus signals on AMP 38 Mictor connector Pin SPC563M64xx routing standard function Pin SPC563M64xx routing standard function B1 nc nc A1 nc nc B2 nc nc A2 JCOMP JTAG interface B3 /RSOUT /RSOUT A3 CAL Wakeup 12V output for Wakeup functionality B4 GND GND A4 C_EVTI JTAG interface B5 GND GND A5 TDO JTAG interface B6 GND GND A6 TMS JTAG interface B7 GND GND A7 TCK JTAG interface B8 GND GND A8 TDI JTAG interface B9 GND GND A9 Vmem VDDSBRAM (Backup Voltage of ECU Standby RAM) B10 /RESET /RESET A10 nc nc B11 GPIO[207] (@3.3V) GPIO Pins for startup handshake and triggering A11 RSVDx reserved Input, connect pin to a solder pad Doc ID 024080 Rev 3 17/38 Calibration connector Table 7. Nexus signals on AMP 38 Mictor connector (continued) Pin SPC563M64xx routing standard function B12 GPIO[207] (@3.3V) GPIO Pins for startup handshake and triggering ECU_Vsby VDDSBRAM Supply (Backup Voltage of ECU Standby RAM) B13 18/38 RM0345 Pin SPC563M64xx routing standard function A12 MDO 0 Detect that the PLL is locked +5V VDDP Comparator Input (Supply of microcontroller Interface Pins) A13 Doc ID 024080 Rev 3 RM0345 Tool IO The SPC563M64xx in CSP496 package provides 2 signals, GPIO[206] & GPIO[207], that are not available in the QFP144 standard production package. They can be used by the calibration tools to implement triggers and handshakes. On the calibration board, these signals are available on the JP1 development connector and J9 calibration connector. By default GPIO[206] & GPIO[207] are powered by VDDEH at 5V. A level shifter (see Figure 11) does the translation between the 5v and the 3.3V. This is because the calibration tools operates at 3.3V that is the voltage level of the JTAG and Nexus interfaces. Calibration triggers TOOL_IO 9''(+ 9 5 . 5 . *3,2 *3,2 $ $ 8 *1' 9FF Figure 11. % % 2( 2( 7 Tool IO 5 5 *3,2B9 *3,2B9 &%7 *1' *$3*5, Doc ID 024080 Rev 3 19/38 CAN interface 8 RM0345 CAN interface The calibration board is equipped with one ST L9616 High-Speed Transceiver. It provides the Controller Area Network (CAN) communication interface through the SPC563M64xx CAN interface for calibration via CAN. This serial communication can reach speeds up to 1Mbps. Figure 12. CAN schematic diagram '()$8/7 23(1 - - '()$8/7 &/26( 9 '()$8/7 23(1 9 9 '()$8/7 23(1 '()$8/7 &/26( - - 9 - & & X) Q &17; &15; *1' 8 7; *1' 9V 5; $6& &B+ &B/ 5; 5 - & / Q &$1B+,*+ &$1B/2: &21 5 *1' *1' - -803(5 &17; &15;B$ &15; *1' - -803(5 &17;B$ ' 183 &15;B& &17;B& *$3*5, Two jumpers (J12 and J13), allow to select between the two FlexCAN interfaces of the SPC563M64xx mcu. Table 8. J12, J13 FlexCAN interface selection J12 pin configuration J13 pin configuration TX select RX select FlexCAN A 2-3 2-3 FlexCAN C 2-1 2-1 FlexCAN interface The CAN channel is terminated with a 120 ohms resistor. Moreover, a protection circuitry has been designed to protect the CAN transceiver in high-speed and fault tolerant networks from ESD and other harmful transient voltage events (see Figure 12). The L9616 CAN transceiver has an Adjustable Slope Control (ASC) feature that sets the slope speed using its ASC pin. This feature select the modes of operation: ● low speed (CAN baud rate up to 250kBaud) ● high speed (CAN baud rate from 250kBaud to 1000kBaud) This pin can be put to high or to low by the cut trace options J6, J17 & J7 as described in Table 9. 