A set of standard enthalpies of formation for benchmarking, calibration, and parametrization of electronic structure methods Jerzy Cioslowski, Michael Schimeczek, Guang Liu, and Vesselin Stoyanov Citation: The Journal of Chemical Physics 113, 9377 (2000); doi: 10.1063/1.1321306 View online: http://dx.doi.org/10.1063/1.1321306 View Table of Contents: http://scitation.aip.org/content/aip/journal/jcp/113/21?ver=pdfcov Published by the AIP Publishing This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to IP: 118.163.199.183 On: Mon, 24 Feb 2014 08:17:39 JOURNAL OF CHEMICAL PHYSICS VOLUME 113, NUMBER 21 1 DECEMBER 2000 ARTICLES A set of standard enthalpies of formation for benchmarking, calibration, and parametrization of electronic structure methods Jerzy Cioslowski,a) Michael Schimeczek,b) Guang Liu, and Vesselin Stoyanov Department of Chemistry and CSIT, Florida State University, Tallahassee, Florida 32306-3006 共Received 22 March 2000; accepted 8 September 2000兲 A comprehensive set of 600 experimental standard enthalpies of formation (⌬H 0f ) is presented. With its diverse species, many possessing less usual geometries and bonding situations, this compilation is capable of uncovering deficiencies in approaches of quantum chemistry that are not detectable with smaller sets of ⌬H 0f values. Its usefulness in benchmarking, calibration, and parametrization of new electronic structure methods is illustrated with the development of the B3LYP/6-311⫹⫹G** bond density functional scheme. This scheme, which is sufficiently inexpensive in terms of computer time and memory to allow predictions even for molecules as large as the C60 fullerene, requires only single point calculations at optimized geometries. It yields values of ⌬H 0f with the average absolute error of 3.3 kcal/mol, rivaling more expensive methods in accuracy 共especially for larger systems兲. A list of species that are poorly handled by a typical hybrid density functional used in conjunction with a moderate-size basis set is given. This list is intended for rigorous testing of new density functionals. © 2000 American Institute of Physics. 关S0021-9606共00兲30345-2兴 mined values of ⌬H 0f were employed in parametrizations of semiempirical methods such as PM3.8,9 Those compilations were later augmented with new data pertaining to compounds of a few additional elements.10–12 On the other hand, the old values of ⌬H 0f have never been updated for compounds of elements such as boron.13,14 In 1991, a test set consisting of 55 dissociation energies, 38 ionization potentials 共IPs兲, 25 electron affinities 共EAs兲, and 7 proton affinities 共PAs兲 was published.15 This ‘‘G2-1 set’’ 1 was subsequently revised and appended with more data. The resulting ‘‘extended G2 neutral molecule test set’’ of 148 ⌬H 0f values16 has been employed in parametrizations of new density functionals4,5 as well as 共with a corrected standard enthalpy of formation of COF2) in assessments of the B3LYP/6-311⫹⫹G(3d f ,2p) level of theory and various extrapolative methods of the G2 and CBS families.17 A further augmentation with 88 IPs, 58 EAs, and 8 PAs produced the G2/97 test set of 302 energies,18 which found an immediate use in parametrizations of the G3,1 G3共MP2兲, G3//B3LYP, and G3共MP2兲//B3LYP2 approaches.19 Other, less extensive test sets are also available. Predictions of the G2, G2共MP2兲, CBS-4, and CBS-Q methods were compared with the values of ⌬H 0f determined experimentally for 166 molecules, radicals, anions, and cations.20 A compilation of analogous data for a large number of diverse hydrocarbons was also published.21 Needless to say, successful development and implementation of new electronic structure methods hinges upon the availability of test sets comprising reliable experimental values of ⌬H 0f of chemical species with diverse bonding situations. Unfortunately, none of the aforementioned compilations is suitable for serving as such a test set. On one hand,- I. INTRODUCTION The last decade of the twentieth century has witnessed extraordinary progress in electronic structure theory and its applications. Energies of small molecules, ions, and radicals are now routinely predicted within 1 kcal/mol, while quantum-chemical calculations on medium-size organic species that were once the domain of semiempirical methods are now dominated by ab initio approaches, which are also making inroads into modeling of small peptides and other biologically important systems. These impressive strides have been made possible by a confluence of substantial gains in hardware performance, efforts directed toward improvements in the computational economy of software, and the development of new formalisms. The new formalisms of electronic structure theory, such as extrapolative approaches that aim at predicting thermochemical data with chemical accuracy,1–3 density functionals of increasing sophistication,4,5 and semiempirical methods,6,7 are emerging at a rapid pace. Benchmarking, calibration, and parametrization of those formalisms call for extensive calculations, in which the computed properties are compared with their experimental counterparts for a large number of chemical systems. Test sets of standard enthalpies of formation (⌬H 0f ) that enable quantitative assessments of the accuracy of thermodynamic predictions are of particular interest. Several such sets have been published in the chemical literature. For instance, large compilations of experimentally detera兲 Author to whom correspondence should be addressed; electronic mail: [email protected] b兲 Present address: IM-FES, Q18, Bayer AG, 51368 Leverkusen, Germany. 0021-9606/2000/113(21)/9377/13/$17.00 9377 © 2000 American Institute of Physics This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to IP: 118.163.199.183 On: Mon, 24 Feb 2014 08:17:39 9378 Cioslowski et al. J. Chem. Phys., Vol. 113, No. 21, 1 December 2000 although the tables assembled in the process of parametrization of semiempirical methods contain diverse compounds, the quality of the quoted data is often substandard. On the other hand, the data included in the G2/97 test set is highly reliable but too narrow in scope to be useful for evaluating the performance of quantum-chemical methods in calculations on ‘‘less usual’’ and/or larger-size species. The implications of this lack of diversity are well illustrated by the recent studies that have uncovered large errors in the standard enthalpies of formation of hypervalent species such as PCl5, SF6, and H2SO4 predicted by density functional theory 共DFT兲 methods, which otherwise perform reasonably well even for the ‘‘difficult’’ molecules such as O3. 6,22,23 As parametrization of density functionals and extrapolative methods will almost certainly remain a viable option for the reduction of residual errors in the treatment of electron correlation,24 the need for a single source of reliable data pertaining to a large number of chemical species is quite urgent. A compilation addressing this need is presented here. II. DATA ACQUISITION AND ORGANIZATION The process of gathering the data compiled in Table I involved several stages. First, in light of the scarcity of reliable experimental values of ⌬H 0f for compounds of heavier elements,25 it was decided at the commencement of this project that only the species containing the first- and secondrow elements should be included in the test set. A massive literature search was then undertaken, in which the previously published compilations8–14,16,20,21 were employed as the initial source of entries. Almost immediately, the search revealed a disturbingly high incidence of incorrect data in many of the older publications.8–14 Rather surprisingly, in most cases this problem was found not to stem from an inadequate accuracy of experimental values but from trivial mistakes and omissions such as typographic errors, incorrect literature citations, wrong conversion factors, unreasonable assumptions and circular arguments employed in the treatment of experimental data, the unjustified use of bond additivity schemes, occasional confusion about the reference states for elements, and a common failure to make the distinction between two thermodynamic conventions for the electron. Many of these mistakes were uncovered even in such widely used references as the JANAF tables,26 where they propagate undisturbed from one edition to another. Second, in