A set of standard enthalpies of formation for benchmarking

A set of standard enthalpies of formation for benchmarking, calibration, and
parametrization of electronic structure methods
Jerzy Cioslowski, Michael Schimeczek, Guang Liu, and Vesselin Stoyanov
Citation: The Journal of Chemical Physics 113, 9377 (2000); doi: 10.1063/1.1321306
View online: http://dx.doi.org/10.1063/1.1321306
View Table of Contents: http://scitation.aip.org/content/aip/journal/jcp/113/21?ver=pdfcov
Published by the AIP Publishing
This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to IP:
118.163.199.183 On: Mon, 24 Feb 2014 08:17:39
JOURNAL OF CHEMICAL PHYSICS
VOLUME 113, NUMBER 21
1 DECEMBER 2000
ARTICLES
A set of standard enthalpies of formation for benchmarking, calibration,
and parametrization of electronic structure methods
Jerzy Cioslowski,a) Michael Schimeczek,b) Guang Liu, and Vesselin Stoyanov
Department of Chemistry and CSIT, Florida State University, Tallahassee, Florida 32306-3006
共Received 22 March 2000; accepted 8 September 2000兲
A comprehensive set of 600 experimental standard enthalpies of formation (⌬H 0f ) is presented.
With its diverse species, many possessing less usual geometries and bonding situations, this
compilation is capable of uncovering deficiencies in approaches of quantum chemistry that are not
detectable with smaller sets of ⌬H 0f values. Its usefulness in benchmarking, calibration, and
parametrization of new electronic structure methods is illustrated with the development of the
B3LYP/6-311⫹⫹G** bond density functional scheme. This scheme, which is sufficiently
inexpensive in terms of computer time and memory to allow predictions even for molecules as large
as the C60 fullerene, requires only single point calculations at optimized geometries. It yields values
of ⌬H 0f with the average absolute error of 3.3 kcal/mol, rivaling more expensive methods in
accuracy 共especially for larger systems兲. A list of species that are poorly handled by a typical hybrid
density functional used in conjunction with a moderate-size basis set is given. This list is intended
for rigorous testing of new density functionals. © 2000 American Institute of Physics.
关S0021-9606共00兲30345-2兴
mined values of ⌬H 0f were employed in parametrizations of
semiempirical methods such as PM3.8,9 Those compilations
were later augmented with new data pertaining to compounds of a few additional elements.10–12 On the other hand,
the old values of ⌬H 0f have never been updated for compounds of elements such as boron.13,14
In 1991, a test set consisting of 55 dissociation energies,
38 ionization potentials 共IPs兲, 25 electron affinities 共EAs兲,
and 7 proton affinities 共PAs兲 was published.15 This ‘‘G2-1
set’’ 1 was subsequently revised and appended with more
data. The resulting ‘‘extended G2 neutral molecule test set’’
of 148 ⌬H 0f values16 has been employed in parametrizations
of new density functionals4,5 as well as 共with a corrected
standard enthalpy of formation of COF2) in assessments
of the B3LYP/6-311⫹⫹G(3d f ,2p) level of theory and various extrapolative methods of the G2 and CBS families.17 A
further augmentation with 88 IPs, 58 EAs, and 8 PAs produced the G2/97 test set of 302 energies,18 which found an
immediate use in parametrizations of the G3,1 G3共MP2兲,
G3//B3LYP, and G3共MP2兲//B3LYP2 approaches.19 Other,
less extensive test sets are also available. Predictions of the
G2, G2共MP2兲, CBS-4, and CBS-Q methods were compared
with the values of ⌬H 0f determined experimentally for 166
molecules, radicals, anions, and cations.20 A compilation of
analogous data for a large number of diverse hydrocarbons
was also published.21
Needless to say, successful development and implementation of new electronic structure methods hinges upon the
availability of test sets comprising reliable experimental values of ⌬H 0f of chemical species with diverse bonding situations. Unfortunately, none of the aforementioned compilations is suitable for serving as such a test set. On one hand,-
I. INTRODUCTION
The last decade of the twentieth century has witnessed
extraordinary progress in electronic structure theory and its
applications. Energies of small molecules, ions, and radicals
are now routinely predicted within 1 kcal/mol, while
quantum-chemical calculations on medium-size organic species that were once the domain of semiempirical methods are
now dominated by ab initio approaches, which are also making inroads into modeling of small peptides and other biologically important systems. These impressive strides have
been made possible by a confluence of substantial gains in
hardware performance, efforts directed toward improvements
in the computational economy of software, and the development of new formalisms.
The new formalisms of electronic structure theory, such
as extrapolative approaches that aim at predicting thermochemical data with chemical accuracy,1–3 density functionals
of increasing sophistication,4,5 and semiempirical methods,6,7
are emerging at a rapid pace. Benchmarking, calibration, and
parametrization of those formalisms call for extensive calculations, in which the computed properties are compared with
their experimental counterparts for a large number of chemical systems. Test sets of standard enthalpies of formation
(⌬H 0f ) that enable quantitative assessments of the accuracy
of thermodynamic predictions are of particular interest. Several such sets have been published in the chemical literature.
For instance, large compilations of experimentally detera兲
Author to whom correspondence should be addressed; electronic mail:
[email protected]
b兲
Present address: IM-FES, Q18, Bayer AG, 51368 Leverkusen, Germany.
0021-9606/2000/113(21)/9377/13/$17.00
9377
© 2000 American Institute of Physics
This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to IP:
118.163.199.183 On: Mon, 24 Feb 2014 08:17:39
9378
Cioslowski et al.
J. Chem. Phys., Vol. 113, No. 21, 1 December 2000
although the tables assembled in the process of parametrization of semiempirical methods contain diverse compounds,
the quality of the quoted data is often substandard. On the
other hand, the data included in the G2/97 test set is highly
reliable but too narrow in scope to be useful for evaluating
the performance of quantum-chemical methods in calculations on ‘‘less usual’’ and/or larger-size species. The implications of this lack of diversity are well illustrated by the
recent studies that have uncovered large errors in the standard enthalpies of formation of hypervalent species such as
PCl5, SF6, and H2SO4 predicted by density functional theory
共DFT兲 methods, which otherwise perform reasonably well
even for the ‘‘difficult’’ molecules such as O3. 6,22,23 As parametrization of density functionals and extrapolative methods will almost certainly remain a viable option for the reduction of residual errors in the treatment of electron
correlation,24 the need for a single source of reliable data
pertaining to a large number of chemical species is quite
urgent.
A compilation addressing this need is presented here.
II. DATA ACQUISITION AND ORGANIZATION
The process of gathering the data compiled in Table I
involved several stages. First, in light of the scarcity of reliable experimental values of ⌬H 0f for compounds of heavier
elements,25 it was decided at the commencement of this
project that only the species containing the first- and secondrow elements should be included in the test set. A massive
literature search was then undertaken, in which the previously published compilations8–14,16,20,21 were employed as
the initial source of entries. Almost immediately, the search
revealed a disturbingly high incidence of incorrect data in
many of the older publications.8–14 Rather surprisingly, in
most cases this problem was found not to stem from an inadequate accuracy of experimental values but from trivial
mistakes and omissions such as typographic errors, incorrect
literature citations, wrong conversion factors, unreasonable
assumptions and circular arguments employed in the treatment of experimental data, the unjustified use of bond additivity schemes, occasional confusion about the reference
states for elements, and a common failure to make the distinction between two thermodynamic conventions for the
electron. Many of these mistakes were uncovered even in
such widely used references as the JANAF tables,26 where
they propagate undisturbed from one edition to another.
Second, in the process of data acquisition and verification, over 100 literature sources were consulted.26–131 In all
instances, the original experimental data were carefully
evaluated for reliability. Third, where necessary, the values
of ⌬H 0f were corrected to ensure the adherence to ‘‘the ion
convention’’ 共‘‘the stationary electron convention’’兲, according to which the standard enthalpy of the electron is set to
zero. Similarly, some older data were adjusted to conform to
the commonly used reference states of the elements,27 i.e.,
white phosphorus for P and orthorhombic crystalline sulfur
for S. Values of ⌬H 0f derived from standard enthalpies of
protonation/deprotonation, ionization potentials, electron affinities, and standard enthalpies of other processes were recalculated to ensure their consistency with the data for the
auxiliary species included in the test set.
The resulting compilation of the standard enthalpies of
formation of 600 species is presented in Table I. The test set
comprises 514 neutrals 共452 singlets, 51 doublets, and 11
triplets兲, 55 anions 共51 singlets, 3 doublets, and 1 triplet兲,
and 31 cations 共27 singlets and 4 doublets兲. The entries in
Table I are ordered according to ascending numbers of nuclei
and electrons. Where needed, the electronic states of the species are indicated. The uncertainties of the quoted values of
⌬H 0f vary widely for several reasons. First of all, like the
enthalpies themselves, the errors are size extensive quantities
that increase with the molecular size. Second, species with
somewhat less accurate values of ⌬H 0f , such as carbenes
共entries 78, 79, 93, 113, 115, 131, 139, and 152兲, benzynes
共entries 391–396兲, polycondensed benzenoid hydrocarbons
共entries 538, 554, 562, 569, 570, 584, 585, 591–594, and
596兲, molecules with dative bonds 共entries 436, 441, 525,
and 565兲, and others, have been included in the present set in
order to ensure diversity of electronic structures and bonding
situations. For the same reason, several data for hypervalent
molecules, ions, and radicals of sulfur, phosphorus, and chlorine have been admitted into this compilation. The scarcity
of accurate values of ⌬H 0f is particularly acute for compounds of lithium 共8 entries兲, beryllium 共8 entries兲, boron 共20
entries兲, sodium 共18 entries兲, magnesium 共6 entries兲, and aluminum 共16 entries兲. For these compounds and for those of
phosphorus and silicon, the experimental errors are often
quite large despite the deliberate selection of only the most
reliable values from among the available data. In a few cases,
the errors are simply not available and as such are marked
‘‘n/a’’ in Table I.
III. EXAMPLE OF APPLICATION: PARAMETRIZATION
AND ASSESSMENT OF B3LYPÕ6-311¿¿G**
BOND DENSITY FUNCTIONAL SCHEMES
In the bond density function 共BDF兲 approach, the standard enthalpy of formation ⌬H 0f (X) of a species X is approximated by
⌬H 0f 共 X 兲 ⫽E 共 X 兲 ⫹e Q Q 共 X 兲 ⫹e S N S 共 X 兲 ⫹
⫹
兺I e 1共 Z I 兲
兺 e 2共 ␳ IJ ,R IJ ,Z IJ , ␣ IJ , ␤ IJ 兲 ,
I⫺J
共1兲
where E(X), Q(X), and N S (X) are, respectively, the total
energy, the charge, and the number of unpaired electrons in
X.6 In Eq. 共1兲, the first sum runs over all the nuclei present in
X and the second one over all the attractor interaction lines
I – J that connect them. The quantities e Q and e S , as well as
the atomic equivalents e 1 (Z) that depend on the nuclear
charge Z, are obtained by fitting the predicted values of ⌬H 0f
to their experimental counterparts for members of a predefined training set. The BDF e 2 ( ␳ IJ ,R IJ ,Z IJ , ␣ IJ , ␤ IJ ) is a
function of five variables: the electron density ␳ IJ at the bond
critical point on the line I – J, its arclength R IJ , the product
Z IJ of the nuclear charges Z I and Z J of the attractors I and
J,132 the geometric mean ␣ IJ of the two negative eigenvalues
of the density Hessian at the bond critical point, and the
corresponding positive eigenvalue ␤ IJ . Since the actual form
This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to IP:
118.163.199.183 On: Mon, 24 Feb 2014 08:17:39
J. Chem. Phys., Vol. 113, No. 21, 1 December 2000
Standard enthalpies
9379
TABLE I. The set of 600 experimental values of ⌬H 0f .