20/38 Doc ID 024080 Rev 3 RM0345 CAN interface Table 9. J6, J17 and J7 FlexCAN interface selection J6 (or J17 if 3.3V) J7 FlexCAN interface closed open low speed operation (default) (CAN baud rate up to 250kBaud) open closed high speed operation (CAN baud rate from 250kBaud to 1000kBaud) The cut trace options J6, J17, J18 and J19 has been put in the design of this board to select the supply of the CAN transceiver between 5 V and 3.3 V. By this option is possible to replace the ST L9616 High-Speed Transceiver mounted on board by default, with a different transceiver that operates at 3.3 V. Table 10. Note: CAN transceiver operating voltage selection CAN Transceiver J6 J17 J18 J19 5V - ST L9616 High-Speed Transceiver Adjustable Slope Control open open close 3.3V - CAN transceiver open Adjustable Slope Control close open Refer to Section Appendix D: Options placement for layout options placement. Doc ID 024080 Rev 3 21/38 Calibration software compatibility and configuration 9 RM0345 Calibration software compatibility and configuration The calibration board uses standard production silicon packaged in the CSP (Chip Scale Package). Therefore, all production silicon features exist and are identical on the calibration board. The required initialization code may be as simple as the configuration of the EBI and its related pins in the SIU, and it could be integrated into standard application software. The calibration bus and the SIU can also be configured by an external tool connected to the debug port, removing the need of specific configuration functions in the application software. 9.1 Calibration bus sw configuration A 16-bit calibration bus is implemented on the board. In multiplexed mode the CAL_DATA signals will output the address signals during the address phase by using an onboard external latch controlled by the CAL_TS signal. The CAL_ALE may be used to drive an external latch when an asynchronous memory is in use. There are few steps to configure the SPC563M64xx Calibration Bus 9.1.1 – SIU PCR (Pad Configuration Register) – SIU ECCR (External Clock Control Register) – External Bus Interface (EBI) Cal Bus PCR Settings The SIU PCR registers used to configure the calibration bus are shown in theTable 11 The table also shows the recommended PA field setting. Table 11. Calibration bus signals configuration signal name SPC563M64xx mcu signal name Function P A G PCR PA field (1) (2) PCR (3) Address/Data Bus (44) C_DATA[0:15] CAL_DATA[0:15] Calibration data bus - - 341 C_ADDR[12:15] CAL_ADDR[12:15] Calibration address bus - - 340 C_ADDR[16:31] CAL_ADDR[16:31] Calibration address bus - - 345 C_CS[0] CAL_CS[0] Calibration chip select - - 336 C_CS[1] Not Connected CAL_CS[2] Calibration chip select P 1 CAL_ADDR[10] Calibration address bus A 0 C_CS[2] 22/38 Doc ID 024080 Rev 3 338 Notes RM0345 Calibration software compatibility and configuration Table 11. Calibration bus signals configuration (continued) signal name SPC563M64xx mcu signal name Function P A G PCR PA field (1) (2) PCR CAL_CS[3] Calibration chip select P 1 CAL_ADDR[11] Calibration address bus A 0 C_OE CAL_OE Calibration Output enable - - 342 C_RD_WR CAL_RD_WR Calibration Read/write - - 342 C_WE[0:1] CAL_WE[0:1] Calibration write/byte enable - - 342 CAL_TS Calibration transfer start P 1 CAL_ALE Address Latch enable A 0 P 01 C_CS[3] C_TS Notes (3) 339 343 Clock Synthesizer (1) C_CLKOUT Note: 9.1.2 System clock output CLKOUT 229 Clock output signal from MCU 1 The P/A/G column indicates the position a signal occupies in the muxing order for a pin: Primary, Alternate 1, Alternate 2, Alternate 3, or GPIO. Signals are selected by setting the PA field value in the appropriate PCR register in the SIU module. The PA field values are as follows: P - 0b0001, A1 - 0b0010, A2 -0b0100, A3 - 0b1000, or G - 0b0000. Depending on the register, the PA field size can vary in length. For PA fields having fewer than four bits, remove the appropriate number of leading zeroes from these values. 2 The Pad Configuration Register (PCR) PA field is used by software to select pin function. 