the process of data acquisition and verification, over 100 literature sources were consulted.26–131 In all instances, the original experimental data were carefully evaluated for reliability. Third, where necessary, the values of ⌬H 0f were corrected to ensure the adherence to ‘‘the ion convention’’ 共‘‘the stationary electron convention’’兲, according to which the standard enthalpy of the electron is set to zero. Similarly, some older data were adjusted to conform to the commonly used reference states of the elements,27 i.e., white phosphorus for P and orthorhombic crystalline sulfur for S. Values of ⌬H 0f derived from standard enthalpies of protonation/deprotonation, ionization potentials, electron affinities, and standard enthalpies of other processes were recalculated to ensure their consistency with the data for the auxiliary species included in the test set. The resulting compilation of the standard enthalpies of formation of 600 species is presented in Table I. The test set comprises 514 neutrals 共452 singlets, 51 doublets, and 11 triplets兲, 55 anions 共51 singlets, 3 doublets, and 1 triplet兲, and 31 cations 共27 singlets and 4 doublets兲. The entries in Table I are ordered according to ascending numbers of nuclei and electrons. Where needed, the electronic states of the species are indicated. The uncertainties of the quoted values of ⌬H 0f vary widely for several reasons. First of all, like the enthalpies themselves, the errors are size extensive quantities that increase with the molecular size. Second, species with somewhat less accurate values of ⌬H 0f , such as carbenes 共entries 78, 79, 93, 113, 115, 131, 139, and 152兲, benzynes 共entries 391–396兲, polycondensed benzenoid hydrocarbons 共entries 538, 554, 562, 569, 570, 584, 585, 591–594, and 596兲, molecules with dative bonds 共entries 436, 441, 525, and 565兲, and others, have been included in the present set in order to ensure diversity of electronic structures and bonding situations. For the same reason, several data for hypervalent molecules, ions, and radicals of sulfur, phosphorus, and chlorine have been admitted into this compilation. The scarcity of accurate values of ⌬H 0f is particularly acute for compounds of lithium 共8 entries兲, beryllium 共8 entries兲, boron 共20 entries兲, sodium 共18 entries兲, magnesium 共6 entries兲, and aluminum 共16 entries兲. For these compounds and for those of phosphorus and silicon, the experimental errors are often quite large despite the deliberate selection of only the most reliable values from among the available data. In a few cases, the errors are simply not available and as such are marked ‘‘n/a’’ in Table I. III. EXAMPLE OF APPLICATION: PARAMETRIZATION AND ASSESSMENT OF B3LYPÕ6-311¿¿G** BOND DENSITY FUNCTIONAL SCHEMES In the bond density function 共BDF兲 approach, the standard enthalpy of formation ⌬H 0f (X) of a species X is approximated by ⌬H 0f 共 X 兲 ⫽E 共 X 兲 ⫹e Q Q 共 X 兲 ⫹e S N S 共 X 兲 ⫹ ⫹ 兺I e 1共 Z I 兲 兺 e 2共 IJ ,R IJ ,Z IJ , ␣ IJ ,  IJ 兲 , I⫺J 共1兲 where E(X), Q(X), and N S (X) are, respectively, the total energy, the charge, and the number of unpaired electrons in X.6 In Eq. 共1兲, the first sum runs over all the nuclei present in X and the second one over all the attractor interaction lines I – J that connect them. The quantities e Q and e S , as well as the atomic equivalents e 1 (Z) that depend on the nuclear charge Z, are obtained by fitting the predicted values of ⌬H 0f to their experimental counterparts for members of a predefined training set. The BDF e 2 ( IJ ,R IJ ,Z IJ , ␣ IJ ,  IJ ) is a function of five variables: the electron density IJ at the bond critical point on the line I – J, its arclength R IJ , the product Z IJ of the nuclear charges Z I and Z J of the attractors I and J,132 the geometric mean ␣ IJ of the two negative eigenvalues of the density Hessian at the bond critical point, and the corresponding positive eigenvalue  IJ . Since the actual form This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to IP: 118.163.199.183 On: Mon, 24 Feb 2014 08:17:39 J. Chem. Phys., Vol. 113, No. 21, 1 December 2000 Standard enthalpies 9379 TABLE I. The set of 600 experimental values of ⌬H 0f . Entry 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 Number of Species 共el state or mult兲 Nuclei Elec H⫹ H• Li⫹ H⫺ Li• Be⫹• Be B⫹ Li⫺ F⫺ Na⫹ Mg⫹ • Na• Mg Al⫹ Na⫺ Cl⫺ 2 ⫹ H⫹ 2 •( ⌺ g ) H2 LiH BeH•( 2 ⌺ ⫹ ) Li2 CH•( 2 ⌸ r ) NH( 3 ⌺ ⫺ ) OH•( 2 ⌸ i ) FH HO⫺ LiF BeO NaH CH•( 2 ⌺ ⫹ ) BeF•( 2 ⌺ ⫹ ) BO•( 2 ⌺ ⫹ ) CO N2 CN⫺ BF 共singlet兲 LiNa NO•( 2 ⌸) SiH•( 2 ⌸ r ) O2( 3 ⌺ ⫺ g ) NO⫺( 3 ⌺ ⫺ ) HS•( 2 ⌸ i ) ClH F2 HS⫺ FO⫺ NaO•( 2 ⌸) 2 ⫹ F⫺ 2 •( ⌺ u ) NaF MgO MgF•( 2 ⌺ ⫹ ) AlO•( 2 ⌺ ⫹ ) 2 ⫹ Na⫹ 2 •( ⌺ ) BeCl•( 2 ⌺ ⫹ ) Na2 SiO CS AlF PO•( 2 ⌸ 1/2) SiF•( 2 ⌸ 1/2) SO( 3 ⌺ ⫺ ) PF( 3 ⌺ ⫺ ) ClO•( 2 ⌸ 3/2) FCl 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 0 1 2 2 3 3 4 4 4 10 10 11 11 12 12 12 18 1 2 4 5 6 7 8 9 10 10 12 12 12 13 13 13 14 14 14 14 14 15 15 16 16 17 18 18 18 18 19 19 20 20 21 21 21 21 22 22 22 22 23 23 24 24 25 26 ⌬H 0f 共kcal/mol兲 Value 365.7 52.1 162.4 34.7 38.1 289.9 77.4 325.2 23.8 ⫺59.3 144.2 211.5 25.7 35.2 216.7 13.0 ⫺54.4 355.8 0.0 33.3 81.7 51.6 142.5 85.2 9.4 ⫺65.1 ⫺32.8 ⫺80.1 32.6 29.7 104.9 ⫺40.6 0.0 ⫺26.4 0.0 17.2 ⫺27.7 43.4 21.6 90.0 0.0 21.0 34.2 ⫺22.1 0.0 ⫺19.5 ⫺26.3 20.8 ⫺69.3 ⫺69.4 36.0 ⫺56.6 16.0 146.7 14.5 34.0 ⫺24.6 66.9 ⫺63.5 ⫺5.6 ⫺4.8 1.2 ⫺12.5 24.2 ⫺13.2 Error Source 0.0 0.0 0.0 0.0 0.2 1.2 1.2 3.0 0.02 0.3 0.2 0.3 0.2 0.2 1.0 0.02 0.06 0.0 n/a n/a n/a 0.7 n/a 0.4 0.1 0.2 0.05 n/a 3.0 4.6 0.5 2.0 2.0 0.04 n/a 1.1 3.3 0.3 0.04 2.0 n/a 0.1 0.7 0.05 n/a 2.0 3.5 1.0 1.6 0.5 5.0 2.0 1.9 0.3 3.0 0.3 n/a n/a 0.8 1.0 3.0 0.3 5.0 0.5 n/a 26 27 26 26 27 26 27 26 26 28 26 26 27 27 26 26 28 26 29 30 30 26 30 31 32 26 28 30 26 26 33 26 26 26 29 28 26 34 26 26 29 35 32 26 29 28 36 37 38 26 39 26 26 40 26 26 30 30 26 26 26 26 26 26 30 Entry 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 Number of Species 共el state or mult兲 Nuclei Elec SF⫺ ClO⫺ Si2( 3 ⌺ ⫺ g ) NaCl AlS•( 2 ⌺ ⫹ ) P2 AlCl AlS⫺ SiS 共singlet兲 SiCl•( 2 ⌸ 1/2) S2 Cl2 CH2( 3 B 1 ) CH2( 1 A 1 ) NH2•( 2 B 1 ) OH2 NH⫺ 2 FH⫹ 2 LiOH HOwC•( 2 ⌺ ⫹ ) HCN HCC⫺ HCO⫹ HCO•( 2 A ⬘ ) SiH2( 1A 1 ) SiH2( 3 B 1 ) HCO⫺ CHF 共singlet兲 PH2•( 2 B 1 ) SH2 HOF PH⫺ 2 ClH⫹ 2 NaOH MgOH⫹ FHF⫺ BO2•( 2 ⌸ g ) CO2 N2O FCN BeF2 FBO NCO⫺ HOSi⫹ NO2•( 2 A 1 ) O3 FNO CClH 共singlet兲 NaCN CF2 共singlet兲 NO⫺ 2 NF2•( 2 B 1 ) HOCl F2O HOS⫺ COS ClCN MgF2 Na2O FAlO SCN⫺ SO2 ClNO FPO SiF2 共singlet兲 2 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 26 26 28 28 29 30 30 30 30 31 32 34 8 8 9 10 10 10 12 13 14 14 14 15 16 16 16 16 17 18 18 18 18 20 20 20 21 22 22 22 22 22 22 22 23 24 24 24 24 24 24 25 26 26 26 30 30 30 30 30 30 32 32 32 32 ⌬H 0f 共kcal/mol兲 Value Error Source ⫺49.9 ⫺28.3 139.9 ⫺43.6 57.0 34.3 ⫺12.3 ⫺3.0 25.3 47.4 30.7 0.0 92.8 101.8 45.1 ⫺57.8 27.3 184.9 ⫺54.7 135.1 31.5 66.3 197.6 10.0 65.2 86.2 2.7 34.2 33.1 ⫺4.9 ⫺19.6 6.4 210.5 ⫺45.7 146.0 ⫺170.2 ⫺68.0 ⫺94.1 19.6 8.6 ⫺190.3 ⫺144.0 ⫺52.8 155.2 7.9 34.1 ⫺15.7 78.0 22.5 ⫺44.0 ⫺44.5 10.1 ⫺17.8 5.9 ⫺37.8 ⫺33.1 32.9 ⫺173.7 ⫺8.6 ⫺139.0 ⫺5.2 ⫺70.9 12.4 ⫺96.7 ⫺140.5 2.5 0.5 n/a n/a 2.0 n/a 1.5 2.1 3.0 1.6 0.1 n/a 0.5 0.5 0.3 0.01 0.4 1.9 1.2 0.7 1.0 0.6 2.0 0.2 0.7 1.0 0.2 3.0 0.6 0.2 0.3 2.0 1.9 1.9 5.0 1.6 2.0 0.01 0.1 4.0 1.0 3.1 1.0 1.9 0.2 0.4 0.4 2.0 0.5 2.0 0.2 2.0 0.5 0.4 2.0 0.3 1.0 4.0 1.9 4.0 1.0 0.05 0.1 0.7 3.0 41 36 30 30 26 30 26 42 26 26 27 29 43 44 32 26 28 45 46 32 47 48 26 32 49 49 28 50 32 26 51 28 45 46 39 52 26 26 26 26 26 26 53 45 26 26 26 50 26 50 54 26 26 26 55 26 56 26 37 26 53 26 26 57 26 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to IP: 118.163.199.183 On: Mon, 24 Feb 2014 08:17:39 9380 Cioslowski et al. J. Chem. Phys., Vol. 113, No. 21, 1 December 2000 TABLE I. 共Continued.