Entry
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
Number of
Species
共el state or mult兲
Nuclei
Elec
H⫹
H•
Li⫹
H⫺
Li•
Be⫹•
Be
B⫹
Li⫺
F⫺
Na⫹
Mg⫹ •
Na•
Mg
Al⫹
Na⫺
Cl⫺
2 ⫹
H⫹
2 •( ⌺ g )
H2
LiH
BeH•( 2 ⌺ ⫹ )
Li2
CH•( 2 ⌸ r )
NH( 3 ⌺ ⫺ )
OH•( 2 ⌸ i )
FH
HO⫺
LiF
BeO
NaH
CH•( 2 ⌺ ⫹ )
BeF•( 2 ⌺ ⫹ )
BO•( 2 ⌺ ⫹ )
CO
N2
CN⫺
BF 共singlet兲
LiNa
NO•( 2 ⌸)
SiH•( 2 ⌸ r )
O2( 3 ⌺ ⫺
g )
NO⫺( 3 ⌺ ⫺ )
HS•( 2 ⌸ i )
ClH
F2
HS⫺
FO⫺
NaO•( 2 ⌸)
2 ⫹
F⫺
2 •( ⌺ u )
NaF
MgO
MgF•( 2 ⌺ ⫹ )
AlO•( 2 ⌺ ⫹ )
2 ⫹
Na⫹
2 •( ⌺ )
BeCl•( 2 ⌺ ⫹ )
Na2
SiO
CS
AlF
PO•( 2 ⌸ 1/2)
SiF•( 2 ⌸ 1/2)
SO( 3 ⌺ ⫺ )
PF( 3 ⌺ ⫺ )
ClO•( 2 ⌸ 3/2)
FCl
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
0
1
2
2
3
3
4
4
4
10
10
11
11
12
12
12
18
1
2
4
5
6
7
8
9
10
10
12
12
12
13
13
13
14
14
14
14
14
15
15
16
16
17
18
18
18
18
19
19
20
20
21
21
21
21
22
22
22
22
23
23
24
24
25
26
⌬H 0f 共kcal/mol兲
Value
365.7
52.1
162.4
34.7
38.1
289.9
77.4
325.2
23.8
⫺59.3
144.2
211.5
25.7
35.2
216.7
13.0
⫺54.4
355.8
0.0
33.3
81.7
51.6
142.5
85.2
9.4
⫺65.1
⫺32.8
⫺80.1
32.6
29.7
104.9
⫺40.6
0.0
⫺26.4
0.0
17.2
⫺27.7
43.4
21.6
90.0
0.0
21.0
34.2
⫺22.1
0.0
⫺19.5
⫺26.3
20.8
⫺69.3
⫺69.4
36.0
⫺56.6
16.0
146.7
14.5
34.0
⫺24.6
66.9
⫺63.5
⫺5.6
⫺4.8
1.2
⫺12.5
24.2
⫺13.2
Error
Source
0.0
0.0
0.0
0.0
0.2
1.2
1.2
3.0
0.02
0.3
0.2
0.3
0.2
0.2
1.0
0.02
0.06
0.0
n/a
n/a
n/a
0.7
n/a
0.4
0.1
0.2
0.05
n/a
3.0
4.6
0.5
2.0
2.0
0.04
n/a
1.1
3.3
0.3
0.04
2.0
n/a
0.1
0.7
0.05
n/a
2.0
3.5
1.0
1.6
0.5
5.0
2.0
1.9
0.3
3.0
0.3
n/a
n/a
0.8
1.0
3.0
0.3
5.0
0.5
n/a
26
27
26
26
27
26
27
26
26
28
26
26
27
27
26
26
28
26
29
30
30
26
30
31
32
26
28
30
26
26
33
26
26
26
29
28
26
34
26
26
29
35
32
26
29
28
36
37
38
26
39
26
26
40
26
26
30
30
26
26
26
26
26
26
30
Entry
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
Number of
Species
共el state or mult兲
Nuclei
Elec
SF⫺
ClO⫺
Si2( 3 ⌺ ⫺
g )
NaCl
AlS•( 2 ⌺ ⫹ )
P2
AlCl
AlS⫺
SiS 共singlet兲
SiCl•( 2 ⌸ 1/2)
S2
Cl2
CH2( 3 B 1 )
CH2( 1 A 1 )
NH2•( 2 B 1 )
OH2
NH⫺
2
FH⫹
2
LiOH
HOwC•( 2 ⌺ ⫹ )
HCN
HCC⫺
HCO⫹
HCO•( 2 A ⬘ )
SiH2( 1A 1 )
SiH2( 3 B 1 )
HCO⫺
CHF 共singlet兲
PH2•( 2 B 1 )
SH2
HOF
PH⫺
2
ClH⫹
2
NaOH
MgOH⫹
FHF⫺
BO2•( 2 ⌸ g )
CO2
N2O
FCN
BeF2
FBO
NCO⫺
HOSi⫹
NO2•( 2 A 1 )
O3
FNO
CClH 共singlet兲
NaCN
CF2 共singlet兲
NO⫺
2
NF2•( 2 B 1 )
HOCl
F2O
HOS⫺
COS
ClCN
MgF2
Na2O
FAlO
SCN⫺
SO2
ClNO
FPO
SiF2 共singlet兲
2
2
2
2
2
2
2
2
2
2
2
2
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
26
26
28
28
29
30
30
30
30
31
32
34
8
8
9
10
10
10
12
13
14
14
14
15
16
16
16
16
17
18
18
18
18
20
20
20
21
22
22
22
22
22
22
22
23
24
24
24
24
24
24
25
26
26
26
30
30
30
30
30
30
32
32
32
32
⌬H 0f 共kcal/mol兲
Value
Error
Source
⫺49.9
⫺28.3
139.9
⫺43.6
57.0
34.3
⫺12.3
⫺3.0
25.3
47.4
30.7
0.0
92.8
101.8
45.1
⫺57.8
27.3
184.9
⫺54.7
135.1
31.5
66.3
197.6
10.0
65.2
86.2
2.7
34.2
33.1
⫺4.9
⫺19.6
6.4
210.5
⫺45.7
146.0
⫺170.2
⫺68.0
⫺94.1
19.6
8.6
⫺190.3
⫺144.0
⫺52.8
155.2
7.9
34.1
⫺15.7
78.0
22.5
⫺44.0
⫺44.5
10.1
⫺17.8
5.9
⫺37.8
⫺33.1
32.9
⫺173.7
⫺8.6
⫺139.0
⫺5.2
⫺70.9
12.4
⫺96.7
⫺140.5
2.5
0.5
n/a
n/a
2.0
n/a
1.5
2.1
3.0
1.6
0.1
n/a
0.5
0.5
0.3
0.01
0.4
1.9
1.2
0.7
1.0
0.6
2.0
0.2
0.7
1.0
0.2
3.0
0.6
0.2
0.3
2.0
1.9
1.9
5.0
1.6
2.0
0.01
0.1
4.0
1.0
3.1
1.0
1.9
0.2
0.4
0.4
2.0
0.5
2.0
0.2
2.0
0.5
0.4
2.0
0.3
1.0
4.0
1.9
4.0
1.0
0.05
0.1
0.7
3.0
41
36
30
30
26
30
26
42
26
26
27
29
43
44
32
26
28
45
46
32
47
48
26
32
49
49
28
50
32
26
51
28
45
46
39
52
26
26
26
26
26
26
53
45
26
26
26
50
26
50
54
26
26
26
55
26
56
26
37
26
53
26
26
57
26
This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to IP:
118.163.199.183 On: Mon, 24 Feb 2014 08:17:39
9380
Cioslowski et al.
J. Chem. Phys., Vol. 113, No. 21, 1 December 2000
TABLE I. 共Continued.兲
Number of
⌬H 0f 共kcal/mol兲
Entry
Species
共el state or mult兲
Nuclei
Elec
Value
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
CClF 共singlet兲
ClO2•( 2 B 1 )
SF2
Al2O
ClO⫺
2
HSS⫺
CS2
BeCl2
CCl2 共singlet兲
ClPO
Cl2O
MgCl2
AlCl2•( 2 A 1 )
SiCl2 共singlet兲
SCl2
BH3
CH3•( 2 A 2⬙ )
NH3
CH⫺
3
H3O⫹
HCCH
H2CvC 共singlet兲
H2CO
SiH3•( 2 A 1 )
PH3
H2O2
SiH⫺
3
H3S⫹
HOHF⫺
H2F2
Na共H2O兲⫹
HN3
HNCO
共E兲-HONO
HCOO⫺
共CN兲2
OBBO
HOHCl⫺
BF3
COF2
(Z)-N2F2
(E)-N2F2
FNO2
NF3
H2S2
FOOF
CF⫺
3
AlF3
SO3
ClNO2
Na2F2
(LiCl兲2
PF3
ClF3
COCl2
AlF2Cl
FSSF
SvSF2
BCl3
Na2Cl2
AlFCl2
CCl3•( 2 A 1 )
2
BCl⫺
3 •( A 1 )
SOCl2
CCl⫺
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
32
33
34
34
34
34
38
38
40
40
42
46
47
48
50
8
9
10
10
10
14
14
16
17
18
18
18
18
20
20
20
22
22
24
24
26
26
28
32
32
32
32
32
34
34
34
34
40
40
40
40
40
42
44
48
48
50
50
56
56
56
57
57
58
58
7.4
25.0
⫺70.9
⫺34.7
⫺24.4
⫺16.0
28.0
⫺86.1
55.0
⫺51.4
21.0
⫺93.8
⫺67.0
⫺40.3
⫺4.2
25.5
35.0
⫺11.0
33.1
142.7
54.2
101.6
⫺26.0
47.9
1.3
⫺32.5
14.7
192.3
⫺143.8
⫺136.9
62.4
70.3
⫺24.3
⫺18.8
⫺110.9
73.3
⫺109.0
⫺127.1
⫺271.4
⫺149.1
16.4
19.4
⫺26.0
⫺31.6
3.7
4.6
⫺156.7
⫺289.0
⫺94.6
2.9
⫺202.3
⫺143.1
⫺229.1
⫺38.0
⫺52.6
⫺238.8
⫺68.4
⫺71.0
⫺96.3
⫺135.3
⫺189.0
17.5
⫺103.9
⫺50.8
⫺32.8
Error
3.2
1.5
4.0
4.0
1.5
3.5
0.2
2.5
2.0
1.2
1.6
0.5
5.0
0.8
0.8
2.4
0.1
0.1
0.7
1.9
0.2
4.0
0.1
0.6
0.4
0.04
2.1
1.9
0.9
0.8
n/a
n/a
2.0
0.3
2.0
0.2
2.0
0.2
0.4
1.4
1.2
1.2
5.0
0.3
n/a
0.2
2.2
0.6
0.2
0.4
3.0
3.0
0.9
0.7
0.8
1.5
2.4
2.4
0.5
2.0
1.5
2.5
4.6
n/a
2.0
Source
Entry
Species
共el state or mult兲
50
26
58
26
36
55
26
26
50
57
26
26
26
26
26
26
32
26
28
45
26
48
56
32
57
59
28
45
60
26
61
62
26
26
63
56
26
64
26
65
26
26
26
26
62
66
67
26
26
26
26
26
26
26
26
26
58
58
26
26
26
68
69
62
70
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
P4
AlCl3
SiCl3•( 2 A 1 )
S2Cl2
PCl3
CH4
NH⫹
4
BH⫺
4
C2H⫹
3
C2H3•( 2 A ⬘ )
C2H⫺
3
HOCH2•( 2 A)
CH3O•( 2 A ⬘ )
SiH4
CH3O⫺
PH⫹
4
Na共NH3兲⫹
CH2CN•( 2 B 1 )