3 Values in the PCR No. column refer to registers in the System Integration Unit (SIU). The actual register name is “SIU_PCR” suffixed by the PCR number. Cal Bus ECCR Settings The SIU ECCR registers used to control the timing relationship between the system clock and the external clock CLKOUT. The external bus clock (CLKOUT) divider can be programmed to divide the system clock by one, two or four based on the settings of the EBDF bit field. Table 12. EBDF field definition Register EBDF field External Bus Division Factor 00 1 01 2 10 reserved 11 4 SIU_ECCR Doc ID 024080 Rev 3 23/38 Calibration software compatibility and configuration 9.1.3 RM0345 Cal Bus EBI Settings For using the calibration bus with an external memory the user must configure the bus for multiplexed operation. These settings are located in two registers: – EBI Module Configuration Register (EBI_MCR) – EBI Calibration Base Register (EBI_CAL_BRx) – EBI Calibration Option Register (EBI_CAL_ORx) The EBI Module Configuration Register contains bits which configure various attributes associated with EBI operation. In the EBI_MCR register, the D16_31, AD_MUX and DBM fields need to be configured. Table 13. bit field 29 EBI_MCR register setting Name Description D16_31 Data Bus 16_31 Select The D16_31 bit controls whether the EBI uses the DATA[0:15] or DATA[16:31] signals, when in 16-bit Data Bus Mode (DBM=1) or for chip-select accesses to a 16bit port (PS=1). value 0b0 1 = DATA[16:31] signals are used for 16-bit port accesses 0 = DATA[0:15] signals are used for 16-bit port accesses 30 31 AD_MUX Address on Data Bus Multiplexing Mode DBM Data Bus Mode The AD_MUX bit controls whether non-chip-select accesses have the address driven on (or sampled from for external master transfers) the data bus in the address phase of a cycle. 0b1 1 = Address on Data Multiplexing Mode is used for nonCS accesses. 0 = Only Data on data pins for non-CS accesses. The DBM bit controls whether the EBI is in 32-bit or 16-bit Data Bus Mode. 1 = 16-bit Data Bus Mode is used 0 = 32-bit Data Bus Mode is used 0b1 In the EBI_CAL_BRx register there are few fields that need to be configured, these are detailed in the Table 14 . 24/38 Doc ID 024080 Rev 3 RM0345 Calibration software compatibility and configuration Table 14. bit field 0-16 20 EBI_CAL_BRx register setting Name Description value BA Base address These bits are compared to the corresponding unmasked address signals among ADDR[0:16] of the internal address bus to determine if a memory bank controlled by the memory controller is being accessed by an internal bus master Note: An MCU may have some of the upper bits of the BA field tied to a fixed value internally in order to restrict the address range of the EBI for that MCU. Refer to the device-specific documentation to see which bits are tied off, if any, for a particular MCU. Tied-off bits can be read but not written. These bits are ignored by the EBI during the chip-select address comparison. However, the internal bridge of the MCU most likely requires that the chipselect banks be located in memory regions corresponding to the fixed values chosen - PS Port Size The PS bit determines the data bus width of transactions to this chip-select bank. Note: In the case where the DBM bit in EBI_MCR is set for 16-bit Data Bus Mode, the PS bit value is ignored and is always treated as a ’1’ (16-bit port). 0b1 1 = 16-bit port 0 = 32-bit port 24 AD_MUX Address on Data Bus Multiplexing 26 WEBS Write Enable / Byte Select 30 BI Burst Inhibit The AD_MUX bit controls whether accesses for this chip select have the address driven on the data bus in the address phase of a cycle 1 = Address on Data Multiplexing Mode is enabled for this chip select. 0 = Address on Data Multiplexing Mode is disabled for this chip select. 0b1 This bit controls the functionality of the WE[0:3]/BE[0:3] signals. 