兲 Number of ⌬H 0f 共kcal/mol兲 Entry Species 共el state or mult兲 Nuclei Elec Value 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 CClF 共singlet兲 ClO2•( 2 B 1 ) SF2 Al2O ClO⫺ 2 HSS⫺ CS2 BeCl2 CCl2 共singlet兲 ClPO Cl2O MgCl2 AlCl2•( 2 A 1 ) SiCl2 共singlet兲 SCl2 BH3 CH3•( 2 A 2⬙ ) NH3 CH⫺ 3 H3O⫹ HCCH H2CvC 共singlet兲 H2CO SiH3•( 2 A 1 ) PH3 H2O2 SiH⫺ 3 H3S⫹ HOHF⫺ H2F2 Na共H2O兲⫹ HN3 HNCO 共E兲-HONO HCOO⫺ 共CN兲2 OBBO HOHCl⫺ BF3 COF2 (Z)-N2F2 (E)-N2F2 FNO2 NF3 H2S2 FOOF CF⫺ 3 AlF3 SO3 ClNO2 Na2F2 (LiCl兲2 PF3 ClF3 COCl2 AlF2Cl FSSF SvSF2 BCl3 Na2Cl2 AlFCl2 CCl3•( 2 A 1 ) 2 BCl⫺ 3 •( A 1 ) SOCl2 CCl⫺ 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 32 33 34 34 34 34 38 38 40 40 42 46 47 48 50 8 9 10 10 10 14 14 16 17 18 18 18 18 20 20 20 22 22 24 24 26 26 28 32 32 32 32 32 34 34 34 34 40 40 40 40 40 42 44 48 48 50 50 56 56 56 57 57 58 58 7.4 25.0 ⫺70.9 ⫺34.7 ⫺24.4 ⫺16.0 28.0 ⫺86.1 55.0 ⫺51.4 21.0 ⫺93.8 ⫺67.0 ⫺40.3 ⫺4.2 25.5 35.0 ⫺11.0 33.1 142.7 54.2 101.6 ⫺26.0 47.9 1.3 ⫺32.5 14.7 192.3 ⫺143.8 ⫺136.9 62.4 70.3 ⫺24.3 ⫺18.8 ⫺110.9 73.3 ⫺109.0 ⫺127.1 ⫺271.4 ⫺149.1 16.4 19.4 ⫺26.0 ⫺31.6 3.7 4.6 ⫺156.7 ⫺289.0 ⫺94.6 2.9 ⫺202.3 ⫺143.1 ⫺229.1 ⫺38.0 ⫺52.6 ⫺238.8 ⫺68.4 ⫺71.0 ⫺96.3 ⫺135.3 ⫺189.0 17.5 ⫺103.9 ⫺50.8 ⫺32.8 Error 3.2 1.5 4.0 4.0 1.5 3.5 0.2 2.5 2.0 1.2 1.6 0.5 5.0 0.8 0.8 2.4 0.1 0.1 0.7 1.9 0.2 4.0 0.1 0.6 0.4 0.04 2.1 1.9 0.9 0.8 n/a n/a 2.0 0.3 2.0 0.2 2.0 0.2 0.4 1.4 1.2 1.2 5.0 0.3 n/a 0.2 2.2 0.6 0.2 0.4 3.0 3.0 0.9 0.7 0.8 1.5 2.4 2.4 0.5 2.0 1.5 2.5 4.6 n/a 2.0 Source Entry Species 共el state or mult兲 50 26 58 26 36 55 26 26 50 57 26 26 26 26 26 26 32 26 28 45 26 48 56 32 57 59 28 45 60 26 61 62 26 26 63 56 26 64 26 65 26 26 26 26 62 66 67 26 26 26 26 26 26 26 26 26 58 58 26 26 26 68 69 62 70 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 P4 AlCl3 SiCl3•( 2 A 1 ) S2Cl2 PCl3 CH4 NH⫹ 4 BH⫺ 4 C2H⫹ 3 C2H3•( 2 A ⬘ ) C2H⫺ 3 HOCH2•( 2 A) CH3O•( 2 A ⬘ ) SiH4 CH3O⫺ PH⫹ 4 Na共NH3兲⫹ CH2CN•( 2 B 1 ) H2CvCvO CH2CN⫺ HCOOH CH3S•( 2 A ⬘ ) HSCH2•( 2 A) CH3Cl CH2F2 CH3S⫺ CH2SH⫺ HNO3 HOCO⫺ 2 CHF3 OvCvCvCvO O共BeF兲2 B2O3 N2O3 CF4 CH2Cl2 CHF2Cl F3NO BF⫺ 4 HOSO⫺ 2 SiF4 SO2F2 CF3Cl FClO3 H2S3 SiH2Cl2 AlF⫺ 4 SF4 CHCl3 CF2Cl2 SO2Cl2 CFCl3 SiHCl3 CCl4 Cl3PO SiCl4 C2H4 CH3OH N2H4 CH3CN CH3NC CH3CO•( 2 A ⬘ ) H2CvCHO•( 2 A ⬙ ) CH2vCHF CH2CHO⫺ Number of Nuclei 4 4 4 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 6 6 6 6 6 6 6 6 6 Elec 60 64 65 66 66 10 10 10 14 15 16 17 17 18 18 18 20 21 22 22 24 25 25 26 26 26 26 32 32 34 34 34 34 38 42 42 42 42 42 42 50 50 50 50 50 50 50 52 58 58 66 66 66 74 74 82 16 18 18 22 22 23 23 24 24 ⌬H 0f 共kcal/mol兲 Value 14.1 ⫺139.7 ⫺93.3 ⫺4.0 ⫺69.0 ⫺17.9 150.7 ⫺14.8 266.6 71.6 56.2 ⫺4.1 4.1 8.2 ⫺32.3 179.4 104.1 59.8 ⫺11.4 24.2 ⫺90.5 29.8 36.3 ⫺20.0 ⫺107.7 ⫺14.3 22.8 ⫺32.1 ⫺177.8 ⫺166.6 ⫺22.4 ⫺287.9 ⫺199.8 19.8 ⫺223.0 ⫺22.8 ⫺115.3 ⫺39.0 ⫺409.8 ⫺165.6 ⫺356.0 ⫺181.3 ⫺169.2 ⫺5.1 7.3 ⫺75.3 ⫺467.6 ⫺182.4 ⫺24.7 ⫺117.5 ⫺84.8 ⫺69.0 ⫺119.3 ⫺22.9 ⫺133.8 ⫺158.4 12.5 ⫺48.2 22.8 17.7 39.1 ⫺2.4 2.5 ⫺33.2 ⫺39.6 Error Source 0.5 0.7 2.0 1.0 1.3 0.1 1.9 4.5 1.9 0.8 0.6 0.8 0.9 0.5 0.7 1.9 0.5 2.0 0.4 2.0 0.1 0.4 2.0 0.5 0.4 2.2 3.0 0.1 2.5 0.8 0.4 5.0 1.0 0.2 0.3 0.3 0.8 5.0 2.0 2.5 0.2 2.0 0.8 0.7 n/a 2.0 2.4 5.0 0.3 1.9 0.5 1.5 1.6 0.5 0.4 0.3 0.1 0.1 0.2 0.1 1.7 0.3 2.2 0.4 2.2 26 26 26 26 26 26 45 71 45 32 48 32 32 26 28 45 72 73 56 67 56 32 32 26 26 28 28 26 74 26 75 26 26 26 26 26 56 26 76 74 26 26 26 26 62 77 78 26 26 26 26 26 77 26 26 26 26 56 26 79 56 32 32 56 28 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to IP: 118.163.199.183 On: Mon, 24 Feb 2014 08:17:39 J. Chem. Phys., Vol. 113, No. 21, 1 December 2000 Standard enthalpies 9381 TABLE I. 共Continued.兲 Entry 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 Number of Species 共el state or mult兲 Nuclei H2NCHO 共LiOH兲2 CH3SH 共CHO兲2 CH2vCHCl CH2vCF2 SiH2vSiH2 NCCvCCN 共NaOH兲2 CF3CN N2O4 B2F4 C2F4 CH2vCCl2 (E)-CHClvCHCl (Z)-CHClvCHCl HOSO2F N2F4 HSO⫺ 4 CFClvCF2 NCSSCN PF5 共LiCl兲3 SF5•( 2 A 1 ) 2 PF⫺ 5 •( A 1 ) 共COCl兲2 CHClvCCl2 H2S4 B2Cl4 C2Cl4 PCl5 C2H5•( 2 A ⬘ ) CH3NH2 C2H⫺ 5 N2H⫹ 5 CH3OH⫹ 2 CH3CwCH CH2vCvCH2 Cyclopropene Oxirane CH3CHO CH2vCHOH CH2vCHCN Na共H2O兲⫹ 2 CH3NO2 CH3ONO Thiirane CH3COF B共OH兲3 Si2H5•( 2 A ⬘ ) H2PSiH3 1-H-tetrazole CH3COCl H2SO4 SF6 CCl3CHO SF5Cl H2S5 CCl3COCl C2Cl5•( 2 A ⬘ ) B2H6 C2H6 Aziridine Cyclo-C3H⫺ 5 CH2CHCH⫺ 2 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 8 8 8 8 8 Elec 24 24 26 30 32 32 32 38 40 46 46 46 48 48 48 48 50 50 50 56 58 60 60 61 61 62 64 66 78 80 100 17 18 18 18 18 22 22 22 24 24 24 28 30 32 32 32 32 32 33 34 36 40 50 70 72 78 82 88 97 16 18 24 24 24 ⌬H 0f 共kcal/mol兲 Value Error ⫺44.5 ⫺176.1 ⫺5.5 ⫺50.7 5.5 ⫺80.5 65.7 126.5 ⫺149.1 ⫺118.4 2.2 ⫺342.2 ⫺157.4 0.6 1.2 1.1 ⫺180.0 ⫺2.0 ⫺231.9 ⫺123.1 83.6 ⫺381.1 ⫺240.1 ⫺218.1 ⫺398.4 ⫺80.3 ⫺1.9 10.6 ⫺116.9 ⫺3.0 ⫺89.9 28.9 ⫺5.5 34.4 184.6 137.2 44.2 45.5 66.2 ⫺12.6 ⫺39.7 ⫺29.8 43.2 ⫺15.2 ⫺17.8 ⫺15.9 19.6 ⫺105.7 ⫺237.2 53.3 1.8 80.0 ⫺58.0 ⫺175.7 ⫺291.7 ⫺47.0 ⫺248.3 13.8 ⫺57.3 8.1 9.8 ⫺20.0 30.2 58.5 29.9 n/a 2.4 0.2 0.2 0.5 1.0 0.9 0.4 2.4 0.7 0.4 1.0 0.7 0.3 2.0 2.0 2.0 2.5 3.1 5.0 1.5 0.7 5.0 3.2 3.6 1.5 2.1 n/a 1.2 0.7 1.4 0.4 0.1 1.0 1.9 1.9 0.2 0.3 0.6 0.1 0.1 2.0 0.4 n/a 0.1 0.2 0.3 0.8 0.6 2.0 2.9 1.1 0.2 2.0 0.2 n/a 2.5 n/a 2.1 2.3 4.0 0.1 0.2 1.0 2.1 Source 80 46 56 56 81 75 82 75 46 26 26 26 26 56 56 56 26 26 83 81 56 26 26 58 84 56 56 62 26 26 85 32 56 86 45 45 56 56 56 56 56 87 56 61 56 56 56 56 26 88 57 75 56 26 26 62 26 62 56 89 26 56 56 86 28 Entry 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 Species 共el state or mult兲 Number of Nuclei Oxirane–H⫹ CH3CH2O•( 2 A ⬙ ) CH3SiH3 CH2vCHCwCH HCOOCH3 CH3COOH Si2H6 C2H5Cl CH3COSH (E)-NCCHvCHCN CH3CF3 Si共CH3兲H2Cl 共COOH兲2 ClCH2COOH CH3CHCl2 ClCH2CH2Cl CF3COOH 1,3-dithiol-2-one CH3CCl3 CHCl2CH2Cl 1,3-dithiole-2-thione Al2F6 CHCl2CCl3 C2Cl6 S8 Al2Cl6 CH3CHvCH2 Cyclopropane CH3CH2OH 共CH3兲2O CH3CONH2 CH3CH2SH CH3SCH3 Furan -propiolactone CH2vCClCH3 CH3SOCH⫺ 2 1,3,5-triazine Thiophene C共CN兲4 B3O3F3 FNvC共NF2兲2 F2C共NF2兲2 Cl2O7 B3O3Cl3 共CH3兲2CH•( 2 A ⬘ ) 共CH3兲2NH CH3CH2NH2 共CH3兲2CH⫺ 共CH3兲2OH⫹ CH2vCHCHvCH2 CH3CwCCH3 Methylenecyclopropane Bicyclobutane Cyclobutene CH3CHvCvCH2 CH3COCH3 Oxetane 共CH3兲2SiH⫺ 1H-pyrrole cyclo-C5H⫺ 5 2-azetidinone H2NCH2COOH Thietane Na共H2O兲⫹ 3 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 Elec 24 25 26 28 32 32 34 34 40 40 42 42 46 48 50 50 56 60 66 66 68 80 98 114 128 128 24 24 26 26 32 34 34 36 38 40 42 42 44 58 66 72 74 90 90 25 26 26 26 26 30 30 30 30 30 30 32 32 34 36 36 38 40 40 40 ⌬H 0f 共kcal/mol兲 Value 168.1 ⫺3.7 ⫺7.0 70.8 ⫺85.0 ⫺103.4 19.1 ⫺26.8 ⫺41.8 81.3 ⫺178.9 ⫺50.2 ⫺175.0 ⫺104.0 ⫺30.5 ⫺32.1 ⫺246.5 ⫺3.6 ⫺34.6 ⫺34.6 60.5 ⫺629.5 ⫺33.9 ⫺32.9 24.0 ⫺309.7 4.8 12.7 ⫺56.2 ⫺44.0 ⫺57.0 ⫺11.1 ⫺9.0 ⫺8.3 ⫺67.6 ⫺5.0 ⫺29.2 54.0 27.5 160.8 ⫺565.3 22.7 ⫺109.0 65.0 ⫺390.0 21.5 ⫺4.4 ⫺11.3 28.7 132.4 26.3 34.8 47.9 51.9 37.5 38.8 ⫺51.9 ⫺19.3 ⫺7.4 25.9 22.5 ⫺22.9 ⫺93.7 14.5 ⫺88.8 Error 1.9 0.8 1.0 0.5 0.2 0.4 0.4 0.3 2.0 0.6 0.8 1.7 0.6 2.2 0.3 0.3 0.4 1.2 0.4 0.5 1.6 4.0 2.2 1.1 0.2 0.8 0.2 0.1 0.1 0.1 0.2 0.1 0.1 0.2 0.2 2.2 2.0 0.2 0.2 2.2 1.0 0.8 0.9 n/a 2.0 0.4 0.2 0.2 1.0 1.9 0.3 0.3 0.4 0.2 0.4 0.1 0.2 0.2 2.3 0.1 2.0 0.2 0.2 0.3 n/a Source 45 32 88 90 56 56 88 56 56 91 81 88 75 56 56 81 56 56 56 81 56 26 56 81 26 26 56 56 56 56 56 56 56 56 75 56 67 92 56 93 26 75 75 62 26 32 56 56 86 45 56 56 56 56 56 75 56 75 94 56 67 95 75 56 61 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to IP: 118.163.199.183 On: Mon, 24 Feb 2014 08:17:39 9382 Cioslowski et al. J. Chem. Phys., Vol. 113, No. 21, 1 December 2000 TABLE I. 共Continued.兲 Entry 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 Species 共el state or mult兲 Number of Nuclei Elec p-benzyne 共singlet兲 10 p-benzyne 共triplet兲 10 m-benzyne 共singlet兲 10 m-benzyne 共triplet兲 10 o-benzyne 共singlet兲 10 o-benzyne 共triplet兲 10 共CH3兲2SO 10 Pyridazine 10 Pyrimidine 10 Pyrazine 10 HSCH2CH2SH 10 CH3SSCH3 10 10 CH3SO2CH⫺ 2 Thiete sulphone 10 1,3-dithiolan-2-one 10 Dithiooxamide 10 1,3-dithiolane-2-thione 10 CH3CH2CH3 11 SiH2共CH3兲2 11 Cyclopentadiene 11 Bicyclo关2.1.0兴pentene 11 Cyclobutanone 11 CH3CH2CH2Cl 11 Pyridine 11 共CH3兲2CHCl 11 2,5-dihydrothiophene 11 共CH3兲2SO2 11 Si共CH3兲2HCl 11 CH3CHClCH2Cl 11 FC共NF2兲3 11 Cyclobutane 12 共CH3兲2CvCH2 12 CH3CH2CHvCH2 12 (Z)-CH3CHvCHCH3 12 (E)-CH3CHvCHCH3 12 共CH3兲2CHOH 12 CH3CH2OCH3 12 Benzene 12 Fulvene 12 CH3CH2CH2SH 12 共CH3兲2CHSH 12 Pyridine–H⫹ 12 1,3,5-trioxane 12 C6H5F 12 C6H5O⫺ 12 Pyridine-N-oxide 12 p-benzoquinone 12 C6H5S•( 2 B 1 ) 12 12 C6H5Cl 共CH3O兲2SO 12 Pyrazine-1,4-dioxide 12 o-C6H4Cl2 12 m-C6H4Cl2 12 P-C6H4Cl2 12 C6F6 12 Perfluorocyclobutane 12 C6F5Cl 12 Tetrachloro-p-benzoquinone 12 C6Cl6 12 N3P3Cl6 12 共CH3兲3C•( 2 A 1 ) 13 共CH3兲3N 13 Spiropentane 13 (Z)-CH3CHvCHCHvCH2 13 (E)-CH3CHvCHCHvCH2 13 40 40 40 40 40 40 42 42 42 42 50 50 50 54 62 62 70 26 34 36 36 38 42 42 42 46 50 50 58 90 32 32 32 32 32 34 34 42 42 42 42 42 48 50 50 50 56 57 58 58 58 74 74 74 90 96 98 120 138 168 33 34 38 38 38 ⌬H 0f 共kcal/mol兲 Value 137.8 141.6 121.9 142.9 105.9 143.3 ⫺36.2 66.5 47.0 46.9 ⫺2.3 ⫺5.8 ⫺88.3 ⫺29.7 ⫺30.1 19.8 22.4 ⫺25.0 ⫺22.6 32.1 79.8 ⫺24.2 ⫺31.5 33.6 ⫺34.6 20.8 ⫺89.2 ⫺67.4 ⫺38.9 ⫺48.0 6.8 ⫺4.0 0.0 ⫺1.7 ⫺2.7 ⫺65.2 ⫺51.7 19.7 53.6 ⫺16.2 ⫺18.2 177.0 ⫺111.3 ⫺27.8 ⫺37.1 21.0 ⫺29.3 55.8 12.4 ⫺115.5 44.6 7.2 6.1 5.4 ⫺228.5 ⫺369.5 ⫺194.1 ⫺44.4 ⫺8.6 ⫺175.9 12.3 ⫺5.7 44.3 19.5 18.2 Error 2.9 2.9 3.1 3.1 3.3 3.3 0.2 0.3 0.2 0.3 0.3 0.2 2.1 0.7 1.2 0.4 0.5 0.1 1.0 0.4 0.6 0.3 0.3 0.2 0.3 0.3 0.7 1.7 0.3 0.6 0.1 0.2 0.2 0.2 0.2 0.1 0.2 0.2 0.1 0.2 0.2 1.9 0.1 0.3 3.1 0.6 0.9 1.5 0.3 0.5 0.5 0.5 0.5 0.4 0.3 2.6 0.7 2.8 2.3 n/a 0.4 0.2 0.2 0.3 0.2 Source Entry Species 共el state or mult兲 96 96 96 96 96 96 56 75 75 75 56 56 67 75 56 97 56 56 88 56 98 99 56 56 56 56 56 88 56 75 56 56 56 56 56 56 56 56 90 56 56 45 100 75 101 102 75 103 56 56 104 56 56 56 75 75 56 56 75 105 32 56 56 56 56 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 共CH2vCH兲2CH2 Cyclopentene Bicyclo关2.1.0兴pentane Tetrahydrofuran 共CH3兲3Al Si共CH3兲3•( 2 A 1 ) 共CH3兲3P CH3CH共NH2兲COOH Tetrahydrothiophene C6H5OH Na共H2O兲⫹ 4 C6H5CN CH3CH共SH兲CH2SH C6H5SH 共CH2vCH兲2SO2 Butadiene sulphone 共CH3O兲2SO2 m-ClC6H4OH p-ClC6H4OH 1,3-dithiane-2-thione C共NO2兲4 C共NF2兲4 C6Cl5OH CH3共CH2兲2CH3 共CH3兲3CH B5H9 Pyrrolidine SiH共CH3兲3 Bicyclo关2.2.0兴hex-2-ene cyclo-C7H⫹ 7 共CH3兲3CCl 共CH3兲CHCH2Cl C6H5NH2 C6H5CHO CH3COSC2H5 CH3SO2C2H5 Si共CH3兲3Cl Benzotriazole Benzoxazole C6H5NCO Benzothiazole C6H5COCl o-ClC6H4CHO P4O10 1,3,5-cycloheptatriene Norbornadiene C6H5CH3 Quadricyclane CH3共CH2兲3SH 共C2H5兲2S Si共CH3兲3OH C6H5NH⫹ 3 共CH3O兲共C2H5O兲SO C6H5CH2Cl o-ClC6H4COOH m-ClC6H4COOH p-ClC6H4COOH Bicyclopropyl cis-bicyclo关2.2.0兴hexane Cubane 1,3,5,7-cyclooctatetraene C6H5CHvCH2 B共OCH3兲3 共C2H5兲2SO Indole Number of Nuclei Elec 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 15 15 15 15 15 15 15 15 15 15 15 15 15 16 16 16 16 16 16 16 16 38 38 38 40 40 41 42 48 48 50 50 54 58 58 62 62 66 66 66 78 98 106 130 34 34 34 40 42 44 48 50 50 50 56 56 58 58 62 62 62 70 72 72 140 50 50 50 50 50 50 50 50 66 66 80 80 80 46 46 56 56 56 56 58 62 ⌬H 0f 共kcal/mol兲 Value 25.2 8.1 37.8 ⫺44.0 ⫺20.9 ⫺0.7 ⫺22.5 ⫺99.1 ⫺8.2 ⫺23.0 ⫺160.4 51.5 ⫺7.1 26.9 ⫺36.0 ⫺61.2 ⫺164.2 ⫺36.6 ⫺34.8 18.8 19.7 0.2 ⫺53.8 ⫺30.0 ⫺32.1 17.5 ⫺0.9 ⫺39.1 62.4 206.7 ⫺43.5 ⫺38.1 20.8 ⫺8.8 ⫺54.5 ⫺97.7 ⫺84.6 80.2 10.8 ⫺3.5 48.8 ⫺24.7 ⫺15.0 ⫺694.1 43.2 58.8 12.0 81.0 ⫺21.1 ⫺20.0 ⫺119.5 175.6 ⫺125.2 4.5 ⫺72.7 ⫺76.9 ⫺77.6 30.9 29.8 148.7 70.7 35.3 ⫺214.6 ⫺49.1 37.4 Error Source 0.3 0.3 0.2 0.2 1.7 1.7 1.2 1.0 0.3 0.2 n/a 0.5 0.3 0.2 0.9 0.7 0.5 2.1 2.1 0.7 0.5 1.3 0.9 0.2 0.2 1.6 0.2 1.0 0.3 0.7 0.5 2.0 0.2 2.0 0.2 0.7 0.7 0.3 0.1 0.3 0.1 1.0 2.1 2.1 0.5 0.7 0.1 0.6 0.3 0.2 0.7 1.9 0.5 0.7 0.2 0.2 0.2 0.9 0.3 1.0 0.4 0.4 0.7 0.4 0.3 56 56 98 75 75 88 75 106 56 75 61 75 56 56 75 75 56 56 56 75 107 75 56 56 56 26 108 88 98 109 56 56 75 75 56 56 88 110 111 112 111 56 56 26 56 56 75 56 56 56 88 45 56 56 113 113 113 75 98 75 56 56 75 56 108 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to IP: 118.163.199.183 On: Mon, 24 Feb 2014 08:17:39 J. Chem. Phys., Vol. 113, No. 21, 1 December 2000 Standard enthalpies 9383 TABLE I. 共Continued.兲 Entry 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 Species 共el state or mult兲 HS共CH2兲4SH C2H5SSC2H5 P共OCH3兲3 p-O2NC6H4NH2 Pyridinium dicyanomethylide C共CH3兲4 CH3共CH2兲3CH3 Piperidine 共CH3兲4Si CH3共CH2兲4Cl 共C2H5兲2SO2 Quinoline Isoquinoline Cyclohexane o-C6H4共CH3兲2 m-C6H4共CH3兲2 p-C6H4共CH3兲2 Naphthalene Azulene 共C2H5O兲2SO p-ClC6H4C2H5 1-chloronaphthalene 2-chloronaphthalene Perfluorocyclohexane Bicyclo关2.2.1兴heptane 共CH3兲3SiNH共CH3兲 Cyclohexanethiol 共C2H5O兲2SO2 CH3共CH2兲4CH3 Bullvalene Triquinacene 2,4,10-trioxaadamantane Biphenylene Acenaphthylene 1-azabicyclo关2.2.2兴octane Si共CH3兲3OC2H5 Mg(cyclo-C5H5兲2 Si共OCH3兲4 bicyclo关2.2.2兴octane 共CH3兲3SiN共CH3兲2 Number of Nuclei Elec 16 16 16 16 16 17 17 17 17 17 17 17 17 18 18 18 18 18 18 18 18 18 18 18 19 19 19 19 20 20 20 20 20 20 21 21 21 21 22 22 66 66 66 72 74 42 42 48 50 58 66 68 68 48 58 58 58 68 68 74 74 84 84 144 54 58 64 82 50 70 70 76 80 80 62 66 82 82 62 66 ⌬H 0f 共kcal/mol兲 Value Error Source Entry ⫺12.0 ⫺17.9 ⫺168.6 13.2 125.1 ⫺40.3 ⫺35.1 ⫺11.3 ⫺55.7 ⫺41.8 ⫺102.6 47.9 48.9 ⫺29.5 4.6 4.1 4.3 36.1 69.1 ⫺132.0 ⫺0.9 28.6 32.8 ⫺566.2 ⫺13.1 ⫺54.3 ⫺23.0 ⫺180.8 ⫺39.9 79.9 57.5 ⫺119.3 99.9 62.1 ⫺1.0 ⫺119.0 32.9 ⫺281.8 ⫺23.7 ⫺59.3 0.4 0.2 1.5 0.4 3.0 0.3 0.2 0.1 0.8 0.5 0.6 0.3 0.3 0.2 0.3 0.2 0.2 0.3 0.8 0.5 0.6 2.3 2.4 1.8 1.1 1.0 0.2 0.5 0.2 0.8 0.7 0.5 0.8 1.1 0.3 1.0 0.9 1.0 0.2 1.0 56 56 57 114 91 75 56 108 88 56 56 108 108 56 56 56 56 75 56 56 56 56 56 115 56 88 56 56 56 116 117 118 56 56 119 88 120 88 119 88 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 of this function is unknown, e 2 is approximated by an empirical expression that involves parameters determined with the aforementioned fitting procedure. The BDF scheme offers several distinct advantages over other approaches to the estimation of standard enthalpies of formation. First of all, it does not require the knowledge of either the zero-point energy or the thermal correction, eliminating the need for costly vibrational frequency calculations. Second, it is universally applicable to all species composed of a given set of elements, regardless of the presence of particular types of bonds or even the existence of a Lewis structure. Moreover, it is well defined, as the attractor interaction lines and the bond critical points are entirely determined by the properties of electron density. In these respects, the BDF method constitutes a substantial improvement over the bond additivity corrections that, although reducing the errors in the predicted values of ⌬H 0f , rely on the identification of chemical bonds by means of ‘‘chemical intuition’’ ⌬H 0f 共kcal/mol兲 Number of Species 共el state or mult兲 Nuclei Elec Urotropin Acenaphthene Biphenyl Carbazole 2,4,6-共CH3兲3C6H2CN→O Acridine Phenanthridine 共C6H5兲2S Phenanthrene Anthracene 共E兲-azobenzene 共Z兲-azobenzene 共CH6H5兲2SO C6H5SSC6H5 Si共CH3兲2共OC2H5兲2 P共OC2H5兲3 共E兲-azoxybenzene 共C6H5兲2SO2 Si共C6H5兲2Cl2 Adamantane 共Z兲-stilbene 共E兲-stilbene 共C2H5O兲3PO Pyrene Fluoranthene 关Si共CH3兲3兴2O 关Si共CH3兲3兴2NH C6H5SO2SO2C6H5 Si共C2H5兲4 Be共CH3COCHCOCH3兲2 Triphenylene Benzo关c兴phenanthrene Benz关a兴anthracene Chrysene 关Si共CH3兲3兴2NCH3 Perylene P共C6H5兲3 关Si共CH3兲3兴3N Si共C6H5兲4 C60 22 22 22 22 23 23 23 23 24 24 24 24 24 24 25 25 25 25 25 26 26 26 26 26 26 27 28 28 29 29 30 30 30 30 31 32 34 40 45 60 76 82 82 88 86 94 94 98 94 94 96 96 106 114 82 90 104 114 130 76 96 96 98 106 106 90 90 146 82 110 120 120 120 120 98 132 138 130 178 360 Value Error Source 47.6 37.3 43.4 50.0 32.7 65.5 57.5 55.3 49.5 55.2 96.9 107.7 25.5 58.2 ⫺185.7 ⫺194.4 81.7 ⫺28.4 ⫺51.5 ⫺31.8 60.3 56.4 ⫺285.8 53.9 69.1 ⫺185.7 ⫺114.0 ⫺114.9 ⫺71.0 ⫺272.7 65.5 69.6 70.0 64.5 ⫺107.3 75.4 76.5 ⫺160.4 79.8 618.1 0.7 0.7 0.5 1.2 1.0 1.0 1.0 0.7 1.1 0.5 0.3 0.5 0.7 1.0 1.2 1.3 0.6 0.8 n/a 0.3 0.5 0.3 n/a 0.3 0.2 1.5 1.2 0.9 1.4 0.7 1.0 1.1 1.0 1.6 2.0 0.9 1.1 3.0 1.5 3.4 121 56 56 108 122 108 108 56 75 56 123 124 56 56 88 57 125 56 126 127 56 56 128 56 56 88 88 75 88 129 56 56 56 56 88 130 57 88 88 131 and are not applicable to systems with less usual bonding situations.17 Performance assessments carried out for various BDF schemes have demonstrated their capability of significantly enhancing the accuracy of the computed standard enthalpies TABLE II. Parameters of the B3LYP/6-311⫹⫹G** modified atomequivalent schemea Z e 1 (Z) 共a.u.兲 Z e 1 (Z) 共a.u.兲 e Q (kcal/mol) e S (kcal/mol) 1 3 4 5 6 7 8 9 0.594 725 7.551 433 14.807 256 24.882 548 38.127 846 54.787 885 75.172 827 99.784 419 11 12 13 14 15 16 17 162.325 944 200.141 950 242.498 552 289.543 197 341.376 506 398.222 170 460.204 694 ⫺2.714 4.006 See Eq. 