H2CvCvO
CH2CN⫺
HCOOH
CH3S•( 2 A ⬘ )
HSCH2•( 2 A)
CH3Cl
CH2F2
CH3S⫺
CH2SH⫺
HNO3
HOCO⫺
2
CHF3
OvCvCvCvO
O共BeF兲2
B2O3
N2O3
CF4
CH2Cl2
CHF2Cl
F3NO
BF⫺
4
HOSO⫺
2
SiF4
SO2F2
CF3Cl
FClO3
H2S3
SiH2Cl2
AlF⫺
4
SF4
CHCl3
CF2Cl2
SO2Cl2
CFCl3
SiHCl3
CCl4
Cl3PO
SiCl4
C2H4
CH3OH
N2H4
CH3CN
CH3NC
CH3CO•( 2 A ⬘ )
H2CvCHO•( 2 A ⬙ )
CH2vCHF
CH2CHO⫺
Number of
Nuclei
4
4
4
4
4
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
6
6
6
6
6
6
6
6
6
Elec
60
64
65
66
66
10
10
10
14
15
16
17
17
18
18
18
20
21
22
22
24
25
25
26
26
26
26
32
32
34
34
34
34
38
42
42
42
42
42
42
50
50
50
50
50
50
50
52
58
58
66
66
66
74
74
82
16
18
18
22
22
23
23
24
24
⌬H 0f 共kcal/mol兲
Value
14.1
⫺139.7
⫺93.3
⫺4.0
⫺69.0
⫺17.9
150.7
⫺14.8
266.6
71.6
56.2
⫺4.1
4.1
8.2
⫺32.3
179.4
104.1
59.8
⫺11.4
24.2
⫺90.5
29.8
36.3
⫺20.0
⫺107.7
⫺14.3
22.8
⫺32.1
⫺177.8
⫺166.6
⫺22.4
⫺287.9
⫺199.8
19.8
⫺223.0
⫺22.8
⫺115.3
⫺39.0
⫺409.8
⫺165.6
⫺356.0
⫺181.3
⫺169.2
⫺5.1
7.3
⫺75.3
⫺467.6
⫺182.4
⫺24.7
⫺117.5
⫺84.8
⫺69.0
⫺119.3
⫺22.9
⫺133.8
⫺158.4
12.5
⫺48.2
22.8
17.7
39.1
⫺2.4
2.5
⫺33.2
⫺39.6
Error
Source
0.5
0.7
2.0
1.0
1.3
0.1
1.9
4.5
1.9
0.8
0.6
0.8
0.9
0.5
0.7
1.9
0.5
2.0
0.4
2.0
0.1
0.4
2.0
0.5
0.4
2.2
3.0
0.1
2.5
0.8
0.4
5.0
1.0
0.2
0.3
0.3
0.8
5.0
2.0
2.5
0.2
2.0
0.8
0.7
n/a
2.0
2.4
5.0
0.3
1.9
0.5
1.5
1.6
0.5
0.4
0.3
0.1
0.1
0.2
0.1
1.7
0.3
2.2
0.4
2.2
26
26
26
26
26
26
45
71
45
32
48
32
32
26
28
45
72
73
56
67
56
32
32
26
26
28
28
26
74
26
75
26
26
26
26
26
56
26
76
74
26
26
26
26
62
77
78
26
26
26
26
26
77
26
26
26
26
56
26
79
56
32
32
56
28
This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to IP:
118.163.199.183 On: Mon, 24 Feb 2014 08:17:39
J. Chem. Phys., Vol. 113, No. 21, 1 December 2000
Standard enthalpies
9381
TABLE I. 共Continued.兲
Entry
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
Number of
Species
共el state or mult兲
Nuclei
H2NCHO
共LiOH兲2
CH3SH
共CHO兲2
CH2vCHCl
CH2vCF2
SiH2vSiH2
NCCvCCN
共NaOH兲2
CF3CN
N2O4
B2F4
C2F4
CH2vCCl2
(E)-CHClvCHCl
(Z)-CHClvCHCl
HOSO2F
N2F4
HSO⫺
4
CFClvCF2
NCSSCN
PF5
共LiCl兲3
SF5•( 2 A 1 )
2
PF⫺
5 •( A 1 )
共COCl兲2
CHClvCCl2
H2S4
B2Cl4
C2Cl4
PCl5
C2H5•( 2 A ⬘ )
CH3NH2
C2H⫺
5
N2H⫹
5
CH3OH⫹
2
CH3CwCH
CH2vCvCH2
Cyclopropene
Oxirane
CH3CHO
CH2vCHOH
CH2vCHCN
Na共H2O兲⫹
2
CH3NO2
CH3ONO
Thiirane
CH3COF
B共OH兲3
Si2H5•( 2 A ⬘ )
H2PSiH3
1-H-tetrazole
CH3COCl
H2SO4
SF6
CCl3CHO
SF5Cl
H2S5
CCl3COCl
C2Cl5•( 2 A ⬘ )
B2H6
C2H6
Aziridine
Cyclo-C3H⫺
5
CH2CHCH⫺
2
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
8
8
8
8
8
Elec
24
24
26
30
32
32
32
38
40
46
46
46
48
48
48
48
50
50
50
56
58
60
60
61
61
62
64
66
78
80
100
17
18
18
18
18
22
22
22
24
24
24
28
30
32
32
32
32
32
33
34
36
40
50
70
72
78
82
88
97
16
18
24
24
24
⌬H 0f 共kcal/mol兲
Value
Error
⫺44.5
⫺176.1
⫺5.5
⫺50.7
5.5
⫺80.5
65.7
126.5
⫺149.1
⫺118.4
2.2
⫺342.2
⫺157.4
0.6
1.2
1.1
⫺180.0
⫺2.0
⫺231.9
⫺123.1
83.6
⫺381.1
⫺240.1
⫺218.1
⫺398.4
⫺80.3
⫺1.9
10.6
⫺116.9
⫺3.0
⫺89.9
28.9
⫺5.5
34.4
184.6
137.2
44.2
45.5
66.2
⫺12.6
⫺39.7
⫺29.8
43.2
⫺15.2
⫺17.8
⫺15.9
19.6
⫺105.7
⫺237.2
53.3
1.8
80.0
⫺58.0
⫺175.7
⫺291.7
⫺47.0
⫺248.3
13.8
⫺57.3
8.1
9.8
⫺20.0
30.2
58.5
29.9
n/a
2.4
0.2
0.2
0.5
1.0
0.9
0.4
2.4
0.7
0.4
1.0
0.7
0.3
2.0
2.0
2.0
2.5
3.1
5.0
1.5
0.7
5.0
3.2
3.6
1.5
2.1
n/a
1.2
0.7
1.4
0.4
0.1
1.0
1.9
1.9
0.2
0.3
0.6
0.1
0.1
2.0
0.4
n/a
0.1
0.2
0.3
0.8
0.6
2.0
2.9
1.1
0.2
2.0
0.2
n/a
2.5
n/a
2.1
2.3
4.0
0.1
0.2
1.0
2.1
Source
80
46
56
56
81
75
82
75
46
26
26
26
26
56
56
56
26
26
83
81
56
26
26
58
84
56
56
62
26
26
85
32
56
86
45
45
56
56
56
56
56
87
56
61
56
56
56
56
26
88
57
75
56
26
26
62
26
62
56
89
26
56
56
86
28
Entry
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
Species
共el state or mult兲
Number of
Nuclei
Oxirane–H⫹
CH3CH2O•( 2 A ⬙ )
CH3SiH3
CH2vCHCwCH
HCOOCH3
CH3COOH
Si2H6
C2H5Cl
CH3COSH
(E)-NCCHvCHCN
CH3CF3
Si共CH3兲H2Cl
共COOH兲2
ClCH2COOH
CH3CHCl2
ClCH2CH2Cl
CF3COOH
1,3-dithiol-2-one
CH3CCl3
CHCl2CH2Cl
1,3-dithiole-2-thione
Al2F6
CHCl2CCl3
C2Cl6
S8
Al2Cl6
CH3CHvCH2
Cyclopropane
CH3CH2OH
共CH3兲2O
CH3CONH2
CH3CH2SH
CH3SCH3
Furan
␤-propiolactone
CH2vCClCH3
CH3SOCH⫺
2
1,3,5-triazine
Thiophene
C共CN兲4
B3O3F3
FNvC共NF2兲2
F2C共NF2兲2
Cl2O7
B3O3Cl3
共CH3兲2CH•( 2 A ⬘ )
共CH3兲2NH
CH3CH2NH2
共CH3兲2CH⫺
共CH3兲2OH⫹
CH2vCHCHvCH2
CH3CwCCH3
Methylenecyclopropane
Bicyclobutane
Cyclobutene
CH3CHvCvCH2
CH3COCH3
Oxetane
共CH3兲2SiH⫺
1H-pyrrole
cyclo-C5H⫺
5
2-azetidinone
H2NCH2COOH
Thietane
Na共H2O兲⫹
3
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
Elec
24
25
26
28
32
32
34
34
40
40
42
42
46
48
50
50
56
60
66
66
68
80
98
114
128
128
24
24
26
26
32
34
34
36
38
40
42
42
44
58
66
72
74
90
90
25
26
26
26
26
30
30
30
30
30
30
32
32
34
36
36
38
40
40
40
⌬H 0f 共kcal/mol兲
Value
168.1
⫺3.7
⫺7.0
70.8
⫺85.0
⫺103.4
19.1
⫺26.8
⫺41.8
81.3
⫺178.9
⫺50.2
⫺175.0
⫺104.0
⫺30.5
⫺32.1
⫺246.5
⫺3.6
⫺34.6
⫺34.6
60.5
⫺629.5
⫺33.9
⫺32.9
24.0
⫺309.7
4.8
12.7
⫺56.2
⫺44.0
⫺57.0
⫺11.1
⫺9.0
⫺8.3
⫺67.6
⫺5.0
⫺29.2
54.0
27.5
160.8
⫺565.3
22.7
⫺109.0
65.0
⫺390.0
21.5
⫺4.4
⫺11.3
28.7
132.4
26.3
34.8
47.9
51.9
37.5
38.8
⫺51.9
⫺19.3
⫺7.4
25.9
22.5
⫺22.9
⫺93.7
14.5
⫺88.8
Error
1.9
0.8
1.0
0.5
0.2
0.4
0.4
0.3
2.0
0.6
0.8
1.7
0.6
2.2
0.3
0.3
0.4
1.2
0.4
0.5
1.6
4.0
2.2
1.1
0.2
0.8
0.2
0.1
0.1
0.1
0.2
0.1
0.1
0.2
0.2
2.2
2.0
0.2
0.2
2.2
1.0
0.8
0.9
n/a
2.0
0.4
0.2
0.2
1.0
1.9
0.3
0.3
0.4
0.2
0.4
0.1
0.2
0.2
2.3
0.1
2.0
0.2
0.2
0.3
n/a
Source
45
32
88
90
56
56
88
56
56
91
81
88
75
56
56
81
56
56
56
81
56
26
56
81
26
26
56
56
56
56
56
56
56
56
75
56
67
92
56
93
26
75
75
62
26
32
56
56
86
45
56
56
56
56
56
75
56
75
94
56
67
95
75
56
61
This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to IP:
118.163.199.183 On: Mon, 24 Feb 2014 08:17:39
9382
Cioslowski et al.