1 = The WE[0:3]/BE[0:3] signals function as BE[0:3] 0 = The WE[0:3]/BE[0:3] signals function as WE[0:3] This bit determines whether or not burst read accesses are allowed for this chipselect bank. The BI bit is ignored (treated as 1) for chip-select accesses with external TA (SETA=1). 0b1 0b1 1 = Disable burst accesses for this bank. This is the default value out of reset (or when SETA=1). 0 = Enable burst accesses for this bank] Doc ID 024080 Rev 3 25/38 Calibration software compatibility and configuration Table 14. bit field 31 RM0345 EBI_CAL_BRx register setting Name V Valid bit Description The user writes this bit to indicate that the contents of this Base Register and Option Register pair are valid. The appropriate CS signal does not assert unless the corresponding V-bit is set. value 0b1 1: This bank is valid 0: This bank is not valid The EBI Option Registers are used to define the address mask and other attributes for the corresponding chip select.The SCY field of the EBI_CAL_BOx register is detailed in the Table 15. Table 15. bit field 0-16 24-27 29-30 26/38 EBI_CAL_BOx register setting Name Description value AM Address Mask This field allows masking of any corresponding bits in the associated Base Register. Masking the address independently allows external devices of different size address ranges to be used. Any clear bit masks the corresponding address bit. Any set bit causes the corresponding address bit to be used in comparison with the address pins. Address mask bits can be set or cleared in any order in the field, allowing a resource to reside in more than one area of the address map. This field can be read or written at any time. - SCY Cycle length in clocks This field represents the number of wait states (external cycles) inserted after the address phase in the single transfer case, or in the first beat of a burst, when the memory controller handles the external memory access. Values range from 0 to 15 and its depends on the RAM connected on top board. This is the main parameter for determining the length of the cycle. These bits are ignored when SETA=1. The total cycle length for the first beat (including the TS cycle) = (2+SCY) external clock cycles. - BSCY Burst beats length in clocks This field determines the number of wait states (external cycles) inserted in all burst beats except the first, when the memory controller starts handling the external memory access and thus is using SCY[0:3] to determine the length of the first beat. These bits are ignored when SETA=1. The total memory access length for each beat is (1 + BSCY) external clock cycles. The total cycle length (including the TS cycle) = (2+SCY) + (#beats(h)-1) * (BSCY+1). - Doc ID 024080 Rev 3 RM0345 9.2 Calibration software compatibility and configuration Example Configuration CODE The following code is used to configure the calibration bus for 16bit de-multiplexed mode. //--------------------------------------------------// SIU PCR (Pad Configuration Register) setup // (Cal BUS bommon drive strength = 20pF, DSC = 0b01) //--------------------------------------------------- SIU.PCR[336].R = 0x0040;//CAL_CS[0]DSC=20pF (0b01) SIU.PCR[338].R = 0x0440;//CAL_CS[2] (PA=0b1),DSC=20pF (0b01) SIU.PCR[339].R = 0x0040;//CAL_ADDR[11] (PA=0b0), DSC=20pF (0b01) SIU.PCR[340].R = 0x0040;//CAL_ADDR[12..15], DSC=20pF (0b01) SIU.PCR[345].R = 0x0040;//CAL_ADDR[16..30], DSC=20pF (0b01) SIU.PCR[341].R = 0x0040;//CAL_DATA[0..15], DSC=20pF (0b01) SIU.PCR[342].R = 0x0040;//CAL_RD/WR, CAL_WE[0-1], CAL_OE, DSC=20pF (0b01) SIU.PCR[343].R = 0x0040;//CAL_ALE, DSC=20pF (0b01) //-------------------------------------------------// SIU ECCR (External Clock Control Register) setup //-------------------------------------------------- SIU.ECCR.R = 0x1000//External Bus Division Factor = 1 (EBDF=0b00) //-------------------------------------------------// EBI Registers setup //-------------------------------------------------//----------------------------------------------------------------// EBI MCR setup for 16-bit bus configuration: // // EARP = 01 (Equal priority); // D16_31 = 0 (DATA[0:15] signals are used for 16-bit port accesses); // AD_MUX = 1 (Addr on Data Multiplexing Mode is used for non-CS acc.); // DBM = 0 (32-bit Data Bus Mode is used); EBI.MCR.R = 0x802; //-----------------------------------------------------// EBI Base Register setup for 16-bit bus configuration: // // Base Address = 0x20000000; // PS = 1 (16-bits port size) // AD_MUX = 1 (Address on Data Multiplexing Mode is enabled for this chip select); // WEBS = 1 (Use BE function); // BI = 1 (Disable burst accesses for this bank); // V = 1 (Valid CS Bank) EBI.CAL_CS[0].BR.R = 0x200008A3; Doc ID 024080 Rev 3 27/38 Calibration software compatibility and configuration //----------------------------------------// EBI Option Register setup: // // Address mask = 0xefe00000; // Wait state = 0 (set 0 wait states); EBI.CAL_CS[0].OR.R = 0xffe00000; 28/38 Doc ID 024080 Rev 3 RM0345 RM0345 Calibration base footprints Appendix A Calibration base footprints SPC563M64CAL144 (rev.B) calibration board had footprint compatible with QFP144 production package version of SPC563M64xx devices, ensuring that they can be fitted to an application PCB that has been designed to accept standard QFP144 packaged SPC563M64xx devices. Bases can be supplied with solder footprints, to allow direct and permanent soldered connection to an application PCB, or with pin adapter connectors fitted, allowing connection and removal from an application PCB that is fitted with a compatible receiver socket. Figure 13. TQPACK144SD DOOGLPHQVLRQDUHLQPP all dimension are in mm *$3*5, Doc ID 024080 Rev 3 29/38 Mechanical constrains Appendix B RM0345 Mechanical constrains Figure 14. Top and side view drawing 6OJUTNN *$3*5, 30/38 Doc ID 024080 Rev 3 RM0345 Mechanical constrains Figure 15. Side and bottom view drawing 3LQ ; 8QLWVPP *$3*5, Doc ID 024080 Rev 3 31/38 Mechanical constrains RM0345 Figure 16. Complete system side view drawing 8QLWVPP *$3*5, 32/38 Doc ID 024080 Rev 3 Doc ID 024080 Rev 3 +3.3V 1 TP1 1 R3 10K J1 DEFAULT=CLOSE G8 M3 L3 L2 H9 M2 K3 K2 G9 L5 J3 J2 G10 K5 H3 K1 H10 J5 G3 J1 H11 F3 H2 G2 H5 G5 E3 F1 F2 E1 E2 Y24 Y27 U26 V24 F26 E26 F27 E28 E27 JCOMP TMS TDO TDI TCK MDO1 MDO0 MCKO EVTO EVTI C24 C25 H26 G27 G26 NEXUSCFGG18 /MSEO1 H24 /MSEO0 G24 MDO3 C23 MDO2 B21 M26 N27 M27 T28 R28 R27 N28 P28 T27 PCS_B5 PCS_B4 PCS_B3 PCS_B2 PCS_B1 PCS_B0 SOUT_B SIN_B SCK_B CNRX_C Y26 CNTX_C W24 CNRX_A AG22 CNTX_A AF22 RXD_B TXD_B RXD_A TXD_A EMIOS.0 AD17 EMIOS.1 AD21 EMIOS.2 P21 EMIOS.4 AD18 EMIOS.8 N21 EMIOS.9 AD23 EMIOS.10 N22 EMIOS.11AG18 EMIOS.12 M21 EMIOS.13 AF18 EMIOS.14AH19 EMIOS.15 M22 EMIOS.23 AF21 ETPUA.1 ETPUA.2 ETPUA.3 ETPUA.4 ETPUA.5 ETPUA.6 ETPUA.7 ETPUA.8 ETPUA.9 ETPUA.10 ETPUA.11 ETPUA.12 ETPUA.13 ETPUA.14 ETPUA.15 ETPUA.16 ETPUA.17 ETPUA.18 ETPUA.19 ETPUA.20 ETPUA.21 ETPUA.22 ETPUA.23 ETPUA.24 ETPUA.25 ETPUA.26 ETPUA.27 ETPUA.28 ETPUA.29 ETPUA.30 ETPUA.31 ETPUA.0.N5 N5 ETPUA.0.M5M5 NEXUSCFG MSEO1 MSEO0 MDO3 MDO2 MDO1 MDO0 MCKO EVTO EVTI JCOMP TMS TDO TDI TCK PCSB5 PCSB4 PCSB3 PCSB2 PCSB1 PCSB0 SOUTB SINB SCKB CNRXC CNTXC CNRXA CNTXA RXDB TXDB RXDA TXDA EMIOS0 EMIOS1 EMIOS2 EMIOS4 EMIOS8 EMIOS9 EMIOS10 EMIOS11 EMIOS12 EMIOS13 EMIOS14 EMIOS15 EMIOS23 ETPUA0 ETPUA0 ETPUA1 ETPUA2 ETPUA3 ETPUA4 ETPUA5 ETPUA6 ETPUA7 ETPUA8 ETPUA9 ETPUA10 ETPUA11 ETPUA12 ETPUA13 ETPUA14 ETPUA15 ETPUA16 ETPUA17 ETPUA18 ETPUA19 ETPUA20 ETPUA21 ETPUA22 ETPUA23 ETPUA24 ETPUA25 ETPUA26 ETPUA27 ETPUA28 ETPUA29 