共2兲. This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to IP: 118.163.199.183 On: Mon, 24 Feb 2014 08:17:39 a 9384 Cioslowski et al. J. Chem. Phys., Vol. 113, No. 21, 1 December 2000 TABLE III. Members of the test set with large errors in the values of ⌬H 0f predicted with the B3LYP/6-311⫹⫹G** modified atom-equivalent scheme.a ⌬H 0f 共kcal/mol兲 Entry Species 共el state or mult兲 Expt 544 196 476 129 140 226 71 271 346 75 73 338 590 445 70 466 511 512 109 448 343 173 228 223 61 447 49 510 433 286 137 180 68 121 518 229 437 165 350 370 103 233 330 264 309 497 224 134 176 405 597 390 446 273 441 130 339 216 60 524 97 360 74 167 Perfluorocyclohexane P4 C共NO2兲4 FPO ClPO OvCvCvCvO P2 N2O4 1,3-dithiole-2-thione SiCl•( 2 ⌸ 1/2) AlS⫺ 共COOH兲2 Be共CH3COCHCOCH3兲2 C6F6 AlS•( 2 ⌺ ⫹ ) Na共H2O兲⫹ 4 m-ClC6H4COOH p-ClC6H4COOH HOSi⫹ Tetrachloro-p-benzoquinone 1, 3-dithiol-2-one FNO2 B2O3 HNO3 SiF•( 2 ⌸ 1/2) C6F5Cl 2 ⫹ F⫺ 2 •( ⌺ u ) o-ClC6H4COOH 1,3,5-trioxane 共COCl兲2 CS2 ClNO2 Si2( 3 ⌺ ⫺ g ) COS B共OCH3兲3 N2O3 p-benzoquinone HCOO⫺ S8 B3O3Cl3 CO2 F3NO HCOOCH3 共CHO兲2 B共OH兲3 C6H5COCl HOCO⫺ 2 Al2O FOOF 1,3-dithiolan-2-one P共C6H5兲3 Na共H2O兲⫹ 3 Perfluorocyclobutane C2F4 Pyrazine-1, 4-dioxide SiF2 共singlet兲 ClCH2COOH HCOOH PO•( 2 ⌸ 1/2) p-O2NO6H4NH2 PH⫺ 2 -propiolactone SiS 共singlet兲 OBBO ⫺566.2 14.1 19.7 ⫺96.7 ⫺51.4 ⫺22.4 34.3 2.2 60.5 47.4 ⫺3.0 ⫺175.0 ⫺272.7 ⫺228.5 57.0 ⫺160.4 ⫺76.9 ⫺77.6 155.2 ⫺44.4 ⫺3.6 ⫺26.0 ⫺199.8 ⫺32.1 ⫺4.8 ⫺194.1 ⫺69.3 ⫺72.7 ⫺111.3 ⫺80.3 28.0 2.9 139.9 ⫺33.1 ⫺214.6 19.8 ⫺29.3 ⫺110.9 24.0 ⫺390.0 ⫺94.1 ⫺39.0 ⫺85.0 ⫺50.7 ⫺237.2 ⫺24.7 ⫺177.8 ⫺34.7 4.6 ⫺30.1 76.5 ⫺88.8 ⫺369.5 ⫺157.4 44.6 ⫺140.5 ⫺104.0 ⫺90.5 ⫺5.6 13.2 6.4 ⫺67.6 25.3 ⫺109.0 Pred ⫺601.2 ⫺18.5 ⫺11.6 ⫺126.5 ⫺77.5 ⫺47.7 9.4 ⫺22.5 38.3 25.6 ⫺24.5 ⫺196.1 ⫺292.4 ⫺248.1 38.8 ⫺178.4 ⫺94.7 ⫺95.3 137.6 ⫺61.5 ⫺20.7 ⫺42.8 ⫺216.4 ⫺48.6 ⫺21.1 ⫺210.3 ⫺85.5 ⫺88.7 ⫺127.2 ⫺96.0 12.3 ⫺12.6 124.4 ⫺48.5 ⫺229.8 4.6 ⫺44.1 ⫺125.7 9.2 ⫺404.8 ⫺108.8 ⫺53.5 ⫺99.5 ⫺64.9 ⫺251.3 ⫺38.7 ⫺191.8 ⫺48.7 ⫺9.3 ⫺44.0 62.7 ⫺102.5 ⫺383.2 ⫺171.0 31.0 ⫺153.9 ⫺117.2 ⫺103.4 ⫺18.5 0.4 ⫺6.3 ⫺80.3 12.7 ⫺121.6 Error Entry ⫺35.0 ⫺32.6 ⫺31.3 ⫺29.8 ⫺26.1 ⫺25.3 ⫺24.9 ⫺24.8 ⫺22.2 ⫺21.8 ⫺21.5 ⫺21.1 ⫺19.7 ⫺19.6 ⫺18.2 ⫺18.0 ⫺17.8 ⫺17.7 ⫺17.6 ⫺17.1 ⫺17.1 ⫺16.8 ⫺16.6 ⫺16.5 ⫺16.3 ⫺16.2 ⫺16.2 ⫺16.0 ⫺15.9 ⫺15.7 ⫺15.7 ⫺15.6 ⫺15.5 ⫺15.4 ⫺15.2 ⫺15.2 ⫺14.8 ⫺14.8 ⫺14.8 ⫺14.8 ⫺14.7 ⫺14.5 ⫺14.5 ⫺14.2 ⫺14.1 ⫺14.0 ⫺14.0 ⫺14.0 ⫺13.9 ⫺13.9 ⫺13.9 ⫺13.7 ⫺13.7 ⫺13.6 ⫺13.6 ⫺13.4 ⫺13.2 ⫺12.9 ⫺12.9 ⫺12.8 ⫺12.7 ⫺12.7 ⫺12.6 ⫺12.6 331 489 318 102 342 463 543 120 126 305 498 334 420 185 435 112 163 388 574 490 66 15 267 111 57 462 116 485 593 558 78 35 31 440 312 557 291 362 555 8 24 580 587 198 560 132 589 114 595 236 347 243 404 365 417 179 531 548 472 470 561 491 578 246 Species 共el state or mult兲 CH3COOH C6H5CHO H2S5 BO2•( 2 ⌸ g ) CF3COOH CH3CH共NH2兲COOH 2-chloronaphthalene HOS⫺ SCN⫺ CH3NO2 o-ClC6H4CHO CH3COSH FC共NF2兲3 COCl2 C6H5O⫺ FNO HNCO H2NCH2COOH C6H5SSC6H5 CH3COSC2H5 SF⫺ Al⫹ SiH2vSiH2 C3 SiO 共CH3兲3P NO⫺ 2 cyclo-C7H⫹ 7 Benz关a兴anthracene Si共OCH3兲4 CH2( 3 B 1 ) N2 CN•( 2 ⌺ ⫹ ) 共CH3O兲2SO 1-H-tetrazole Mg(cyclo-C5H5兲2 PCl5 CH3SOCH⫺ 2 1-azabicyclo关2.2.2兴octane B⫹ NH ( 3 ⌺ ⫺ ) Adamantane 关Si共CH3兲3兴2NH SiCl3•( 2 A 1 ) 共CH3兲3SiN共CH3兲2 ClO2•( 2 B 1 ) Si共C2H5兲4 NaCN 关Si共CH3兲3兴2NCH3 SiF4 Al2F6 SF4 Thiete sulphone C共CN兲4 共CH3兲2SO2 SO3 共C2H5兲2SO2 共C2H5O兲2SO2 共CH3O兲2SO2 共CH2vCH兲2SO2 Urotropin CH3SO2C2H5 共C6H5兲2SO2 SO2Cl2 ⌬H 0f 共kcal/mol兲 Expt ⫺103.4 ⫺8.8 13.8 ⫺68.0 ⫺246.5 ⫺99.1 32.8 ⫺37.8 ⫺5.2 ⫺17.8 ⫺15.0 ⫺41.8 ⫺48.0 ⫺52.6 ⫺37.1 ⫺15.7 ⫺24.3 ⫺93.7 58.2 ⫺54.5 ⫺49.9 216.7 65.7 34.1 ⫺24.6 ⫺22.5 ⫺44.5 206.7 70.0 ⫺281.8 92.8 0.0 104.9 ⫺115.5 80.0 32.9 ⫺89.9 ⫺29.2 ⫺1.0 325.2 85.2 ⫺31.8 ⫺114.0 ⫺93.3 ⫺59.3 25.0 ⫺71.0 22.5 ⫺107.3 ⫺386.0 ⫺629.5 ⫺182.4 ⫺29.7 160.8 ⫺89.2 ⫺94.6 ⫺102.6 ⫺180.8 ⫺164.2 ⫺36.0 47.6 ⫺97.7 ⫺28.4 ⫺84.8 Pred Error ⫺115.8 ⫺20.8 2.1 ⫺79.7 ⫺258.0 ⫺110.4 21.5 ⫺49.0 ⫺16.4 ⫺28.9 ⫺26.0 ⫺52.7 ⫺58.8 ⫺63.3 ⫺47.8 ⫺26.2 ⫺34.8 ⫺104.2 47.7 ⫺64.9 ⫺60.3 206.3 55.4 23.8 ⫺34.9 ⫺32.7 ⫺54.7 196.6 59.9 ⫺291.9 102.9 10.1 115.0 ⫺104.8 90.7 43.9 ⫺78.5 ⫺17.8 10.5 336.8 96.8 ⫺19.1 ⫺100.8 ⫺79.9 ⫺45.3 39.0 ⫺55.9 38.6 ⫺90.8 ⫺368.9 ⫺611.1 ⫺163.8 ⫺10.2 180.5 ⫺69.1 ⫺72.7 ⫺80.4 ⫺158.6 ⫺141.9 ⫺13.4 70.3 ⫺74.9 ⫺5.5 ⫺61.7 ⫺12.4 ⫺12.0 ⫺11.7 ⫺11.7 ⫺11.5 ⫺11.3 ⫺11.3 ⫺11.2 ⫺11.2 ⫺11.1 ⫺11.0 ⫺10.9 ⫺10.8 ⫺10.8 ⫺10.7 ⫺10.6 ⫺10.5 ⫺10.5 ⫺10.5 ⫺10.4 ⫺10.4 ⫺10.4 ⫺10.3 ⫺10.3 ⫺10.3 ⫺10.2 ⫺10.2 ⫺10.1 ⫺10.1 ⫺10.1 10.1 10.1 10.1 10.6 10.7 11.0 11.4 11.4 11.5 11.6 11.6 12.6 13.1 13.4 14.0 14.0 15.1 16.1 16.5 17.1 18.4 18.6 19.5 19.7 20.1 21.9 22.1 22.1 22.3 22.6 22.8 22.8 22.9 23.1 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to IP: 118.163.199.183 On: Mon, 24 Feb 2014 08:17:39 J. Chem. Phys., Vol. 113, No. 21, 1 December 2000 Standard enthalpies 9385 TABLE III. 共Continued.兲 a Entry 598 403 471 481 314 282 279 277 125 237 a Species 共el state or mult兲 关Si共CH3兲3兴3N CH3SO2CH⫺ 2 Butadiene sulphone B5H9 H2SO4 PF5 HSO⫺ 4 HOSO2F FAlO SO2F2 ⌬H 0f 共kcal/mol兲 Expt ⫺160.4 ⫺88.3 ⫺61.2 17.5 ⫺175.7 ⫺381.1 ⫺231.9 ⫺180.0 ⫺139.0 ⫺181.3 Pred ⫺136.9 ⫺64.8 ⫺36.2 43.9 ⫺148.2 ⫺353.4 ⫺203.5 ⫺149.7 ⫺107.1 ⫺148.4 Error Entry 23.5 23.5 25.0 26.4 27.5 27.8 28.4 30.3 31.9 32.9 499 284 450 600 239 315 317 588 369 ⌬H 0f 共kcal/mol兲 Species 共el state or mult兲 P4O10 SF5•( 2 A 1 ) N3P3Cl6 C60 FClO3 SF6 SF5Cl C6H5SO2SO2C6H5 Cl2O7 Expt ⫺694.1 ⫺218.1 ⫺175.9 618.1 ⫺5.1 ⫺291.7 ⫺248.3 ⫺114.9 65.0 Pred ⫺656.1 ⫺172.8 ⫺130.5 665.8 45.5 ⫺240.3 ⫺192.0 ⫺51.0 156.4 Error 38.0 45.3 45.4 47.7 50.5 51.4 56.3 64.0 91.4 See Eq. 共2兲 and Table II. Only the species with absolute errors in the predicted ⌬H 0f greater than 10 kcal/mol are listed. of formation.6 For example, at the B3LYP/6-311G** level of theory, the average absolute error of 6.6 kcal/mol in the values of ⌬H 0f obtained with the modified atom-equivalent scheme, ⌬H 0f 共 X 兲 ⫽E 共 X 兲 ⫹e Q Q 共 X 兲 ⫹e S N S 共 X 兲 ⫹ 兺I e 1共 Z I 兲 , 共2兲 is almost halved to 3.4 kcal/mol upon the inclusion of a five-term BDF. The main contributors to this residual error are anions with localized charges, which are poorly described by the basis set that lacks diffuse functions, and several species with inaccurate experimental data that were included in the original 300-member training set. These encouraging results have prompted us to develop a more accurate B3LYP/6-311⫹⫹G** scheme, with the present compilation of standard enthalpies of formation being employed as the training set. Accordingly, total energies of the 600 species listed in Table I were computed at their optimized geometries with the GAUSSIAN 94 suite of programs.133 The fitting process and the forms of the BDFs were identical to those described previously.6 The resulting parameters of the modified atom-equivalent scheme 关Eq. 共2兲兴 are listed in Table II. As expected,6,22,23,134 stabilities of hypervalent species are grossly underestimated, whereas the computed standard enthalpies of formation of polyhalogenated compounds with normal valences are often too low 共Table III兲. The overall average absolute error and the standard deviation equal 7.7 and 11.8 kcal/mol, respectively. The errors for individual species range from ⫺35.0 to 91.4 kcal/ mol, the largest absolute deviation between the computed and experimental values of ⌬H 0f being observed for Cl2O7. One out of four predictions suffers from an absolute error in excess of 10 kcal/mol 共Table IV兲. These errors reflect three deficiencies of the B3LYP/6-311⫹⫹G** modified atom equivalent scheme, namely the semiempirical inclusion of zero-point energies and thermal corrections, the modest size of the basis set, and the inaccuracy of the B3LYP functional itself. In light of the previously published study, the elimination of the first deficiency is expected to improve the computed standard enthalpies of formation only marginally.6 On the other hand, there is some evidence that the inclusion of more polarization functions in the basis sets may lead to substantially better 共although still not sufficiently accurate兲 predictions for hypervalent species.17,22,23 However, such calculations are presently not feasible for larger systems, including many of those listed in Table I. Inspection of Table IV reveals that a practical route to improving the accuracy of the computed values of ⌬H 0f is offered by the BDF approach. Both the average absolute error and the standard deviation decrease steadily with the number of terms in BDF. In particular, the five-term BDF, e 2 共 IJ ,R IJ ,Z IJ , ␣ IJ ,  IJ 兲 4/3 ⫺1/3 ⫺2/3 1/3 ⫽⫺8.612⫻31⫻10⫺1 IJ R IJ Z IJ ␣ IJ  IJ 3 2/3 ⫺2/3 ⫺1 1/3 ⫹5.220 04⫻102 IJ R IJ Z IJ ␣ IJ  IJ 3 ⫺3 3 2/3 ⫺4/3 ⫺4.403 26⫻10⫺4 IJ R IJ Z IJ ␣ IJ  IJ 3 3 3 ⫺2 ⫹1.917 31⫻10⫺7 IJ R IJ Z IJ ␣ IJ  IJ ⫺3 3 3 ⫺1/2 ⫺3.273 19⫻10⫺3 IJ R IJ ␣ IJ  IJ , 共3兲 affords standard enthalpies of formation with the average absolute error of 3.3 kcal/mol and the standard deviation of 5.1 kcal/mol 共Table IV兲. The parameters e Q and e S are much smaller in magnitude than those of the modified atom equivalent scheme 共Table V兲, reflecting an improved handling of ions and radicals. Out of the 600 species, 270 共45% TABLE IV. Error statistics for the B3LYP/6-311⫹⫹G** BDF schemes.a N BDFb Av. abs. err. Stnd. dev. Max. abs. err.c Error range 0 1 2 3 4 5 7.7 4.6 3.9 3.6 3.5 3.3 11.8 7.1 6.1 5.4 5.2 5.1 91.4 共Cl2O7兲 67.6 共Cl2O7兲 54.7 共Cl2O7兲 35.8 共FAlO兲 34.9 共FAlO兲 36.0 共FAlO兲 ⫺35.0–91.4 ⫺25.3–67.6 ⫺22.6–54.7 ⫺21.7–35.8 ⫺21.9–34.9 ⫺21.6–36.0 Md 147 56 45 37 29 26 共24.5%兲 共9.3%兲 共7.5%兲 共6.2%兲 共4.8%兲 共4.3%兲 See Eq. 