J. Chem. Phys., Vol. 113, No. 21, 1 December 2000
TABLE I. 共Continued.兲
Entry
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
Species
共el state or mult兲
Number of
Nuclei Elec
p-benzyne 共singlet兲
10
p-benzyne 共triplet兲
10
m-benzyne 共singlet兲
10
m-benzyne 共triplet兲
10
o-benzyne 共singlet兲
10
o-benzyne 共triplet兲
10
共CH3兲2SO
10
Pyridazine
10
Pyrimidine
10
Pyrazine
10
HSCH2CH2SH
10
CH3SSCH3
10
10
CH3SO2CH⫺
2
Thiete sulphone
10
1,3-dithiolan-2-one
10
Dithiooxamide
10
1,3-dithiolane-2-thione
10
CH3CH2CH3
11
SiH2共CH3兲2
11
Cyclopentadiene
11
Bicyclo关2.1.0兴pentene
11
Cyclobutanone
11
CH3CH2CH2Cl
11
Pyridine
11
共CH3兲2CHCl
11
2,5-dihydrothiophene
11
共CH3兲2SO2
11
Si共CH3兲2HCl
11
CH3CHClCH2Cl
11
FC共NF2兲3
11
Cyclobutane
12
共CH3兲2CvCH2
12
CH3CH2CHvCH2
12
(Z)-CH3CHvCHCH3
12
(E)-CH3CHvCHCH3
12
共CH3兲2CHOH
12
CH3CH2OCH3
12
Benzene
12
Fulvene
12
CH3CH2CH2SH
12
共CH3兲2CHSH
12
Pyridine–H⫹
12
1,3,5-trioxane
12
C6H5F
12
C6H5O⫺
12
Pyridine-N-oxide
12
p-benzoquinone
12
C6H5S•( 2 B 1 )
12
12
C6H5Cl
共CH3O兲2SO
12
Pyrazine-1,4-dioxide
12
o-C6H4Cl2
12
m-C6H4Cl2
12
P-C6H4Cl2
12
C6F6
12
Perfluorocyclobutane
12
C6F5Cl
12
Tetrachloro-p-benzoquinone 12
C6Cl6
12
N3P3Cl6
12
共CH3兲3C•( 2 A 1 )
13
共CH3兲3N
13
Spiropentane
13
(Z)-CH3CHvCHCHvCH2 13
(E)-CH3CHvCHCHvCH2 13
40
40
40
40
40
40
42
42
42
42
50
50
50
54
62
62
70
26
34
36
36
38
42
42
42
46
50
50
58
90
32
32
32
32
32
34
34
42
42
42
42
42
48
50
50
50
56
57
58
58
58
74
74
74
90
96
98
120
138
168
33
34
38
38
38
⌬H 0f 共kcal/mol兲
Value
137.8
141.6
121.9
142.9
105.9
143.3
⫺36.2
66.5
47.0
46.9
⫺2.3
⫺5.8
⫺88.3
⫺29.7
⫺30.1
19.8
22.4
⫺25.0
⫺22.6
32.1
79.8
⫺24.2
⫺31.5
33.6
⫺34.6
20.8
⫺89.2
⫺67.4
⫺38.9
⫺48.0
6.8
⫺4.0
0.0
⫺1.7
⫺2.7
⫺65.2
⫺51.7
19.7
53.6
⫺16.2
⫺18.2
177.0
⫺111.3
⫺27.8
⫺37.1
21.0
⫺29.3
55.8
12.4
⫺115.5
44.6
7.2
6.1
5.4
⫺228.5
⫺369.5
⫺194.1
⫺44.4
⫺8.6
⫺175.9
12.3
⫺5.7
44.3
19.5
18.2
Error
2.9
2.9
3.1
3.1
3.3
3.3
0.2
0.3
0.2
0.3
0.3
0.2
2.1
0.7
1.2
0.4
0.5
0.1
1.0
0.4
0.6
0.3
0.3
0.2
0.3
0.3
0.7
1.7
0.3
0.6
0.1
0.2
0.2
0.2
0.2
0.1
0.2
0.2
0.1
0.2
0.2
1.9
0.1
0.3
3.1
0.6
0.9
1.5
0.3
0.5
0.5
0.5
0.5
0.4
0.3
2.6
0.7
2.8
2.3
n/a
0.4
0.2
0.2
0.3
0.2
Source
Entry
Species
共el state or mult兲
96
96
96
96
96
96
56
75
75
75
56
56
67
75
56
97
56
56
88
56
98
99
56
56
56
56
56
88
56
75
56
56
56
56
56
56
56
56
90
56
56
45
100
75
101
102
75
103
56
56
104
56
56
56
75
75
56
56
75
105
32
56
56
56
56
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
共CH2vCH兲2CH2
Cyclopentene
Bicyclo关2.1.0兴pentane
Tetrahydrofuran
共CH3兲3Al
Si共CH3兲3•( 2 A 1 )
共CH3兲3P
CH3CH共NH2兲COOH
Tetrahydrothiophene
C6H5OH
Na共H2O兲⫹
4
C6H5CN
CH3CH共SH兲CH2SH
C6H5SH
共CH2vCH兲2SO2
Butadiene sulphone
共CH3O兲2SO2
m-ClC6H4OH
p-ClC6H4OH
1,3-dithiane-2-thione
C共NO2兲4
C共NF2兲4
C6Cl5OH
CH3共CH2兲2CH3
共CH3兲3CH
B5H9
Pyrrolidine
SiH共CH3兲3
Bicyclo关2.2.0兴hex-2-ene
cyclo-C7H⫹
7
共CH3兲3CCl
共CH3兲CHCH2Cl
C6H5NH2
C6H5CHO
CH3COSC2H5
CH3SO2C2H5
Si共CH3兲3Cl
Benzotriazole
Benzoxazole
C6H5NCO
Benzothiazole
C6H5COCl
o-ClC6H4CHO
P4O10
1,3,5-cycloheptatriene
Norbornadiene
C6H5CH3
Quadricyclane
CH3共CH2兲3SH
共C2H5兲2S
Si共CH3兲3OH
C6H5NH⫹
3
共CH3O兲共C2H5O兲SO
C6H5CH2Cl
o-ClC6H4COOH
m-ClC6H4COOH
p-ClC6H4COOH
Bicyclopropyl
cis-bicyclo关2.2.0兴hexane
Cubane
1,3,5,7-cyclooctatetraene
C6H5CHvCH2
B共OCH3兲3
共C2H5兲2SO
Indole
Number of
Nuclei Elec
13
13
13
13
13
13
13
13
13
13
13
13
13
13
13
13
13
13
13
13
13
13
13
14
14
14
14
14
14
14
14
14
14
14
14
14
14
14
14
14
14
14
14
14
15
15
15
15
15
15
15
15
15
15
15
15
15
16
16
16
16
16
16
16
16
38
38
38
40
40
41
42
48
48
50
50
54
58
58
62
62
66
66
66
78
98
106
130
34
34
34
40
42
44
48
50
50
50
56
56
58
58
62
62
62
70
72
72
140
50
50
50
50
50
50
50
50
66
66
80
80
80
46
46
56
56
56
56
58
62
⌬H 0f 共kcal/mol兲
Value
25.2
8.1
37.8
⫺44.0
⫺20.9
⫺0.7
⫺22.5
⫺99.1
⫺8.2
⫺23.0
⫺160.4
51.5
⫺7.1
26.9
⫺36.0
⫺61.2
⫺164.2
⫺36.6
⫺34.8
18.8
19.7
0.2
⫺53.8
⫺30.0
⫺32.1
17.5
⫺0.9
⫺39.1
62.4
206.7
⫺43.5
⫺38.1
20.8
⫺8.8
⫺54.5
⫺97.7
⫺84.6
80.2
10.8
⫺3.5
48.8
⫺24.7
⫺15.0
⫺694.1
43.2
58.8
12.0
81.0
⫺21.1
⫺20.0
⫺119.5
175.6
⫺125.2
4.5
⫺72.7
⫺76.9
⫺77.6
30.9
29.8
148.7
70.7
35.3
⫺214.6
⫺49.1
37.4
Error
Source
0.3
0.3
0.2
0.2
1.7
1.7
1.2
1.0
0.3
0.2
n/a
0.5
0.3
0.2
0.9
0.7
0.5
2.1
2.1
0.7
0.5
1.3
0.9
0.2
0.2
1.6
0.2
1.0
0.3
0.7
0.5
2.0
0.2
2.0
0.2
0.7
0.7
0.3
0.1
0.3
0.1
1.0
2.1
2.1
0.5
0.7
0.1
0.6
0.3
0.2
0.7
1.9
0.5
0.7
0.2
0.2
0.2
0.9
0.3
1.0
0.4
0.4
0.7
0.4
0.3
56
56
98
75
75
88
75
106
56
75
61
75
56
56
75
75
56
56
56
75
107
75
56
56
56
26
108
88
98
109
56
56
75
75
56
56
88
110
111
112
111
56
56
26
56
56
75
56
56
56
88
45
56
56
113
113
113
75
98
75
56
56
75
56
108
This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to IP:
118.163.199.183 On: Mon, 24 Feb 2014 08:17:39
J. Chem. Phys., Vol. 113, No. 21, 1 December 2000
Standard enthalpies
9383
TABLE I. 共Continued.兲
Entry
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
Species
共el state or mult兲
HS共CH2兲4SH
C2H5SSC2H5
P共OCH3兲3
p-O2NC6H4NH2
Pyridinium dicyanomethylide
C共CH3兲4
CH3共CH2兲3CH3
Piperidine
共CH3兲4Si
CH3共CH2兲4Cl
共C2H5兲2SO2
Quinoline
Isoquinoline
Cyclohexane
o-C6H4共CH3兲2
m-C6H4共CH3兲2
p-C6H4共CH3兲2
Naphthalene
Azulene
共C2H5O兲2SO
p-ClC6H4C2H5
1-chloronaphthalene
2-chloronaphthalene
Perfluorocyclohexane
Bicyclo关2.2.1兴heptane
共CH3兲3SiNH共CH3兲
Cyclohexanethiol
共C2H5O兲2SO2
CH3共CH2兲4CH3
Bullvalene
Triquinacene
2,4,10-trioxaadamantane
Biphenylene
Acenaphthylene
1-azabicyclo关2.2.2兴octane
Si共CH3兲3OC2H5
Mg(cyclo-C5H5兲2
Si共OCH3兲4
bicyclo关2.2.2兴octane
共CH3兲3SiN共CH3兲2
Number of
Nuclei Elec
16
16
16
16
16
17
17
17
17
17
17
17
17
18
18
18
18
18
18
18
18
18
18
18
19
19
19
19
20
20
20
20
20
20
21
21
21
21
22
22
66
66
66
72
74
42
42
48
50
58
66
68
68
48
58
58
58
68
68
74
74
84
84
144
54
58
64
82
50
70
70
76
80
80
62
66
82
82
62
66
⌬H 0f 共kcal/mol兲
Value
Error
Source
Entry
⫺12.0
⫺17.9
⫺168.6
13.2
125.1
⫺40.3
⫺35.1
⫺11.3
⫺55.7
⫺41.8
⫺102.6
47.9
48.9
⫺29.5
4.6
4.1
4.3
36.1
69.1
⫺132.0
⫺0.9
28.6
32.8
⫺566.2
⫺13.1
⫺54.3
⫺23.0
⫺180.8
⫺39.9
79.9
57.5
⫺119.3
99.9
62.1
⫺1.0
⫺119.0
32.9
⫺281.8
⫺23.7
⫺59.3
0.4
0.2
1.5
0.4
3.0
0.3
0.2
0.1
0.8
0.5
0.6
0.3
0.3
0.2
0.3
0.2
0.2
0.3
0.8
0.5
0.6
2.3
2.4
1.8
1.1
1.0
0.2
0.5
0.2
0.8
0.7
0.5
0.8
1.1
0.3
1.0
0.9
1.0
0.2
1.0
56
56
57
114
91
75
56
108
88
56
56
108
108
56
56
56
56
75
56
56
56
56
56
115
56
88
56
56
56
116
117
118
56
56
119
88
120
88
119
88
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
of this function is unknown, e 2 is approximated by an empirical expression that involves parameters determined with
the aforementioned fitting procedure.