ETPUA30 ETPUA31 Nexus Jtag DSPI FlexCAN SCI EMIOS eTPU GPIO98 GPIO99 GPIO206 GPIO207 N26 GPIO98 N24 GPIO99 GPIO206 AH10 GPIO207 AG10 PIN TEST AN.0 AN.1 AN.2 AN.3 AN.4 AN.5 AN.6 AN.7 AN.9 AN.11 AN.12 AN.13 AN.14 AN.15 AN.16 AN.17 AN.18 AN.21 AN.22 AN.23 AN.24 AN.25 AN.27 AN.28 AN.30 AN.31 AN.32 AN.33 AN.34 AN.35 AN.36 AN.37 AN.38 AN.39 C9 B8 G12 E10 C10 B9 G13 E11 C4 B6 H15 G15 E16 C16 B7 E8 H12 E9 C11 B11 H13 E12 B12 A13 C13 B13 B14 E14 G14 A14 C5 B5 B4 C6 eQADC AN0 AN1 AN2 AN3 AN4 AN5 AN6 AN7 AN9 AN11 AN12-SDS AN13-SDO AN14-SDI AN15-FCK AN16 AN17 AN18 AN21 AN22 AN23 AN24 AN25 AN27 AN28 AN30 AN31 AN32 AN33 AN34 AN35 AN36 AN37 AN38 AN39 /CS0 /CS2 /CS3 ADDR.12 ADDR.13 ADDR.14 ADDR.15 ADDR.16 ADDR.17 ADDR.18 ADDR.19 ADDR.20 ADDR.21 ADDR.22 ADDR.23 ADDR.24 ADDR.25 ADDR.26 ADDR.27 ADDR.28 ADDR.29 ADDR.30 DATA.0 DATA.1 DATA.2 DATA.3 DATA.4 DATA.5 DATA.6 DATA.7 DATA.8 DATA.9 DATA.10 DATA.11 DATA.12 DATA.13 DATA.14 DATA.15 AB11 AA10 AB10 AA14 R8 AA15 W7 P7 P8 U7 N7 M8 M7 V7 L8 T8 K8 L7 U8 V8 AB13 AB14 W21 Y22 V21 W22 U21 U22 T21 T22 AA17 AB16 AA18 AB17 AA19 AB19 AA20 AB20 SPC563M64 U1 External Bus Interface (EBI) C_CS0 C_CS2 C_CS3 C_ADD12 C_ADD13 C_ADD14 C_ADD15 C_ADD16 C_ADD17 C_ADD18 C_ADD19 C_ADD20 C_ADD21 C_ADD22 C_ADD23 C_ADD24 C_ADD25 C_ADD26 C_ADD27 C_ADD28 C_ADD29 C_ADD30 C_DAT0 C_DAT1 C_DAT2 C_DAT3 C_DAT4 C_DAT5 C_DAT6 C_DAT7 C_DAT8 C_DAT9 C_DAT10 C_DAT11 C_DAT12 C_DAT13 C_DAT14 C_DAT15 C_RD_WR C_WE0 C_WE1 C_OE C_TS C_MCKO C_EVTO W8 Y8 AA7 AD16 AA11 H18 G19 GND Reset & Configuration Clock / Synthesizer C_RD_WR C_WE0 C_WE1 C_OE C_TS C_MCKO C_EVTO VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS RESET RSTOUT BOOTCFG1 WKPCFG PLLREF PCKCFG0 PCKCFG1 CLKOUT EXTAL XTAL REFBYPC VRL VRH VSSA0 VSSA0 VSSA1 VSSPLL VSUP VRCCTL VDDA1 VDDA0 VDDPLL VDDREG VSTBY VDD VDD VDD VDD VDD VDD VDD VDD VDD VDD VDD VDD VDD VDD VDD VDD VDD VDDE12 VDDE12 VDDE12 VDDE12 VDDE12 VDDE12 VDDE12 VDDE12 VDDE12 VDDE12 VDDE12 VDDE12 VDDE12 VDDE12 VDDE12 VDDE12 VDDE12 VDDE12 VDDE12 VDDE12 VDDE12 VDDE12 VDDE12 VDDE12 VDDE12 VDDE12 VDDE12 VRC33 VRC33 VRC33 VRC33 VRC33 /RESET /RSOUT BOOTCFG1 WKPCFG PLLREF PCKCFG0 PCKCFG1 EXTAL XTAL AC28 AD28 AA27 W26 AB24 AA24 AB27 AF24 AG25 REFBYPC R4 10K VDDEH6A 100n 10n C33 C32 VDDSYN CLKOUT VRL A10 B10 J2 J16 FB1 GND VSSSYN VSSA R5 10K VDDEH7 +3.3V VDDEH6B Close x CUT2.0 Open x CUT2.1 VDDA0 AF25 VRH VDDREG A9 A15 B15 A6 AC27 AD24 VSTBY VRCCTL AC26 A5 E15 AD27 W28 VDD +3.3V VRC33 VDDEH6B VDDEH6A VDDEH1A VDDEH1B B3 Y21 AA22 AA9 AB8 AC24 AD6 AE26 AF27 AF4 AG3 B25 C2 D27 D3 H7 J8 F5 AA13 AA16 AB18 AB21 AE2 AG12 AG4 K7 N8 R11 R12 R13 R17 R18 R21 T11 T12 T15 T18 U11 U15 U16 U2 V15 V16 V17 V22 B26 D2 W5 AE27 AF9 J7 VDDEH1 A G11 VDDEH1 B AD20 VDDEH4 N.C. V26 VDDEH6AB K24 VDDEH6BA C10 100n C9 10n C23 10n C22 100n C21 10n C17 100n 10n C25 VSSSYN FB2 100n VSSA 10n C29 10n VDDA0 10n C27 FB3 100n C24 C19 10n C18 100n C30 100n C26 100n C20 10n 100n C14 100n C13 C7 2.2uF C6 100n VDDSYN GND GND +5V GND 10n C16 +3.3V GND C12 100n C11 C15 C28 C5 2.2uF 10n +3.3V GND C4 100n C3 2.2uF C2 100n C1 2.2uF VDD GND CON4 1 2 3 4 J4 TEST POINTS +5V +3.3V VDD C8 100n Appendix C A1 A2 A27 A28 AA21 AA8 AB22 AB7 AD5 AF26 AF3 AG1 AG2 AG27 AG28 AH1 AH2 AH27 AH28 B1 B2 B27 B28 C26 C3 E24 E5 G22 G7 H21 H8 L11 L12 L13 L14 M12 M13 M14 M15 M16 M17 N14 N15 N16 N17 P14 P15 P16 P17 R14 R15 R16 T13 T16 T17 U12 U17 U18 V11 V18 VDDEH7 VDDEH7 VDDEH7 VDDEH7 VDDEH7 VDDEH7 VDDEH7 VDDEH7 VDDEH7 VDDEH7 VDDEH7 VDDEH7 D26 F24 H22 J21 L15 L16 L17 L18 M18 N18 P18 C27 VDDEH7 RM0345 Schematic Schematic Figure 17. SPC563M64xx in CSP package schematic GAPGRI00355 33/38 Schematic RM0345 Figure 18. Polypod-TQ144 connector schematic Polypod-TQ144 ETPUA0 ETPUA1 ETPUA2 ETPUA3 ETPUA4 ETPUA5 ETPUA6 ETPUA7 ETPUA8 ETPUA9 ETPUA10 ETPUA11 ETPUA12 ETPUA13 