共1兲. All errors are in kcal/mol. The number of terms in BDF. N BDF⫽0 corresponds to the modified atomequivalent scheme of Eq. 共2兲. c The species with the largest absolute error in the predicted ⌬H 0f is given in parentheses. d The number of species with absolute errors in the predicted ⌬H 0f greater than 10 kcal/mol. This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to IP: a b 118.163.199.183 On: Mon, 24 Feb 2014 08:17:39 9386 TABLE V. Parameters of the B3LYP/6-311⫹⫹G** five-term BDF scheme.a a Cioslowski et al. J. Chem. Phys., Vol. 113, No. 21, 1 December 2000 Z e 1 (Z) 共a.u.兲 Z e 1 (Z) 共a.u.兲 e Q 共kcal/mol兲 e S 共kcal/mol兲 1 3 4 5 6 7 8 9 0.586 789 7.546 572 14.798 838 24.877 331 38.132 726 54.792 149 75.193 391 99.797 820 11 12 13 14 15 16 17 162.323 050 200.147 133 242.509 075 289.574 486 341.418 336 398.249 566 460.220 360 0.284 ⫺0.345 TABLE VI. Members of the test set with large errors in the values of ⌬H 0f predicted with the B3LYP/6-311⫹⫹G** five-term 共BDF兲 scheme.a ⌬H 0f 共kcal/mol兲 Entry 557 129 420 477 137 140 346 544 73 70 49 351 8 291 236 391 315 114 281 198 600 588 284 365 317 125 See Eq. 共1兲. of the total兲 have their enthalpies predicted within 2 kcal/mol from the experimental values, while the predictions for 356 共59% of the total兲 species fall within 3 kcal/mol. The errors exceed 5 kcal/mol only in 123 共21% of the total兲 cases. The set of systems for which the five-term BDF scheme fares poorly, yielding enthalpies with errors greater than 10 kcal/mol, comprises 26 species 共Table VI兲. It is dominated by molecules containing either aluminum atoms and/or multiple fluorines. It is unclear at present whether these systems represent cases where the BDF methodology fails or, more probably, instances of grossly inaccurate experimental values of ⌬H 0f . Resolution of these discrepancies calls for revisiting the published thermochemical data and thus new calorimetric experiments. IV. DISCUSSION AND CONCLUSIONS The comprehensive set of experimental standard enthalpies of formation presented in this paper is certain to facilitate benchmarking, calibration, and parametrization of electronic structure methods. With its diverse molecules, many possessing unusual geometries and bonding situations, the present set is capable of uncovering deficiencies in approaches of quantum chemistry that are not detectable with smaller compilations of data. These deficiencies can often be alleviated with additional/revised parameterization. An example of such a methodology is provided by the development of the B3LYP/6-311⫹⫹G** bond density functional 共BDF兲 scheme. The set of atoms, molecules, and ions listed in Table III, for which the original B3LYP/6-311⫹⫹G** level of theory produces unacceptably large errors in the predicted values of ⌬H 0f , contains the species that are poorly handled by a typical hybrid density functional used in conjunction with a moderate-size basis set. As such, it is suitable for a rigorous testing of new functionals. The B3LYP/6-311⫹⫹G** BDF method, defined by Eqs. 共1兲, 共3兲, and the parameters listed in Table V, affords accurate estimates of ⌬H 0f for a majority of the members of the test set. It is sufficiently inexpensive in terms of computer time and memory to allow predictions of standard enthalpies of formation even for molecules as large as the C60 fullerene. It requires only single point calculations at optimized geometries, yielding values of ⌬H 0f with the averageabsolute error of 3.3 kcal/mol and thus rivaling more expensive methods in accuracy 共especially for larger systems兲. a Species 共el state or mult兲 Mg(cyclo-C5H5) 2 FPO FC共NF2兲3 C共NF2兲4 CS2 ClPO 1,3-dithiole-2-thione Perfluorocyclohexane AlS⫺ AlS• ( 2 ⌺ ⫹ ) 2 ⫹ F⫺ 2 •( ⌺ u ) Al2Cl6 B⫹ PCl5 SiF4 p-benzyne 共singlet兲 SF6 NaCN NCSSCN SiCl3•( 2 A 1 ) C60 C6H5SO2SO2C6H5 SF5•( 2 A 1 ) C共CN兲4 SF5Cl FAlO Expt Pred Error 32.9 ⫺96.7 ⫺48.0 0.2 28.0 ⫺51.4 60.5 ⫺566.2 ⫺3.0 57.0 ⫺69.3 ⫺309.7 325.2 ⫺89.9 ⫺386.0 137.8 ⫺291.7 22.5 83.6 ⫺93.3 618.1 ⫺114.9 ⫺218.1 160.8 ⫺248.3 ⫺139.0 11.3 ⫺117.4 ⫺65.9 ⫺16.4 13.9 ⫺65.4 46.6 ⫺579.8 ⫺15.7 45.2 ⫺80.4 ⫺319.9 336.5 ⫺78.0 ⫺374.0 150.9 ⫺278.4 35.9 97.7 ⫺78.0 634.8 ⫺94.9 ⫺197.8 182.3 ⫺224.2 ⫺103.0 ⫺21.6 ⫺20.7 ⫺17.9 ⫺16.6 ⫺14.1 ⫺14.0 ⫺13.9 ⫺13.6 ⫺12.7 ⫺11.8 ⫺11.1 ⫺10.1 11.3 11.9 12.0 13.1 13.3 13.4 14.1 15.3 16.7 20.0 20.3 21.5 24.1 36.0 See Eqs. 共1兲, 共3兲, and Table V. Only the species with absolute errors in the predicted ⌬H 0f greater than 10 kcal/mol are listed. Still, this scheme could possibly be refined even further, especially in order to reduce errors observed for molecules such as H2, N2, C2H2, and H2F2. It appears that the experimental data for at least some of the 26 species listed in Table VI are of suspect quality. As such, they may be omitted from the test set, although at the expense of a reduced diversity in the remaining systems. ACKNOWLEDGMENTS The research described in this publication has been supported by the Office of Energy Research, Office of Basic Energy Sciences, Division of Chemical Sciences, US Department of Energy under Grant No. DE-FG02-97ER14758. M.S. acknowledges a Feodor-Lynen Research Fellowship from the Alexander von Humboldt Foundation. 1 L. A. Curtiss, K. Raghavachari, P. C. Redfern, V. Rassolov, and J. A. Pople, J. Chem. Phys. 109, 7764 共1998兲. 2 L. A. Curtiss, P. C. Redfern, K. Raghavachari, V. Rassolov, and J. A. Pople, J. Chem. Phys. 110, 4703 共1999兲; A. G. Baboul, L. A. Curtiss, P. C. Redfern, and K. Raghavachari, ibid. 110, 7650 共1999兲. 3 D. G. Truhlar, Chem. Phys. Lett. 294, 45 共1998兲; L. A. Curtiss, K. Raghavachari, P. C. Redfern, A. G. Baboul, and J. A. Pople, ibid. 314, 101 共1999兲; J. M. L. Martin and G. deOliveira, J. Chem. Phys. 111, 1843 共1999兲; P. L. Fast, M. L. Sanchez, and D. G. Truhlar, ibid. 111, 2921 共1999兲; L. A. Curtiss, K. Raghavachari, P. C. Redfern, and J. A. Pople, ibid. 112, 1125 共2000兲; J. A. Montgomery, M. J. Frisch, J. W. Ochterski, and G. A. Petersson, ibid. 112, 6532 共2000兲. 4 A. D. Becke, J. Comput. Chem. 20, 63 共1999兲, and the references cited therein. 5 H. L. Schmider and A. D. Becke, J. Chem. Phys. 109, 8188 共1998兲. This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to IP: 118.163.199.183 On: Mon, 24 Feb 2014 08:17:39 J. Chem. Phys., Vol. 113, No. 21, 1 December 2000 Standard enthalpies 9387 J. Cioslowski, G. Liu, and P. Piskorz, J. Phys. Chem. A 102, 9890 共1998兲. Gilles, and W. C. Lineberger, J. Chem. Phys. 96, 7191 共1992兲 and its ⌬H 0f B. Ahlswede and K. Jug, J. Comput. Chem. 6, 563 共1999兲. recalculated from the data reported in Ref. 26 using ⌬H 0f of CF2 listed in 8 J. J. P. Stewart, J. Comput. Chem. 10, 221 共1989兲. the present compilation. 9 42 J. J. P. Stewart, J. Comput. Chem. 12, 320 共1991兲. Computed from the EA of AlS• reported in A. Nakajima, T. Taguwa, K. 10 W. Thiel and A. A. Voityuk, Int. J. Quantum Chem. 44, 807 共1992兲. Nakao, K. Hoshino, S. Iwata, and K. Kaya, J. Chem. Phys. 102, 660 11 W. Thiel and A. A. Voityuk, J. Mol. Struct.: THEOCHEM 313, 141 共1995兲 and its ⌬H 0f listed in the present compilation. 共1994兲. 43 Based upon the singlet–triplet splitting determined by A. R. W. McKellar, 12 W. Thiel and A. A. Voityuk, J. Phys. Chem. 100, 616 共1996兲. P. R. Bunker, T. J. Sears, K. M. Evenson, R. J. Saykally, and S. R. 13 M. J. S. Dewar and M. L. McKee, J. Am. Chem. Soc. 99, 5231 共1977兲. Langhoff, J. Chem. Phys. 79, 5251 共1983兲 and ⌬H 0f of CH2 ( 1 A 1 ) taken 14 M. J. S. Dewar, C. Jie, and E. G. Zoebisch, Organometallics 7, 513 from Ref. 44. The correction to 298 K is taken from Ref. 26. 共1988兲. 44 15 Based upon ⌬H f (0K) recommended by R. K. Lengel and R. N. Zare, L. A. Curtiss, K. Raghavachari, G. W. Trucks, and J. A. Pople, J. Chem. J. Am. Chem. Soc. 100, 7495 共1978兲. The correction to 298 K is from Phys. 94, 7221 共1991兲. 16 Ref. 26. L. A. Curtiss, K. Raghavachari, P. C. Redfern, and J. A. Pople, J. Chem. 45 Computed from the standard enthalpies of protonation reported in E. P. L. Phys. 106, 1063 共1997兲. 17 Hunter and S. G. Lias, J. Phys. Chem. Ref. Data 27, 413 共1998兲 and ⌬H 0f G. A. Petersson, D. K. Malick, W. G. Wilson, J. W. Ochterski, J. A. of H⫹, HCl, C2H2, NH3, H2O, HF, PH3, H2S, SiO, N2H4, CH3OH, Montgomery, Jr., and M. J. Frisch, J. Chem. Phys. 109, 10570 共1998兲. 18 L. A. Curtiss, P. C. Redfern, K. Raghavachari, and J. A. Pople, J. Chem. 