The BDF scheme offers several distinct advantages over
other approaches to the estimation of standard enthalpies of
formation. First of all, it does not require the knowledge of
either the zero-point energy or the thermal correction, eliminating the need for costly vibrational frequency calculations.
Second, it is universally applicable to all species composed
of a given set of elements, regardless of the presence of
particular types of bonds or even the existence of a Lewis
structure. Moreover, it is well defined, as the attractor interaction lines and the bond critical points are entirely determined by the properties of electron density. In these respects,
the BDF method constitutes a substantial improvement over
the bond additivity corrections that, although reducing the
errors in the predicted values of ⌬H 0f , rely on the identification of chemical bonds by means of ‘‘chemical intuition’’
⌬H 0f 共kcal/mol兲
Number of
Species
共el state or mult兲
Nuclei Elec
Urotropin
Acenaphthene
Biphenyl
Carbazole
2,4,6-共CH3兲3C6H2CN→O
Acridine
Phenanthridine
共C6H5兲2S
Phenanthrene
Anthracene
共E兲-azobenzene
共Z兲-azobenzene
共CH6H5兲2SO
C6H5SSC6H5
Si共CH3兲2共OC2H5兲2
P共OC2H5兲3
共E兲-azoxybenzene
共C6H5兲2SO2
Si共C6H5兲2Cl2
Adamantane
共Z兲-stilbene
共E兲-stilbene
共C2H5O兲3PO
Pyrene
Fluoranthene
关Si共CH3兲3兴2O
关Si共CH3兲3兴2NH
C6H5SO2SO2C6H5
Si共C2H5兲4
Be共CH3COCHCOCH3兲2
Triphenylene
Benzo关c兴phenanthrene
Benz关a兴anthracene
Chrysene
关Si共CH3兲3兴2NCH3
Perylene
P共C6H5兲3
关Si共CH3兲3兴3N
Si共C6H5兲4
C60
22
22
22
22
23
23
23
23
24
24
24
24
24
24
25
25
25
25
25
26
26
26
26
26
26
27
28
28
29
29
30
30
30
30
31
32
34
40
45
60
76
82
82
88
86
94
94
98
94
94
96
96
106
114
82
90
104
114
130
76
96
96
98
106
106
90
90
146
82
110
120
120
120
120
98
132
138
130
178
360
Value
Error
Source
47.6
37.3
43.4
50.0
32.7
65.5
57.5
55.3
49.5
55.2
96.9
107.7
25.5
58.2
⫺185.7
⫺194.4
81.7
⫺28.4
⫺51.5
⫺31.8
60.3
56.4
⫺285.8
53.9
69.1
⫺185.7
⫺114.0
⫺114.9
⫺71.0
⫺272.7
65.5
69.6
70.0
64.5
⫺107.3
75.4
76.5
⫺160.4
79.8
618.1
0.7
0.7
0.5
1.2
1.0
1.0
1.0
0.7
1.1
0.5
0.3
0.5
0.7
1.0
1.2
1.3
0.6
0.8
n/a
0.3
0.5
0.3
n/a
0.3
0.2
1.5
1.2
0.9
1.4
0.7
1.0
1.1
1.0
1.6
2.0
0.9
1.1
3.0
1.5
3.4
121
56
56
108
122
108
108
56
75
56
123
124
56
56
88
57
125
56
126
127
56
56
128
56
56
88
88
75
88
129
56
56
56
56
88
130
57
88
88
131
and are not applicable to systems with less usual bonding
situations.17
Performance assessments carried out for various BDF
schemes have demonstrated their capability of significantly
enhancing the accuracy of the computed standard enthalpies
TABLE II. Parameters of the B3LYP/6-311⫹⫹G** modified atomequivalent schemea
Z
e 1 (Z) 共a.u.兲
Z
e 1 (Z) 共a.u.兲
e Q (kcal/mol)
e S (kcal/mol)
1
3
4
5
6
7
8
9
0.594 725
7.551 433
14.807 256
24.882 548
38.127 846
54.787 885
75.172 827
99.784 419
11
12
13
14
15
16
17
162.325 944
200.141 950
242.498 552
289.543 197
341.376 506
398.222 170
460.204 694
⫺2.714
4.006
See Eq. 共2兲.
This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to IP:
118.163.199.183 On: Mon, 24 Feb 2014 08:17:39
a
9384
Cioslowski et al.
J. Chem. Phys., Vol. 113, No. 21, 1 December 2000
TABLE III. Members of the test set with large errors in the values of ⌬H 0f predicted with the B3LYP/6-311⫹⫹G** modified atom-equivalent scheme.a
⌬H 0f 共kcal/mol兲
Entry
Species
共el state or mult兲
Expt
544
196
476
129
140
226
71
271
346
75
73
338
590
445
70
466
511
512
109
448
343
173
228
223
61
447
49
510
433
286
137
180
68
121
518
229
437
165
350
370
103
233
330
264
309
497
224
134
176
405
597
390
446
273
441
130
339
216
60
524
97
360
74
167
Perfluorocyclohexane
P4
C共NO2兲4
FPO
ClPO
OvCvCvCvO
P2
N2O4
1,3-dithiole-2-thione
SiCl•( 2 ⌸ 1/2)
AlS⫺
共COOH兲2
Be共CH3COCHCOCH3兲2
C6F6
AlS•( 2 ⌺ ⫹ )
Na共H2O兲⫹
4
m-ClC6H4COOH
p-ClC6H4COOH
HOSi⫹
Tetrachloro-p-benzoquinone
1, 3-dithiol-2-one
FNO2
B2O3
HNO3
SiF•( 2 ⌸ 1/2)
C6F5Cl
2 ⫹
F⫺
2 •( ⌺ u )
o-ClC6H4COOH
1,3,5-trioxane
共COCl兲2
CS2
ClNO2
Si2( 3 ⌺ ⫺
g )
COS
B共OCH3兲3
N2O3
p-benzoquinone
HCOO⫺
S8
B3O3Cl3
CO2
F3NO
HCOOCH3
共CHO兲2
B共OH兲3
C6H5COCl
HOCO⫺
2
Al2O
FOOF
1,3-dithiolan-2-one
P共C6H5兲3
Na共H2O兲⫹
3
Perfluorocyclobutane
C2F4
Pyrazine-1, 4-dioxide
SiF2 共singlet兲
ClCH2COOH
HCOOH
PO•( 2 ⌸ 1/2)
p-O2NO6H4NH2
PH⫺
2
␤-propiolactone
SiS 共singlet兲
OBBO
⫺566.2
14.1
19.7
⫺96.7
⫺51.4
⫺22.4
34.3
2.2
60.5
47.4
⫺3.0
⫺175.0
⫺272.7
⫺228.5
57.0
⫺160.4
⫺76.9
⫺77.6
155.2
⫺44.4
⫺3.6
⫺26.0
⫺199.8
⫺32.1
⫺4.8
⫺194.1
⫺69.3
⫺72.7
⫺111.3
⫺80.3
28.0
2.9
139.9
⫺33.1
⫺214.6
19.8
⫺29.3
⫺110.9
24.0
⫺390.0
⫺94.1
⫺39.0
⫺85.0
⫺50.7
⫺237.2
⫺24.7
⫺177.8
⫺34.7
4.6
⫺30.1
76.5
⫺88.8
⫺369.5
⫺157.4
44.6
⫺140.5
⫺104.0
⫺90.5
⫺5.6
13.2
6.4
⫺67.6
25.3
⫺109.0
Pred
⫺601.2
⫺18.5
⫺11.6
⫺126.5
⫺77.5
⫺47.7
9.4
⫺22.5
38.3
25.6
⫺24.5
⫺196.1
⫺292.4
⫺248.1
38.8
⫺178.4
⫺94.7
⫺95.3
137.6
⫺61.5
⫺20.7
⫺42.8
⫺216.4
⫺48.6
⫺21.1
⫺210.3
⫺85.5
⫺88.7
⫺127.2
⫺96.0
12.3
⫺12.6
124.4
⫺48.5
⫺229.8
4.6
⫺44.1
⫺125.7
9.2
⫺404.8
⫺108.8
⫺53.5
⫺99.5
⫺64.9
⫺251.3
⫺38.7
⫺191.8
⫺48.7
⫺9.3
⫺44.0
62.7
⫺102.5
⫺383.2
⫺171.0
31.0
⫺153.9
⫺117.2
⫺103.4
⫺18.5
0.4
⫺6.3
⫺80.3
12.7
⫺121.6
Error
Entry
⫺35.0
⫺32.6
⫺31.3
⫺29.8
⫺26.1
⫺25.3
⫺24.9
⫺24.8
⫺22.2
⫺21.8
⫺21.5
⫺21.1
⫺19.7
⫺19.6
⫺18.2
⫺18.0
⫺17.8
⫺17.7
⫺17.6
⫺17.1
⫺17.1
⫺16.8
⫺16.6
⫺16.5
⫺16.3
⫺16.2
⫺16.2
⫺16.0
⫺15.9
⫺15.7
⫺15.7
⫺15.6
⫺15.5
⫺15.4
⫺15.2
⫺15.2
⫺14.8
⫺14.8
⫺14.8
⫺14.8
⫺14.7
⫺14.5
⫺14.5
⫺14.2
⫺14.1
⫺14.0
⫺14.0
⫺14.0
⫺13.9
⫺13.9
⫺13.9
⫺13.7
⫺13.7
⫺13.6
⫺13.6
⫺13.4
⫺13.2
⫺12.9
⫺12.9
⫺12.8
⫺12.7
⫺12.7
⫺12.6
⫺12.6
331
489
318
102
342
463
543
120
126
305
498
334
420
185
435
112
163
388
574
490
66
15
267
111
57
462
116
485
593
558
78
35
31
440
312
557
291
362
555
8
24
580
587
198
560
132
589
114
595
236
347
243
404
365
417
179
531
548
472
470
561
491
578
246
Species
共el state or mult兲
CH3COOH
C6H5CHO
H2S5
BO2•( 2 ⌸ g )
CF3COOH
CH3CH共NH2兲COOH
2-chloronaphthalene
HOS⫺
SCN⫺
CH3NO2
o-ClC6H4CHO
CH3COSH
FC共NF2兲3
COCl2
C6H5O⫺
FNO
HNCO
H2NCH2COOH
C6H5SSC6H5
CH3COSC2H5
SF⫺
Al⫹
SiH2vSiH2
C3
SiO
共CH3兲3P
NO⫺
2
cyclo-C7H⫹
7
Benz关a兴anthracene
Si共OCH3兲4
CH2( 3 B 1 )
N2
CN•( 2 ⌺ ⫹ )
共CH3O兲2SO
1-H-tetrazole
Mg(cyclo-C5H5兲2
PCl5
CH3SOCH⫺
2
1-azabicyclo关2.2.2兴octane
B⫹
NH ( 3 ⌺ ⫺ )
Adamantane
关Si共CH3兲3兴2NH
SiCl3•( 2 A 1 )
共CH3兲3SiN共CH3兲2
ClO2•( 2 B 1 )
Si共C2H5兲4
NaCN
关Si共CH3兲3兴2NCH3
SiF4
Al2F6
SF4
Thiete sulphone
C共CN兲4
共CH3兲2SO2
SO3
共C2H5兲2SO2
共C2H5O兲2SO2
共CH3O兲2SO2
共CH2vCH兲2SO2
Urotropin
CH3SO2C2H5
共C6H5兲2SO2
SO2Cl2
⌬H 0f 共kcal/mol兲
Expt
⫺103.4
⫺8.8
13.8
⫺68.0
⫺246.5
⫺99.1
32.8
⫺37.8
⫺5.2
⫺17.8
⫺15.0
⫺41.8
⫺48.0
⫺52.6
⫺37.1
⫺15.7
⫺24.3
⫺93.7
58.2
⫺54.5
⫺49.9
216.7
65.7
34.1
⫺24.6
⫺22.5
⫺44.5
206.7
70.0
⫺281.8
92.8
0.0
104.9
⫺115.5
80.0
32.9
⫺89.9
⫺29.2
⫺1.0
325.2
85.2
⫺31.8
⫺114.0
⫺93.3
⫺59.3
25.0
⫺71.0
22.5
⫺107.3
⫺386.0
⫺629.5
⫺182.4
⫺29.7
160.8
⫺89.2
⫺94.6
⫺102.6
⫺180.8
⫺164.2
⫺36.0
47.6
⫺97.7
⫺28.4
⫺84.8
Pred
Error
⫺115.8
⫺20.8
2.1
⫺79.7
⫺258.0
⫺110.4
21.5
⫺49.0
⫺16.4
⫺28.9
⫺26.0
⫺52.7
⫺58.8
⫺63.3
⫺47.8
⫺26.2
⫺34.8
⫺104.2
47.7
⫺64.9
⫺60.3
206.3
55.4
23.8
⫺34.9
⫺32.7
⫺54.7
196.6
59.9
⫺291.9
102.9
10.1
115.0
⫺104.8
90.7
43.9
⫺78.5
⫺17.8
10.5
336.8
96.8
⫺19.1
⫺100.8
⫺79.9
⫺45.3
39.0
⫺55.9
38.6
⫺90.8
⫺368.9
⫺611.1
⫺163.8
⫺10.2
180.5
⫺69.1
⫺72.7
⫺80.4
⫺158.6
⫺141.9
⫺13.4
70.3
⫺74.9
⫺5.5
⫺61.7
⫺12.4
⫺12.0
⫺11.7
⫺11.7
⫺11.5
⫺11.3
⫺11.3
⫺11.2
⫺11.2
⫺11.1
⫺11.0
⫺10.9
⫺10.8
⫺10.8