ETPUA14 ETPUA15 ETPUA16 ETPUA17 ETPUA18 ETPUA19 ETPUA20 ETPUA21 ETPUA22 ETPUA23 ETPUA24 ETPUA25 ETPUA26 ETPUA27 ETPUA28 ETPUA29 ETPUA30 ETPUA31 RSTOUT RESET WKPCFG BOOTCFG1 PLLREF EMIOS0 EMIOS2 EMIOS4 EMIOS8 EMIOS9 EMIOS10 EMIOS11 EMIOS12 EMIOS14 EMIOS23 VRL VRH REFBYPC 54 55 56 57 58 60 62 63 64 65 EMIOS.0 EMIOS.2 EMIOS.4 EMIOS.8 EMIOS.9 EMIOS.10 EMIOS.11 EMIOS.12 EMIOS.14 EMIOS.23 133 VRL 134 VRH 135 REFBYPC EXTAL XTAL 75 76 EXTAL XTAL CNTXA CNRXA CNTXC CNRXC 66 67 84 81 CNTX_A CNRX_A CNTX_C CNRX_C TXDA RXDA TXDB RXDB 83 82 72 69 TXD_A RXD_A TXD_B RXD_B JCOMP TDO TDI TCK TMS 98 100 107 105 108 JCOMP TDO TDI TCK TMS MCKO MSEO1 EVTI EVTO MSEO0 MDO0 MDO1 MDO2 MDO3 99 101 103 106 109 110 111 112 114 MCKO /MSEO1 EVTI EVTO /MSEO0 MDO0 MDO1 MDO2 MDO3 PCSB5 PCSB4 PCSB3 PCSB2 PCSB1 PCSB0 SINB SOUTB SCKB 87 88 97 90 92 94 95 96 89 PCS_B5 PCS_B4 PCS_B3 PCS_B2 PCS_B1 PCS_B0 SIN_B SOUT_B SCK_B VDDEH1A VDDEH1B 22 48 36 59 73 91 104 115 /RSOUT 85 80 /RESET WKPCFG 71 BOOTCFG170 PLLREF 68 U5 VDD VDD VDD VDD 52 ETPUA.0.M5 ETPUA.1 51 ETPUA.2 50 ETPUA.3 49 ETPUA.4 47 ETPUA.5 45 ETPUA.6 44 ETPUA.7 43 ETPUA.8 42 ETPUA.9 41 ETPUA.10 40 ETPUA.11 39 ETPUA.12 38 ETPUA.13 37 ETPUA.14 35 ETPUA.15 33 ETPUA.16 32 ETPUA.17 31 ETPUA.18 30 ETPUA.19 29 ETPUA.20 28 ETPUA.21 27 ETPUA.22 25 ETPUA.23 23 ETPUA.24 21 ETPUA.25 20 ETPUA.26 19 ETPUA.27 18 ETPUA.28 17 ETPUA.29 16 ETPUA.30 15 ETPUA.31 14 AN0 AN1 AN2 AN3 AN4 AN5 AN6 AN7 AN9 AN11 AN12-SDS AN13-SDO AN14-SDO AN15-FCK AN16 AN17 AN18 AN21 AN22 AN23 AN24 AN25 AN27 AN28 AN30 AN31 AN32 AN33 AN34 AN35 AN38 AN39 VDDEH1B VDDEH6A VDDEH6A VDDEH6B VDDEH7 VDDEH7 VDDPLL VDDREG VRC33 VRCCTL VSSPLL VSSA0 VSTBY VDDA0 VSUP 24 VDDEH1A 34 VDDEH1B 46 61 VDDEH6A 78 93 VDDEH6B 102 VDDEH7 113 74 VDDSYN 10 VDDREG 13 11 VRCCTL 77 7 12 VSTBY 6 VDDA0 79 +5V J14 Default = CLOSE J15 Default = CLOSE C46 1uF VSSA VSSSYN GND GND 26 53 86 120 143 142 141 140 139 138 137 136 5 4 119 118 117 116 3 2 1 144 132 131 130 129 128 127 126 125 124 123 122 121 9 8 Vss Vss Vss Vss Vss Vss Vss Vss AN.0 AN.1 AN.2 AN.3 AN.4 AN.5 AN.6 AN.7 AN.9 AN.11 AN.12 AN.13 AN.14 AN.15 AN.16 AN.17 AN.18 AN.21 AN.22 AN.23 AN.24 AN.25 AN.27 AN.28 AN.30 AN.31 AN.32 AN.33 AN.34 AN.35 AN.38 AN.39 VDD GND GAPGRI00356 34/38 Doc ID 024080 Rev 3 VRC33 VSTBY GND GPIO207_3.3V J5 47 46 44 43 41 40 38 37 DATA.8 DATA.9 DATA.10 DATA.11 DATA.12 DATA.13 DATA.14 36 35 33 32 30 29 27 26 /CE_RAM 24 25 C_TS DATA.0 DATA.1 DATA.2 DATA.3 DATA.4 DATA.5 DATA.6 DATA.7 /CE_RAM 1 C_TS 48 DEFAULT=CLOSE GPIO206_3.3V VDDEH1A R11 10K /RESET TDO ADDR.26 TCK TMS TDI JCOMP ADDR.27 DEFAULT=CLOSE ADDR.25 J10 Vmem D1 D2 D3 D4 D5 D6 D7 D8 OE LE GND VCC Vmem GND D1 D2 D3 D4 D5 D6 D7 D8 OE LE GND VCC Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 GND 2 3 5 6 8 9 11 12 Latch_Q00 Latch_Q01 Latch_Q02 Latch_Q03 Latch_Q04 Latch_Q05 Latch_Q06 Latch_Q07 GND RSVD2 RSVD4 CLKOUT VEN_IO3 EVTI VTREF RDY MDO07 MDO06 MDO05 MDO04 MDO03 MDO02 MDO01 MDO00 EVTO MCKO MSEO1 MSEO0 Latch_Q08 Latch_Q09 Latch_Q10 Latch_Q11 Latch_Q12 Latch_Q13 Latch_Q14 SN74LVC16373DGGR 13 14 16 17 19 20 22 23 SN74LVC16373DGGR U4B Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 U4A RSVD1 RSVD3 VEN_IO0 VEN_IO2 RSTIN TDO VEN_IO4 TCK TMS TDI JCOMP VEN_IO1 RSTOUT TOOL_IO2 TOOL_IO1 UBATT UBATT TOOL_IO0 VALTREF GND 0 BOOTCFG1 C41 100n 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 GND Vmem ADDR.23 ADDR.22 ADDR.21 ADDR.20 ADDR.19 ADDR.18 ADDR.17 ADDR.16 C_EVTO C_MCKO ADDR.29 ADDR.28 C42 2.2uF +3.3V C38 2.2uF C39 100n GND Latch_Q14 Latch_Q13 Latch_Q12 Latch_Q11 Latch_Q10 Latch_Q09 Latch_Q08 Latch_Q07 Latch_Q06 Latch_Q05 Latch_Q04 Latch_Q03 Latch_Q02 Latch_Q01 Latch_Q00 ADDR.15 ADDR.14 ADDR.13 ADDR.12 /CS3 A6 H6 E3 A3 A4 A5 B3 B4 C3 C4 D4 H2 H3 H4 H5 G3 G4 F3 F4 E4 D3 H1 G2 NC NC NC A0 