共CH3兲2O, oxirane, C6H5NH2, and pyridine listed in the present compilaPhys. 109, 42 共1998兲. tion. 19 46 Note that in these parametrizations only 299 energies were used, the IPs of L. V. Gurvich, G. A. Bergman, L. N. Gorokhov, V. S. Iorish, V. Y. toluene, aniline, and phenol being excluded. Leonidov, and V. S. Yungman, J. Phys. Chem. Ref. Data 25, 1211 共1996兲. 20 47 J. W. Ochterski, G. A. Petersson, and K. B. Wiberg, J. Am. Chem. Soc. L. V. Gurvich, I. V. Veyts, and C. B. Alcock, Thermodynamic Properties 117, 11299 共1995兲. of Individual Substances, 4th ed. 共Hemisphere, New York, 1991兲, Vol. II, 21 W. C. Herndon, Chem. Phys. Lett. 234, 82 共1995兲. Parts 1 and 2. 22 48 S. A. Kafafi, J. Phys. Chem. A 102, 10404 共1998兲. Computed from the standard enthalpies of isomerization and deprotona23 A. D. Rabuck and G. E. Scuseria, Chem. Phys. Lett. 共in press兲. tion reported in K. M. Ervin, S. Gronert, S. E. Barlow, M. K. Gilles, A. G. 24 See, however: G. N. Merrill and M. S. Gordon, J. Chem. Phys. 110, 6154 Harrison, V. M. Bierbaum, C. H. DePuy, W. C. Lineberger, and G. B. 共1999兲; J. M. L. Martin and G. deOliveira, ibid. 111, 1843 共1999兲 for Ellison, J. Am. Chem. Soc. 112, 5750 共1990兲 combined with ⌬H 0f of C2H2 extrapolative methods free of adjustable parameters. and C2H4 listed in the present compilation. 25 J.-P. Blandeau, M. P. McGrath, L. A. Curtiss, and L. Radom, J. Chem. 49 J. Berkowitz, J. P. Greene, H. Cho, and B. Ruscic, J. Chem. Phys. 86, Phys. 107, 5016 共1997兲, and references cited therein. 1235 共1987兲 as cited in Ref. 16. 26 M. W. Chase, C. A. Davies, J. R. Downey, D. R. Frurip, R. A. McDonald, 50 Recommended values from J. C. Poutsma, J. A. Paulino, and R. R. and A. N. Syverud, JANAF Thermochemical Tables, 3rd ed. 关J. Phys. Squires, J. Phys. Chem. A 101, 5327 共1997兲. Chem. Ref. Data 1, 14 共1985兲兴. 51 Computed with the procedure described in J. A. Pople and L. A. Curtiss, 27 J. D. Cox, D. D. Wagman, and V. A. Medvedev, CODATA Key Values for J. Chem. Phys. 90, 2833 共1989兲 but using the IP of HO• reported in R. T. Thermodynamics 共Hemisphere, New York, 1989兲. Wiedmann, R. G. Tonkyn, M. G. White, K. Wang, and V. McKoy, ibid. 28 Computed from standard enthalpies of deprotonation reported in Ref. 32 97, 768 共1992兲. ⌬H 0f of HO• and F•, and the correction to 298 K for HOF 0 ⫹ and ⌬H f of H , H2CO, CH3CHO, CH4, NH3, H2O, HF, SiH4, PH3, H2S, are taken from Ref. 26. HCl, CH3OH, CH3SH, HCN, CH3CHvCH2, and CH3SH listed in the 52 Computed from the standard enthalpy of the FH¯F⫺ bond dissociation present compilation. reported in Ref. 38 combined with ⌬H 0f of HF and F⫺ listed in the present 29 Reference state for ⌬H 0f of an element. compilation. 30 As stated in Ref. 16: ‘‘⌬H f (0 K) calculated from D 0 recommended by K. 53 S. E. Bradforth, E. H. Kim, D. W. Arnold, and D. M. Neumark, J. Chem. Huber and G. Herzberg, ‘‘Molecular Spectra and Molecular Structure 4. Phys. 98, 800 共1993兲. Constants of Diatomic Molecules,’’ Van Nostrand, Princeton, 1979. Vi54 Computed from the EA of NO2• reported in K. M. Ervin, J. Ho, and W. C. brational frequencies from Huber/Herzberg used to obtain temperature Lineberger, J. Phys. Chem. 92, 5405 共1988兲 and its ⌬H 0f listed in the correction to 298 K. This reference does not give uncertainties. All values present compilation. chosen for this study are listed to an accuracy of 0.01 eV 共0.2 kcal/mol兲 or 55 R. A. J. O’Hair, C. H. DePuy, and V. M. Bierbaum, J. Phys. Chem. 97, better.’’ 31 7955 共1993兲. ⌬H 0f of HOS⫺ recalculated with ⌬H 0f of COS listed in the Computed from ⌬H f (0 K) reported in S. T. Gibson, J. P. Greene, and J. present compilation. Berkowitz, J. Chem. Phys. 83, 4319 共1985兲. The correction to 298 K is 56 J. B. Pedley, R. D. Naylor, and S. P. Kirby, Thermochemical Data of taken from Ref. 26. 32 Organic Compounds, 2nd ed. 共Chapman and Hall, New York, 1986兲. J. Berkowitz, G. B. Ellison, and D. Gutman, J. Phys. Chem. 98, 2744 57 G. Pilcher, in The Chemistry of Organophosphorus Compounds, edited by 共1994兲. 33 F. R. Hartley 共Wiley, New York, 1990兲, Vol. 1, p. 127. Based upon ⌬H f (0 K) reported by Y. Huang, S. A. Barts, and J. B. 58 J. T. Herron, J. Phys. Chem. Ref. Data 16, 1 共1987兲. Halpern, J. Phys. Chem. 96, 425 共1992兲 and the correction to 298 K 59 P. A. Giguere and I. D. Liu, J. Am. Chem. Soc. 77, 6477 共1955兲. computed with the vibrational frequency from Ref. 30 as reported in 60 Computed from the standard enthalpy of hydration of F⫺ (⫺26.7⫾0.8 Ref. 16. 34 kcal/mol兲 interpolated from the two values reported in P. Weis, P. R. Computed from the dissociation energy of LiNa reported in C. E. Fellows, Kemper, M. T. Bowers, and S. S. Xantheas, J. Am. Chem. Soc. 121, 3531 J. Chem. Phys. 94, 5855 共1991兲 combined with ⌬H 0f of Li• and Na• listed 共1999兲 combined with ⌬H 0f of H2O and F⫺ listed in the present compilain the present compilation. 35 tion. Computed from the EA of NO• reported in M. J. Travers, D. C. Cowles, 61 Computed from the standard enthalpies of hydration of Na⫹ reported in I. and G. B. Ellison, Chem. Phys. Lett. 164, 449 共1989兲 and its ⌬H 0f listed in Dzidic and P. Kebarle, J. Phys. Chem. 74, 1466 共1970兲 combined with the present compilation. 36 ⌬H 0f of Na⫹ and H2O listed in the present compilation. M. K. Gilles, M. L. Polak, and W. C. Lineberger, J. Chem. Phys. 96, 8012 62 D. D. Wagman, W. H. Evans, V. B. Parker, R. H. Schumm, I. Halow, S. 共1992兲. 37 M. Bailey, K. L. Churney, and R. L. Nuttall, J. Phys. Chem. Ref. Data M. Steinberg and K. Schofield, J. Chem. Phys. 94, 3901 共1991兲. 38 Suppl. 2, 11 共1982兲. P. G. Wenthold and R. R. Squires, J. Phys. Chem. 99, 2002 共1995兲. 63 39 Computed from the standard enthalpy of deprotonation of HCOOH reL. Operti, E. C. Tews, T. J. MacMahon, and B. S. Freiser, J. Am. Chem. ported in G. Caldwell, R. Renneboog, and P. Kebarle, Can. J. Chem. 67, Soc. 111, 9152 共1989兲. 40 611 共1989兲 combined with ⌬H 0f of H⫹ and HCOOH listed in the present Computed from the adiabatic IP of Na2 reported in S. Leutwyler, M. Hofmann, H.-P. Harri, and E. Schumacher, Chem. Phys. Lett. 77, 257 compilation. 64 共1981兲 and its ⌬H 0f listed in the present compilation. Computed from the standard enthalpy of hydration of Cl⫺ reported in R. 41 G. Keesee and A. W. Castleman, Jr., Chem. Phys. Lett. 74, 139 共1980兲 Computed from the adiabatic EA of SF• reported in M. L. Polak, M. K. This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to IP: 6 7 118.163.199.183 On: Mon, 24 Feb 2014 08:17:39 9388 J. Chem. Phys., Vol. 113, No. 21, 1 December 2000 combined with ⌬H 0f of Cl⫺ and H2O listed in the present compilation. Cioslowski et al. Brauman, J. Am. Chem. Soc. 116, 8304 共1994兲 combined with ⌬H 0f of H• 65 and 共CH3兲2SiH2 listed in the present compilation. The lower bound from R. L. Asher, E. H. Appelman, and B. Ruscic, J. 95 M. V. Roux, P. Jimenez, J. Z. Davalos, O. Castano, M. T. Molina, R. Chem. Phys. 105, 9781 共1996兲. 66 Notario, M. Herreros, and J.-L. Abboud, J. Am. Chem. Soc. 118, 12735 M. W. Chase, J. Phys. Chem. Ref. Data 25, 551 共1996兲. 67 共1996兲. Computed from the standard enthalpies of deprotonation reported in J. E. 96 P. G. Wenthold, R. R. Squires, and W. C. Lineberger, J. Am. Chem. Soc. Bartmess, J. A. Scott, and R. T. McIver, Jr., J. Am. Chem. Soc. 101, 6046 120, 5279 共1998兲. 共1979兲 and ⌬H 0f of H⫹, CH3CN, CHF3, 共CH3兲2SO2, 共CH3兲2SO, and cy97 L. Nuñez, L. Barral, and G. Pilcher, J. Chem. Thermodyn. 20, 1211 clopentadiene listed in the present compilation. 共1988兲. 68 An average of the values reported in J. L. Holmes and F. P. Lossing, J. 98 Computed from the standard enthalpies of hydration reported in W. R. Am. Chem. Soc. 110, 7343 共1988兲 and J. W. Hudgens, R. D. Johnson, III, Roth, F.-G. Klärner, and H.-W. Lennartz, Chem. Ber. 113, 1818 共1980兲 R. S. Timonen, J. A. Seetula, and D. Gutman, J. Phys. Chem. 95, 4400 combined with the pertinent ⌬H 0f from Ref. 56. 共1991兲. 99 69 G. Wolf, Helv. Chim. Acta 55, 1446 共1972兲. Computed from the EA of BCl3 reported in E. W. Rothe, B. P. Mathur, 100 M. Mansson, E. Morawetz, Y. Nakase, and S. Sunner, Acta Chem. and G. P. Reck, Inorg. Chem. 19, 829 共1980兲 and its ⌬H 0f listed in the Scand. 23, 56 共1969兲. present compilation. 