⫺10.7
⫺10.6
⫺10.5
⫺10.5
⫺10.5
⫺10.4
⫺10.4
⫺10.4
⫺10.3
⫺10.3
⫺10.3
⫺10.2
⫺10.2
⫺10.1
⫺10.1
⫺10.1
10.1
10.1
10.1
10.6
10.7
11.0
11.4
11.4
11.5
11.6
11.6
12.6
13.1
13.4
14.0
14.0
15.1
16.1
16.5
17.1
18.4
18.6
19.5
19.7
20.1
21.9
22.1
22.1
22.3
22.6
22.8
22.8
22.9
23.1
This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to IP:
118.163.199.183 On: Mon, 24 Feb 2014 08:17:39
J. Chem. Phys., Vol. 113, No. 21, 1 December 2000
Standard enthalpies
9385
TABLE III. 共Continued.兲 a
Entry
598
403
471
481
314
282
279
277
125
237
a
Species
共el state or mult兲
关Si共CH3兲3兴3N
CH3SO2CH⫺
2
Butadiene sulphone
B5H9
H2SO4
PF5
HSO⫺
4
HOSO2F
FAlO
SO2F2
⌬H 0f 共kcal/mol兲
Expt
⫺160.4
⫺88.3
⫺61.2
17.5
⫺175.7
⫺381.1
⫺231.9
⫺180.0
⫺139.0
⫺181.3
Pred
⫺136.9
⫺64.8
⫺36.2
43.9
⫺148.2
⫺353.4
⫺203.5
⫺149.7
⫺107.1
⫺148.4
Error
Entry
23.5
23.5
25.0
26.4
27.5
27.8
28.4
30.3
31.9
32.9
499
284
450
600
239
315
317
588
369
⌬H 0f 共kcal/mol兲
Species
共el state or mult兲
P4O10
SF5•( 2 A 1 )
N3P3Cl6
C60
FClO3
SF6
SF5Cl
C6H5SO2SO2C6H5
Cl2O7
Expt
⫺694.1
⫺218.1
⫺175.9
618.1
⫺5.1
⫺291.7
⫺248.3
⫺114.9
65.0
Pred
⫺656.1
⫺172.8
⫺130.5
665.8
45.5
⫺240.3
⫺192.0
⫺51.0
156.4
Error
38.0
45.3
45.4
47.7
50.5
51.4
56.3
64.0
91.4
See Eq. 共2兲 and Table II. Only the species with absolute errors in the predicted ⌬H 0f greater than 10 kcal/mol are listed.
of formation.6 For example, at the B3LYP/6-311G** level
of theory, the average absolute error of 6.6 kcal/mol in the
values of ⌬H 0f obtained with the modified atom-equivalent
scheme,
⌬H 0f 共 X 兲 ⫽E 共 X 兲 ⫹e Q Q 共 X 兲 ⫹e S N S 共 X 兲 ⫹
兺I e 1共 Z I 兲 ,
共2兲
is almost halved to 3.4 kcal/mol upon the inclusion of a
five-term BDF. The main contributors to this residual error
are anions with localized charges, which are poorly described by the basis set that lacks diffuse functions, and several species with inaccurate experimental data that were included in the original 300-member training set.
These encouraging results have prompted us to develop
a more accurate B3LYP/6-311⫹⫹G** scheme, with the
present compilation of standard enthalpies of formation being employed as the training set. Accordingly, total energies
of the 600 species listed in Table I were computed at their
optimized geometries with the GAUSSIAN 94 suite of
programs.133 The fitting process and the forms of the BDFs
were identical to those described previously.6 The resulting
parameters of the modified atom-equivalent scheme 关Eq. 共2兲兴
are listed in Table II. As expected,6,22,23,134 stabilities of hypervalent species are grossly underestimated, whereas the
computed standard enthalpies of formation of polyhalogenated compounds with normal valences are often too low
共Table III兲. The overall average absolute error and the standard deviation equal 7.7 and 11.8 kcal/mol, respectively. The
errors for individual species range from ⫺35.0 to 91.4 kcal/
mol, the largest absolute deviation between the computed
and experimental values of ⌬H 0f being observed for Cl2O7.
One out of four predictions suffers from an absolute error in
excess of 10 kcal/mol 共Table IV兲.
These errors reflect three deficiencies of the
B3LYP/6-311⫹⫹G** modified atom equivalent scheme,
namely the semiempirical inclusion of zero-point energies
and thermal corrections, the modest size of the basis set, and
the inaccuracy of the B3LYP functional itself. In light of the
previously published study, the elimination of the first deficiency is expected to improve the computed standard enthalpies of formation only marginally.6 On the other hand, there
is some evidence that the inclusion of more polarization
functions in the basis sets may lead to substantially better
共although still not sufficiently accurate兲 predictions for hypervalent species.17,22,23 However, such calculations are presently not feasible for larger systems, including many of those
listed in Table I.
Inspection of Table IV reveals that a practical route to
improving the accuracy of the computed values of ⌬H 0f is
offered by the BDF approach. Both the average absolute error and the standard deviation decrease steadily with the
number of terms in BDF. In particular, the five-term BDF,
e 2 共 ␳ IJ ,R IJ ,Z IJ , ␣ IJ , ␤ IJ 兲
4/3 ⫺1/3
⫺2/3 1/3
⫽⫺8.612⫻31⫻10⫺1 ␳ IJ
R IJ Z IJ ␣ IJ
␤ IJ
3 2/3 ⫺2/3 ⫺1 1/3
⫹5.220 04⫻102 ␳ IJ
R IJ Z IJ ␣ IJ ␤ IJ
3 ⫺3 3 2/3 ⫺4/3
⫺4.403 26⫻10⫺4 ␳ IJ
R IJ Z IJ ␣ IJ ␤ IJ
3 3 3 ⫺2
⫹1.917 31⫻10⫺7 ␳ IJ
R IJ Z IJ ␣ IJ ␤ IJ
⫺3 3 3 ⫺1/2
⫺3.273 19⫻10⫺3 ␳ IJ
R IJ ␣ IJ ␤ IJ ,
共3兲
affords standard enthalpies of formation with the average
absolute error of 3.3 kcal/mol and the standard deviation of
5.1 kcal/mol 共Table IV兲. The parameters e Q and e S are much
smaller in magnitude than those of the modified atom
equivalent scheme 共Table V兲, reflecting an improved handling of ions and radicals. Out of the 600 species, 270 共45%
TABLE IV. Error statistics for the B3LYP/6-311⫹⫹G** BDF schemes.a
N BDFb Av. abs. err. Stnd. dev. Max. abs. err.c Error range
0
1
2
3
4
5
7.7
4.6
3.9
3.6
3.5
3.3
11.8
7.1
6.1
5.4
5.2
5.1
91.4 共Cl2O7兲
67.6 共Cl2O7兲
54.7 共Cl2O7兲
35.8 共FAlO兲
34.9 共FAlO兲
36.0 共FAlO兲
⫺35.0–91.4
⫺25.3–67.6
⫺22.6–54.7
⫺21.7–35.8
⫺21.9–34.9
⫺21.6–36.0
Md
147
56
45
37
29
26
共24.5%兲
共9.3%兲
共7.5%兲
共6.2%兲
共4.8%兲
共4.3%兲
See Eq. 共1兲. All errors are in kcal/mol.
The number of terms in BDF. N BDF⫽0 corresponds to the modified atomequivalent scheme of Eq. 共2兲.
c
The species with the largest absolute error in the predicted ⌬H 0f is given in
parentheses.
d
The number of species with absolute errors in the predicted ⌬H 0f greater
than 10 kcal/mol.
This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to IP:
a
b
118.163.199.183 On: Mon, 24 Feb 2014 08:17:39
9386
TABLE V. Parameters of the B3LYP/6-311⫹⫹G** five-term BDF
scheme.a
a
Cioslowski et al.
J. Chem. Phys., Vol. 113, No. 21, 1 December 2000
Z
e 1 (Z) 共a.u.兲
Z
e 1 (Z) 共a.u.兲
e Q 共kcal/mol兲
e S 共kcal/mol兲
1
3
4
5
6
7
8
9
0.586 789
7.546 572
14.798 838
24.877 331
38.132 726
54.792 149
75.193 391
99.797 820
11
12
13
14
15
16
17
162.323 050
200.147 133
242.509 075
289.574 486
341.418 336
398.249 566
460.220 360
0.284
⫺0.345
TABLE VI. Members of the test set with large errors in the values of ⌬H 0f
predicted with the B3LYP/6-311⫹⫹G** five-term 共BDF兲 scheme.a
⌬H 0f 共kcal/mol兲
Entry
557
129
420
477
137
140
346
544
73
70
49
351
8
291
236
391
315
114
281
198
600
588
284
365
317
125
See Eq. 共1兲.
of the total兲 have their enthalpies predicted within 2 kcal/mol
from the experimental values, while the predictions for 356
共59% of the total兲 species fall within 3 kcal/mol. The errors
exceed 5 kcal/mol only in 123 共21% of the total兲 cases.
The set of systems for which the five-term BDF scheme
fares poorly, yielding enthalpies with errors greater than 10
kcal/mol, comprises 26 species 共Table VI兲. It is dominated
by molecules containing either aluminum atoms and/or multiple fluorines. It is unclear at present whether these systems
represent cases where the BDF methodology fails or, more
probably, instances of grossly inaccurate experimental values
of ⌬H 0f . Resolution of these discrepancies calls for revisiting
the published thermochemical data and thus new calorimetric
experiments.