A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 A14 A15 A16 A17 A18 A19 U3 C40 2.2uF 1 2 5 A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 /OE1 1A 2A +3.3V GND U9 7 3 6 2 4 6 8 10 12 14 16 18 20 22 24 26 CE WE LB UB OE I/O0 I/O1 I/O2 I/O3 I/O4 I/O5 I/O6 I/O7 I/O8 I/O9 I/O10 I/O11 I/O12 I/O13 I/O14 I/O15 GND 22 22 /CE_RAM C_RD_WR C_WE0 C_WE1 C_OE DATA.0 DATA.1 DATA.2 DATA.3 DATA.4 DATA.5 DATA.6 DATA.7 DATA.8 DATA.9 DATA.10 DATA.11 DATA.12 DATA.13 DATA.14 DATA.15 R9 R8 RSVDx MDO0 1 1 PIN TEST PIN TEST CNTX_A C44 J19 100n J12 JUMPER 330 R1 GND 2 CNTX CNRX CNTX DEFAULT=CLOSE D1 LED +5V CNTX_C 2.2uF C43 J18 +3.3V GPIO207_3.3V GPIO206_3.3V 1 TP3 1 TP2 VDDEH1A JCOMP CAL Wakeup ADDR.30 TDO TMS TCK TDI Vmem IS64WV102416BLL B5 G5 A1 B2 A2 B6 C5 C6 D5 E5 F5 F6 G6 B1 C1 C2 D2 E2 F2 F1 G1 74CB3T3306 /OE2 1B 2B ERNI_154819 B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11 B12 B13 J9 Vmem 1 3 5 /RSOUT 7 GND 9 GND 11 GND 13 GND 15 GND 17 GND 19 /RESET GPIO207_3.3V 21 GPIO206_3.3V 23 25 ECU_Vstby R7 22K Vmem R6 22K VDDEH7 GPIO207 GPIO206 GND +3.3V DEFAULT=CLOSE J3 CLKOUT ADDR.24 ADDR.30 8 GND Vcc 4 NEXUS DEFAULT=OPEN 1 2 3 4 +5V ASC C_H C_L RX1 CNRX_A J13 JUMPER CNRX_C L9616 TX0 GND Vs RX0 U6 Vmem IN U2 GND Vmem 2 GND 8 7 6 5 4 2 CNRX 3 C36 2.2uF J7 GND R10 60 Q1 GND STT5PF20V R2 60 100n C37 +3.3V GND 100n C45 DEFAULT=CLOSE D2 20CJQ060 /CE_RAM 74V1G32CTR U8 J17 J6 4 74V1G00CTR U7 GND OUT LF33CDT-TRY DEFAULT=OPEN J11 1 2 1 2 DEFAULT=OPEN +3.3V VSTBY +3.3V ECU_Vstby /CS0 /RESET /RSOUT C35 100n C34 1 4.7uF +5V 5 3 5 3 GND 2 JP1 7 18 4 10 15 21 D6 E1 VDD VDD GND GND D1 E6 31 42 28 34 39 45 1 3 1 3 1 Doc ID 024080 Rev 3 3 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 CAN_HIGH CAN_LOW GND 1uF C31 D3 NUP2105 CON2 1 2 J8 Vmem RM0345 Schematic Figure 19. Memory, CAN and connectors schematic GAPGRI00357 35/38 Options placement Appendix D RM0345 Options placement Figure 20. Options placement TOP view Bottom view GAPGRI00358 36/38 Doc ID 024080 Rev 3 RM0345 Revision history Revision history Table 16. Document revision history Date Revision Changes 18-Jan-2013 1 Initial release. 13-Feb-2013 2 Modified Figure 14. 17-Sep-2013 3 Updated Disclaimer. Doc ID 024080 Rev 3 37/38 RM0345 Please Read Carefully: Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice. All ST products are sold pursuant to ST’s terms and conditions of sale. Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein. UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. ST PRODUCTS ARE NOT DESIGNED OR AUTHORIZED FOR USE IN: (A) SAFETY CRITICAL APPLICATIONS SUCH AS LIFE SUPPORTING, ACTIVE IMPLANTED DEVICES OR SYSTEMS WITH PRODUCT FUNCTIONAL SAFETY REQUIREMENTS; (B) AERONAUTIC APPLICATIONS; (C) AUTOMOTIVE APPLICATIONS OR ENVIRONMENTS, AND/OR (D) AEROSPACE APPLICATIONS OR ENVIRONMENTS. WHERE ST PRODUCTS ARE NOT DESIGNED FOR SUCH USE, THE PURCHASER SHALL USE PRODUCTS AT PURCHASER’S SOLE RISK, EVEN IF ST HAS BEEN INFORMED IN WRITING OF SUCH USAGE, UNLESS A PRODUCT IS EXPRESSLY DESIGNATED BY ST AS BEING INTENDED FOR “AUTOMOTIVE, AUTOMOTIVE SAFETY OR MEDICAL” INDUSTRY DOMAINS ACCORDING TO ST PRODUCT DESIGN SPECIFICATIONS. PRODUCTS FORMALLY ESCC, QML OR JAN QUALIFIED ARE DEEMED SUITABLE FOR USE IN AEROSPACE BY THE CORRESPONDING GOVERNMENTAL AGENCY. Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST. ST and the ST logo are trademarks or registered trademarks of ST in various countries. Information in this document supersedes and replaces all information previously supplied. The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners. © 2013 STMicroelectronics - All rights reserved STMicroelectronics group of companies Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America www.st.com 38/38 Doc ID 024080 Rev 3
© Copyright 2025 Paperzz