101 Computed from the standard enthalpy of deprotonation of C6H5OH re70 Computed from the standard enthalpy of deprotonation of CHCl3 reported ported in V. F. DeTuri and K. M. Ervin, Int. J. Mass Spectrom. Ion in J. A. Paulino and R. R. Squires, J. Am. Chem. Soc. 113, 5573 共1991兲 Processes 175, 123 共1998兲 combined with ⌬H 0f of C6H5OH and H⫹ listed 0 ⫹ combined with ⌬H f of H and CHCl3 listed in the present compilation. in the present compilation. 71 D. B. Workman and R. R. Squires, Inorg. Chem. 27, 1846 共1988兲. 102 L. Shaofeng and G. Pilcher, J. Chem. Thermodyn. 20, 463 共1988兲. 72 103 Computed from the standard enthalpy of the reaction Computed from the standard enthalpy of the C6H5S–CH3 bond dissociaNa⫹⫹NH3→Na共NH3兲⫹ reported in A. W. Castleman, Jr., P. M. Holland, tion reported in A. J. Colussi and S. W. Benson, Int. J. Chem. Kinet. 9, D. M. Lindsay, and K. I. Peterson, J. Am. Chem. Soc. 100, 6039 共1978兲 295 共1977兲 combined with ⌬H 0f of CH3• listed in the present compilation 0 ⫹ combined with ⌬H f of Na and NH3 listed in the present compilation. and ⌬H 0f of C6H5SCH3 reported in Ref. 56. 73 Computed from the EA of CH2CN⫺ reported in S. Moran, H. B. Ellis, Jr., 104 W. E. Acree, Jr., J. R. Powell, S. A. Tucker, M. D. M. C. Ribeiro da D. J. DeFrees, A. D. McLean, and G. B. Ellison, J. Am. Chem. Soc. 109, Silva, M. A. R. Matos, J. M. Gonçalves, L. M. N. B. F. Santos, V. M. F. 0 5996 共1987兲 and its ⌬H f listed in the present compilation. Morais, and G. Pilcher, J. Org. Chem. 62, 3722 共1997兲. 74 105 R. R. Squires, Int. J. Mass Spectrom. Ion Processes 117, 565 共1992兲. S. B. Hartley, N. L. Paddock, and H. T. Searle, J. Chem. Soc. 430 共1961兲. 75 106 J. D. Cox and G. Pilcher, Thermochemistry of Organic and OrganometalS. Ngauv, R. Sabbah, and M. Laffitte, Thermochim. Acta 20, 371 共1977兲. 107 lic Compounds 共Academic, New York, 1970兲. V. P. Lebedev, E. A. Miroshnichenko, Yu. N. Matyushin, V. P. Larionov, ⫺ 76 ⫺ Computed from the standard enthalpy of the reaction BF3⫹F →BF4 reV. S. Romanov, Yu. E. Bukolov, G. M. Denisov, A. A. Balepin, and Yu. A. Lebedev, Russ. J. Phys. Chem. 49, 1133 共1975兲. ported in M. Veljkovic, O. Neskovic, K. F. Zmbov, A. Ya. Borshchevsky, 108 A. Das, M. Frenkel, N. A. M. Gadalla, S. Kudchadker, K. N. Marsh, A. V. E. Vaisberg, and L. N. Sidorov, Rapid Commun. Mass Spectrom. 5, 37 S. Rodgers, and R. C. Wilhoit, J. Phys. Chem. Ref. Data 22, 659 共1993兲. 共1991兲 combined with ⌬H 0f of BF3 and F⫺ listed in the present compila109 J. C. Traeger and B. M. Kompe, Int. J. Mass Spectrom. Ion Processes tion. 77 101, 111 共1990兲. R. Walsh, J. Chem. Soc., Faraday Trans. 1 79, 2233 共1983兲. 110 78 P. Jimenez, M. V. Roux, and C. Turrion, J. Chem. Thermodyn. 21, 759 Based upon ⌬H f (0 K) recommended in M. I. Nikitin, N. A. Igolkina, E. 共1989兲. V. Skokan, I. D. Sorokin, and L. N. Sidorov, Russ. J. Phys. Chem. 60, 22 111 W. V. Steele, R. D. Chirico, S. E. Knipmeyer, and A. Nguyen, J. Chem. 共1986兲. The correction to 298 K is taken from Ref. 26. Thermodyn. 24, 499 共1992兲. 79 X.-W. An and M. Mansson, J. Chem. Thermodyn. 15, 287 共1983兲. 112 W. V. Steele, R. D. Chirico, S. E. Knipmeyer, A. Nguyen, N. K. Smith, 80 A. Bauder and H. H. Günthard, Helv. Chim. Acta 41, 670 共1958兲. and I. R. Tasker, J. Chem. Eng. Data 41, 1269 共1996兲. 81 V. P. Kolesov and T. S. Papina, Russ. Chem. Rev. 52, 425 共1983兲. 113 R. Sabbah and A. Rojas Aguilar, Can. J. Chem. 73, 1538 共1995兲. 82 B. Ruscic and J. Berkowitz, J. Chem. Phys. 95, 2416 共1991兲. 114 K. Nishiyama, M. Sakiyama, and S. Seki, Bull. Chem. Soc. Jpn. 56, 3171 83 Computed from the standard enthalpy of deprotonation of H2SO4 reported 共1983兲. in A. A. Viggiano, M. J. Henchman, F. Dale, C. A. Deakyne, and J. F. 115 S. J. W. Price and H. J. Sapiano, Can. J. Chem. 57, 685 共1979兲. 0 ⫹ Paulson, J. Am. Chem. Soc. 114, 4299 共1992兲 combined with ⌬H f of H 116 M. Mansson and S. Sunner, J. Chem. Thermodyn. 13, 671 共1981兲. 117 and H2SO4 listed in the present compilation. S. P. Verevkin, H.-D. Beckhaus, C. Rüchardt, R. Haag, S. I. Kozhushkov, 84 Computed from the adiabatic EA of PF5 reported in T. M. Miller, A. E. T. Zywietz, A. de Meijere, H. Jiao, and P. v. R. Schleyer, J. Am. Chem. Soc. 120, 11130 共1998兲. Stevens Miller, A. A. Viggiano, R. A. Morris, and J. F. Paulson, J. Chem. 118 M. Mansson, Acta Chem. Scand. Ser. B 28, 895 共1974兲. Phys. 100, 7200 共1994兲 and its ⌬H 0f listed in the present compilation. 119 85 S. S. Wong and E. F. Westrum, Jr., J. Am. Chem. Soc. 93, 5317 共1971兲. Computed from ⌬H 0f of PCl3 listed the present compilation and the stan120 Recalculated from the data reported in H. S. Hull, A. F. Reid, and A. G. dard enthalpy of the reaction PCl3⫹Cl2→PCl5 reported in Ref. 26. Turnbull, Inorg. Chem. 6, 805 共1967兲 with ⌬H 0f of cyclopentadiene listed 86 Computed from standard enthalpies of deprotonation reported in C. H. in the present compilation. DePuy, S. Gronert, S. E. Barlow, V. M. Bierbaum, and R. Damrauer, J. 121 M. Mansson, N. Rapport, and E. F. Westrum, Jr., J. Am. Chem. Soc. 92, Am. Chem. Soc. 111, 1968 共1989兲 and ⌬H 0f of H⫹, CH3CH2CH3, cyclo7296 共1970兲. propane, and C2H6 listed in the present compilation. 122 W. E. Acree, Jr., V. V. Simirsky, A. A. Kozyro, A. P. Krasulin, G. J. 87 J. L. Holmes and F. P. Lossing, J. Am. Chem. Soc. 104, 2648 共1982兲. Kabo, and M. L. Frenkel, J. Chem. Eng. Data 37, 131 共1992兲. 88 123 R. Walsh, in The Chemistry of Organic Silicon Compounds, edited by S. W. V. Steele, R. D. Chirico, S. E. Knipmeyer, A. Nguyen, and N. K. Patai and Z. Rappoport 共Wiley, New York, 1989兲, p. 371. Smith, J. Chem. Eng. Data 41, 1285 共1996兲. 89 124 An average of the values reported in M. Weissmann and S. W. Benson, A. R. Dias, M. E. Minas Da Piedade, J. A. Miartinho Simões, J. A. Int. J. Chem. Kinet. 12, 403 共1980兲 and D. F. McMillen and D. M. Simoni, C. Teixeira, H. P. Diogo, Y. Meng-Yan, and G. Pilcher, J. Chem. Golden, Annu. Rev. Phys. Chem. 33, 493 共1982兲. Thermodyn. 24, 439 共1992兲. 90 125 W. R. Roth, A. Adamczak, R. Breuckmann, H.-W. Lennartz, and R. J. J. Kirchner, W. E. Acree, Jr., G. Pilcher, and L. Shaofeng, J. Chem. Boese, Chem. Ber. 124, 2499 共1991兲. ⌬H 0f of CH2vCHCwCH recalcuThermodyn. 18, 793 共1986兲. 126 lated with ⌬H 0f of CH3共CH2兲2CH3 listed in the present compilation. Recalculated from the data reported in M. A. Ring, H. E. O’Neal, A. H. 0 91 Kadhim, and F. Jappe, J. Organomet. Chem. 5, 124 共1966兲 with ⌬H vap R. H. Boyd, K. R. Guha, and R. Wuthrich, J. Phys. Chem. 71, 2187 ⫽15.0 kcal/mol computed from the vapor pressure data reported in D. R. 共1967兲. 92 K. Byström, J. Chem. Thermodyn. 14, 865 共1982兲. Stull, Ind. Eng. Chem. 39, 517 共1947兲. 93 127 D. S. Barnes, C. T. Mortimer, and E. Mayer, J. Chem. Thermodyn. 5, 481 T. Clark, T. Mc, O. Knox, M. A. McKervey, H. Mackle, and J. J. 共1973兲. Rooney, J. Am. Chem. Soc. 101, 2404 共1979兲. 94 128 Computed from the data reported in E. A. Brinkman, S. Berger, and J. I. C. L. Chernick and H. A. Skinner, J. Chem. Soc. 1401 共1956兲. This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to IP: 118.163.199.183 On: Mon, 24 Feb 2014 08:17:39 J. Chem. Phys., Vol. 113, No. 21, 1 December 2000 129 M. A. V. Ribeiro da Silva, G. Pilcher, and R. J. Irving, J. Chem. Thermodyn. 20, 95 共1988兲. 0 130 Computed from ⌬H 0f 共cr兲 reported in Ref. 56 combined with ⌬H subl reported in V. Oja and E. M. Suuberg, J. Chem. Eng. Data 43, 486 共1998兲. 131 An average of ⌬H 0f 共cr兲 reported in X.-W. An, H. Jun, and B. Zheng, J. Chem. Thermodyn. 28, 1115 共1996兲 and V. P. Kolesov, S. M. Pimenova, V. K. Pavlovich, N. B. Tamm, and A. A. Kurskaya, ibid. 28, 1121 共1996兲 0 combined with ⌬H subl from the former reference. 132 Note that in Ref. 6 Z IJ was erroneously identified with (Z I Z J ) 1/2. 133 GAUSSIAN 94, M. J. Frisch, G. W. Trucks, H. B. Schlegel, P. M. W. Gill, Standard enthalpies 9389 B. G. Johnson, M. A. Robb, J. R. Cheeseman, T. A. Keith, G. A. Petersson, J. A. Montgomery, K. Raghavachari, M. A. Al-Laham, V. G. Zakrzewski, J. V. Ortiz, J. B. Foresman, J. Cioslowski, B. B. Stefanov, A. Nanayakkara, M. Challacombe, C. Y. Peng, P. Y. Ayala, W. Chen, M. W. Wong, J. L. Andres, E. S. Replogle, R. Gomperts, R. L. Martin, D. J. Fox, J. S. Binkley, D. J. Defrees, J. Baker, J. J. P. Stewart, M. HeadGordon, C. Gonzalez, and J. A. Pople, Gaussian, Inc., Pittsburgh, PA 共1995兲. 134 J. M. L. Martin 共private communication兲. C. W. Bauschlicher, Jr. and H. Partridge, Chem. Phys. Lett. 240, 533 共1995兲. This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to IP: 118.163.199.183 On: Mon, 24 Feb 2014 08:17:39
© Copyright 2026 Paperzz