IV. DISCUSSION AND CONCLUSIONS
The comprehensive set of experimental standard enthalpies of formation presented in this paper is certain to facilitate benchmarking, calibration, and parametrization of electronic structure methods. With its diverse molecules, many
possessing unusual geometries and bonding situations, the
present set is capable of uncovering deficiencies in approaches of quantum chemistry that are not detectable with
smaller compilations of data. These deficiencies can often be
alleviated with additional/revised parameterization.
An example of such a methodology is provided by the
development of the B3LYP/6-311⫹⫹G** bond density
functional 共BDF兲 scheme. The set of atoms, molecules, and
ions listed in Table III, for which the original
B3LYP/6-311⫹⫹G** level of theory produces unacceptably large errors in the predicted values of ⌬H 0f , contains the
species that are poorly handled by a typical hybrid density
functional used in conjunction with a moderate-size basis
set. As such, it is suitable for a rigorous testing of new functionals.
The B3LYP/6-311⫹⫹G** BDF method, defined by
Eqs. 共1兲, 共3兲, and the parameters listed in Table V, affords
accurate estimates of ⌬H 0f for a majority of the members of
the test set. It is sufficiently inexpensive in terms of computer time and memory to allow predictions of standard enthalpies of formation even for molecules as large as the C60
fullerene. It requires only single point calculations at optimized geometries, yielding values of ⌬H 0f with the averageabsolute error of 3.3 kcal/mol and thus rivaling more expensive methods in accuracy 共especially for larger systems兲.
a
Species 共el state or mult兲
Mg(cyclo-C5H5) 2
FPO
FC共NF2兲3
C共NF2兲4
CS2
ClPO
1,3-dithiole-2-thione
Perfluorocyclohexane
AlS⫺
AlS• ( 2 ⌺ ⫹ )
2 ⫹
F⫺
2 •( ⌺ u )
Al2Cl6
B⫹
PCl5
SiF4
p-benzyne 共singlet兲
SF6
NaCN
NCSSCN
SiCl3•( 2 A 1 )
C60
C6H5SO2SO2C6H5
SF5•( 2 A 1 )
C共CN兲4
SF5Cl
FAlO
Expt
Pred
Error
32.9
⫺96.7
⫺48.0
0.2
28.0
⫺51.4
60.5
⫺566.2
⫺3.0
57.0
⫺69.3
⫺309.7
325.2
⫺89.9
⫺386.0
137.8
⫺291.7
22.5
83.6
⫺93.3
618.1
⫺114.9
⫺218.1
160.8
⫺248.3
⫺139.0
11.3
⫺117.4
⫺65.9
⫺16.4
13.9
⫺65.4
46.6
⫺579.8
⫺15.7
45.2
⫺80.4
⫺319.9
336.5
⫺78.0
⫺374.0
150.9
⫺278.4
35.9
97.7
⫺78.0
634.8
⫺94.9
⫺197.8
182.3
⫺224.2
⫺103.0
⫺21.6
⫺20.7
⫺17.9
⫺16.6
⫺14.1
⫺14.0
⫺13.9
⫺13.6
⫺12.7
⫺11.8
⫺11.1
⫺10.1
11.3
11.9
12.0
13.1
13.3
13.4
14.1
15.3
16.7
20.0
20.3
21.5
24.1
36.0
See Eqs. 共1兲, 共3兲, and Table V. Only the species with absolute errors in the
predicted ⌬H 0f greater than 10 kcal/mol are listed.
Still, this scheme could possibly be refined even further, especially in order to reduce errors observed for molecules
such as H2, N2, C2H2, and H2F2.
It appears that the experimental data for at least some of
the 26 species listed in Table VI are of suspect quality. As
such, they may be omitted from the test set, although at the
expense of a reduced diversity in the remaining systems.
ACKNOWLEDGMENTS
The research described in this publication has been supported by the Office of Energy Research, Office of Basic
Energy Sciences, Division of Chemical Sciences, US Department of Energy under Grant No. DE-FG02-97ER14758.
M.S. acknowledges a Feodor-Lynen Research Fellowship
from the Alexander von Humboldt Foundation.
1
L. A. Curtiss, K. Raghavachari, P. C. Redfern, V. Rassolov, and J. A.
Pople, J. Chem. Phys. 109, 7764 共1998兲.
2
L. A. Curtiss, P. C. Redfern, K. Raghavachari, V. Rassolov, and J. A.
Pople, J. Chem. Phys. 110, 4703 共1999兲; A. G. Baboul, L. A. Curtiss, P. C.
Redfern, and K. Raghavachari, ibid. 110, 7650 共1999兲.
3
D. G. Truhlar, Chem. Phys. Lett. 294, 45 共1998兲; L. A. Curtiss, K. Raghavachari, P. C. Redfern, A. G. Baboul, and J. A. Pople, ibid. 314, 101
共1999兲; J. M. L. Martin and G. deOliveira, J. Chem. Phys. 111, 1843
共1999兲; P. L. Fast, M. L. Sanchez, and D. G. Truhlar, ibid. 111, 2921
共1999兲; L. A. Curtiss, K. Raghavachari, P. C. Redfern, and J. A. Pople,
ibid. 112, 1125 共2000兲; J. A. Montgomery, M. J. Frisch, J. W. Ochterski,
and G. A. Petersson, ibid. 112, 6532 共2000兲.
4
A. D. Becke, J. Comput. Chem. 20, 63 共1999兲, and the references cited
therein.
5
H. L. Schmider and A. D. Becke, J. Chem. Phys. 109, 8188 共1998兲.
This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to IP:
118.163.199.183 On: Mon, 24 Feb 2014 08:17:39
J. Chem. Phys., Vol. 113, No. 21, 1 December 2000
Standard enthalpies
9387
J. Cioslowski, G. Liu, and P. Piskorz, J. Phys. Chem. A 102, 9890 共1998兲.
Gilles, and W. C. Lineberger, J. Chem. Phys. 96, 7191 共1992兲 and its ⌬H 0f
B. Ahlswede and K. Jug, J. Comput. Chem. 6, 563 共1999兲.
recalculated from the data reported in Ref. 26 using ⌬H 0f of CF2 listed in
8
J. J. P. Stewart, J. Comput. Chem. 10, 221 共1989兲.
the present compilation.
9
42
J. J. P. Stewart, J. Comput. Chem. 12, 320 共1991兲.
Computed from the EA of AlS• reported in A. Nakajima, T. Taguwa, K.
10
W. Thiel and A. A. Voityuk, Int. J. Quantum Chem. 44, 807 共1992兲.
Nakao, K. Hoshino, S. Iwata, and K. Kaya, J. Chem. Phys. 102, 660
11
W. Thiel and A. A. Voityuk, J. Mol. Struct.: THEOCHEM 313, 141
共1995兲 and its ⌬H 0f listed in the present compilation.
共1994兲.
43
Based upon the singlet–triplet splitting determined by A. R. W. McKellar,
12
W. Thiel and A. A. Voityuk, J. Phys. Chem. 100, 616 共1996兲.
P. R. Bunker, T. J. Sears, K. M. Evenson, R. J. Saykally, and S. R.
13
M. J. S. Dewar and M. L. McKee, J. Am. Chem. Soc. 99, 5231 共1977兲.
Langhoff, J. Chem. Phys. 79, 5251 共1983兲 and ⌬H 0f of CH2 ( 1 A 1 ) taken
14
M. J. S. Dewar, C. Jie, and E. G. Zoebisch, Organometallics 7, 513
from Ref. 44. The correction to 298 K is taken from Ref. 26.
共1988兲.
44
15
Based upon ⌬H f (0K) recommended by R. K. Lengel and R. N. Zare,
L. A. Curtiss, K. Raghavachari, G. W. Trucks, and J. A. Pople, J. Chem.
J. Am. Chem. Soc. 100, 7495 共1978兲. The correction to 298 K is from
Phys. 94, 7221 共1991兲.
16
Ref. 26.
L. A. Curtiss, K. Raghavachari, P. C. Redfern, and J. A. Pople, J. Chem.
45
Computed from the standard enthalpies of protonation reported in E. P. L.
Phys. 106, 1063 共1997兲.
17
Hunter and S. G. Lias, J. Phys. Chem. Ref. Data 27, 413 共1998兲 and ⌬H 0f
G. A. Petersson, D. K. Malick, W. G. Wilson, J. W. Ochterski, J. A.
of H⫹, HCl, C2H2, NH3, H2O, HF, PH3, H2S, SiO, N2H4, CH3OH,
Montgomery, Jr., and M. J. Frisch, J. Chem. Phys. 109, 10570 共1998兲.
18
L. A. Curtiss, P. C. Redfern, K. Raghavachari, and J. A. Pople, J. Chem.
共CH3兲2O, oxirane, C6H5NH2, and pyridine listed in the present compilaPhys. 109, 42 共1998兲.
tion.
19
46
Note that in these parametrizations only 299 energies were used, the IPs of
L. V. Gurvich, G. A. Bergman, L. N. Gorokhov, V. S. Iorish, V. Y.
toluene, aniline, and phenol being excluded.
Leonidov, and V. S. Yungman, J. Phys. Chem. Ref. Data 25, 1211 共1996兲.
20
47
J. W. Ochterski, G. A. Petersson, and K. B. Wiberg, J. Am. Chem. Soc.
L. V. Gurvich, I. V. Veyts, and C. B. Alcock, Thermodynamic Properties
117, 11299 共1995兲.
of Individual Substances, 4th ed. 共Hemisphere, New York, 1991兲, Vol. II,
21
W. C. Herndon, Chem. Phys. Lett. 234, 82 共1995兲.
Parts 1 and 2.
22
48
S. A. Kafafi, J. Phys. Chem. A 102, 10404 共1998兲.
Computed from the standard enthalpies of isomerization and deprotona23
A. D. Rabuck and G. E. Scuseria, Chem. Phys. Lett. 共in press兲.
tion reported in K. M. Ervin, S. Gronert, S. E. Barlow, M. K. Gilles, A. G.
24
See, however: G. N. Merrill and M. S. Gordon, J. Chem. Phys. 110, 6154
Harrison, V. M. Bierbaum, C. H. DePuy, W. C. Lineberger, and G. B.
共1999兲; J. M. L. Martin and G. deOliveira, ibid. 111, 1843 共1999兲 for
Ellison, J. Am. Chem. Soc. 112, 5750 共1990兲 combined with ⌬H 0f of C2H2
extrapolative methods free of adjustable parameters.
and C2H4 listed in the present compilation.
25
J.-P. Blandeau, M. P. McGrath, L. A. Curtiss, and L. Radom, J. Chem.
49
J. Berkowitz, J. P. Greene, H. Cho, and B. Ruscic, J. Chem. Phys. 86,
Phys. 107, 5016 共1997兲, and references cited therein.
1235 共1987兲 as cited in Ref. 16.
26
M. W. Chase, C. A. Davies, J. R. Downey, D. R. Frurip, R. A. McDonald,
50
Recommended values from J. C. Poutsma, J. A. Paulino, and R. R.
and A. N. Syverud, JANAF Thermochemical Tables, 3rd ed. 关J. Phys.
Squires, J. Phys. Chem. A 101, 5327 共1997兲.
Chem. Ref. Data 1, 14 共1985兲兴.
51
Computed with the procedure described in J. A. Pople and L. A. Curtiss,
27
J. D. Cox, D. D. Wagman, and V. A. Medvedev, CODATA Key Values for
J. Chem. Phys. 90, 2833 共1989兲 but using the IP of HO• reported in R. T.
Thermodynamics 共Hemisphere, New York, 1989兲.
Wiedmann, R. G. Tonkyn, M. G. White, K. Wang, and V. McKoy, ibid.
28
Computed from standard enthalpies of deprotonation reported in Ref. 32
97, 768 共1992兲. ⌬H 0f of HO• and F•, and the correction to 298 K for HOF
0
⫹
and ⌬H f of H , H2CO, CH3CHO, CH4, NH3, H2O, HF, SiH4, PH3, H2S,
are taken from Ref. 26.
HCl, CH3OH, CH3SH, HCN, CH3CHvCH2, and CH3SH listed in the
52
Computed from the standard enthalpy of the FH¯F⫺ bond dissociation
present compilation.
reported in Ref. 38 combined with ⌬H 0f of HF and F⫺ listed in the present
29
Reference state for ⌬H 0f of an element.
compilation.
30
As stated in Ref. 16: ‘‘⌬H f (0 K) calculated from D 0 recommended by K.
53
S. E. Bradforth, E. H. Kim, D. W. Arnold, and D. M. Neumark, J. Chem.
Huber and G. Herzberg, ‘‘Molecular Spectra and Molecular Structure 4.
Phys. 98, 800 共1993兲.
Constants of Diatomic Molecules,’’ Van Nostrand, Princeton, 1979. Vi54
Computed from the EA of NO2• reported in K. M. Ervin, J. Ho, and W. C.
brational frequencies from Huber/Herzberg used to obtain temperature
Lineberger, J. Phys. Chem. 92, 5405 共1988兲 and its ⌬H 0f listed in the
correction to 298 K. This reference does not give uncertainties. All values
present compilation.
chosen for this study are listed to an accuracy of 0.01 eV 共0.2 kcal/mol兲 or
55
R. A. J. O’Hair, C. H. DePuy, and V. M. Bierbaum, J. Phys. Chem. 97,
better.’’
31
7955 共1993兲. ⌬H 0f of HOS⫺ recalculated with ⌬H 0f of COS listed in the
Computed from ⌬H f (0 K) reported in S. T. Gibson, J. P. Greene, and J.
present compilation.
Berkowitz, J. Chem. Phys. 83, 4319 共1985兲. The correction to 298 K is
56
J. B. Pedley, R. D. Naylor, and S. P. Kirby, Thermochemical Data of
taken from Ref. 26.
32
Organic Compounds, 2nd ed. 共Chapman and Hall, New York, 1986兲.
J. Berkowitz, G. B. Ellison, and D. Gutman, J. Phys. Chem. 98, 2744
57
G. Pilcher, in The Chemistry of Organophosphorus Compounds, edited by
共1994兲.
33
F. R. Hartley 共Wiley, New York, 1990兲, Vol. 1, p. 127.
Based upon ⌬H f (0 K) reported by Y. Huang, S. A. Barts, and J. B.
58
J. T. Herron, J. Phys. Chem. Ref. Data 16, 1 共1987兲.
Halpern, J. Phys. Chem. 96, 425 共1992兲 and the correction to 298 K
59
P. A. Giguere and I. D. Liu, J. Am. Chem. Soc. 77, 6477 共1955兲.
computed with the vibrational frequency from Ref. 30 as reported in
60
Computed from the standard enthalpy of hydration of F⫺ (⫺26.7⫾0.8
Ref. 16.
34
kcal/mol兲 interpolated from the two values reported in P. Weis, P. R.
Computed from the dissociation energy of LiNa reported in C. E. Fellows,
Kemper, M. T. Bowers, and S. S. Xantheas, J. Am. Chem. Soc. 121, 3531
J. Chem. Phys. 94, 5855 共1991兲 combined with ⌬H 0f of Li• and Na• listed
共1999兲 combined with ⌬H 0f of H2O and F⫺ listed in the present compilain the present compilation.
35
tion.
Computed from the EA of NO• reported in M. J. Travers, D. C. Cowles,
61
Computed from the standard enthalpies of hydration of Na⫹ reported in I.
and G. B. Ellison, Chem. Phys. Lett. 164, 449 共1989兲 and its ⌬H 0f listed in
Dzidic and P. Kebarle, J. Phys. Chem. 74, 1466 共1970兲 combined with
the present compilation.
36
⌬H 0f of Na⫹ and H2O listed in the present compilation.
M. K. Gilles, M. L. Polak, and W. C. Lineberger, J. Chem. Phys. 96, 8012
62
D.
D. Wagman, W. H. Evans, V. B. Parker, R. H. Schumm, I. Halow, S.
共1992兲.
37
M. Bailey, K. L. Churney, and R. L. Nuttall, J. Phys. Chem. Ref. Data
M. Steinberg and K. Schofield, J. Chem. Phys. 94, 3901 共1991兲.
38
Suppl. 2, 11 共1982兲.
P. G. Wenthold and R. R. Squires, J. Phys. Chem. 99, 2002 共1995兲.
63
39
Computed from the standard enthalpy of deprotonation of HCOOH reL. Operti, E. C. Tews, T. J. MacMahon, and B. S. Freiser, J. Am. Chem.
ported in G. Caldwell, R. Renneboog, and P. Kebarle, Can. J. Chem. 67,
Soc. 111, 9152 共1989兲.
40
611 共1989兲 combined with ⌬H 0f of H⫹ and HCOOH listed in the present
Computed from the adiabatic IP of Na2 reported in S. Leutwyler, M.
Hofmann, H.-P. Harri, and E. Schumacher, Chem. Phys. Lett. 77, 257
compilation.
64
共1981兲 and its ⌬H 0f listed in the present compilation.
Computed from the standard enthalpy of hydration of Cl⫺ reported in R.
41
G. Keesee and A. W. Castleman, Jr., Chem. Phys. Lett. 74, 139 共1980兲
Computed from the adiabatic EA of SF• reported in M. L. Polak, M. K.
This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to IP:
6
7
118.163.199.183 On: Mon, 24 Feb 2014 08:17:39
9388
J. Chem. Phys., Vol. 113, No. 21, 1 December 2000
combined with ⌬H 0f of Cl⫺ and H2O listed in the present compilation.
Cioslowski et al.
Brauman, J. Am. Chem. Soc. 116, 8304 共1994兲 combined with ⌬H 0f of H•
65
and 共CH3兲2SiH2 listed in the present compilation.
The lower bound from R. L. Asher, E. H. Appelman, and B. Ruscic, J.
95
M. V. Roux, P. Jimenez, J. Z. Davalos, O. Castano, M. T. Molina, R.
Chem. Phys. 105, 9781 共1996兲.
66
Notario, M. Herreros, and J.-L. Abboud, J. Am. Chem. Soc. 118, 12735
M. W. Chase, J. Phys. Chem. Ref. Data 25, 551 共1996兲.
67
共1996兲.
Computed from the standard enthalpies of deprotonation reported in J. E.
96
P. G. Wenthold, R. R. Squires, and W. C. Lineberger, J. Am. Chem. Soc.
Bartmess, J. A. Scott, and R. T. McIver, Jr., J. Am. Chem. Soc. 101, 6046
120, 5279 共1998兲.
共1979兲 and ⌬H 0f of H⫹, CH3CN, CHF3, 共CH3兲2SO2, 共CH3兲2SO, and cy97
L. Nuñez, L. Barral, and G. Pilcher, J. Chem. Thermodyn. 20, 1211
clopentadiene listed in the present compilation.
共1988兲.
68
An average of the values reported in J. L. Holmes and F. P. Lossing, J.
98
Computed from the standard enthalpies of hydration reported in W. R.
Am. Chem. Soc. 110, 7343 共1988兲 and J. W. Hudgens, R. D. Johnson, III,
Roth, F.-G. Klärner, and H.-W. Lennartz, Chem. Ber. 113, 1818 共1980兲
R. S. Timonen, J. A. Seetula, and D. Gutman, J. Phys. Chem. 95, 4400
combined with the pertinent ⌬H 0f from Ref. 56.
共1991兲.
99
69
G. Wolf, Helv. Chim. Acta 55, 1446 共1972兲.
Computed from the EA of BCl3 reported in E. W. Rothe, B. P. Mathur,
100
M. Mansson, E. Morawetz, Y. Nakase, and S. Sunner, Acta Chem.
and G. P. Reck, Inorg. Chem. 19, 829 共1980兲 and its ⌬H 0f listed in the
Scand. 23, 56 共1969兲.
present compilation.
101
Computed from the standard enthalpy of deprotonation of C6H5OH re70
Computed from the standard enthalpy of deprotonation of CHCl3 reported
ported in V. F. DeTuri and K. M. Ervin, Int. J. Mass Spectrom. Ion
in J. A. Paulino and R. R. Squires, J. Am. Chem. Soc. 113, 5573 共1991兲
Processes 175, 123 共1998兲 combined with ⌬H 0f of C6H5OH and H⫹ listed
0
⫹
combined with ⌬H f of H and CHCl3 listed in the present compilation.
in the present compilation.
71
D. B. Workman and R. R. Squires, Inorg. Chem. 27, 1846 共1988兲.
102
L. Shaofeng and G. Pilcher, J. Chem. Thermodyn. 20, 463 共1988兲.
72
103
Computed from the standard enthalpy of the reaction
Computed from the standard enthalpy of the C6H5S–CH3 bond dissociaNa⫹⫹NH3→Na共NH3兲⫹ reported in A. W. Castleman, Jr., P. M. Holland,
tion reported in A. J. Colussi and S. W. Benson, Int. J. Chem. Kinet. 9,
D. M. Lindsay, and K. I. Peterson, J. Am. Chem. Soc. 100, 6039 共1978兲
295 共1977兲 combined with ⌬H 0f of CH3• listed in the present compilation
0
⫹
combined with ⌬H f of Na and NH3 listed in the present compilation.
and
⌬H 0f of C6H5SCH3 reported in Ref. 56.
73
Computed from the EA of CH2CN⫺ reported in S. Moran, H. B. Ellis, Jr.,
104
W. E. Acree, Jr., J. R. Powell, S. A. Tucker, M. D. M. C. Ribeiro da
D. J. DeFrees, A. D. McLean, and G. B. Ellison, J. Am. Chem. Soc. 109,
Silva, M. A. R. Matos, J. M. Gonçalves, L. M. N. B. F. Santos, V. M. F.
0
5996 共1987兲 and its ⌬H f listed in the present compilation.
Morais, and G. Pilcher, J. Org. Chem. 62, 3722 共1997兲.
74
105
R. R. Squires, Int. J. Mass Spectrom. Ion Processes 117, 565 共1992兲.
S. B. Hartley, N. L. Paddock, and H. T. Searle, J. Chem. Soc. 430 共1961兲.
75
106
J. D. Cox and G. Pilcher, Thermochemistry of Organic and OrganometalS. Ngauv, R. Sabbah, and M. Laffitte, Thermochim. Acta 20, 371 共1977兲.
107
lic Compounds 共Academic, New York, 1970兲.
V. P. Lebedev, E. A. Miroshnichenko, Yu. N. Matyushin, V. P. Larionov,
⫺
76
⫺
Computed from the standard enthalpy of the reaction BF3⫹F →BF4 reV. S. Romanov, Yu. E. Bukolov, G. M. Denisov, A. A. Balepin, and Yu.
A. Lebedev, Russ. J. Phys. Chem. 49, 1133 共1975兲.
ported in M. Veljkovic, O. Neskovic, K. F. Zmbov, A. Ya. Borshchevsky,
108
A. Das, M. Frenkel, N. A. M. Gadalla, S. Kudchadker, K. N. Marsh, A.
V. E. Vaisberg, and L. N. Sidorov, Rapid Commun. Mass Spectrom. 5, 37
S. Rodgers, and R. C. Wilhoit, J. Phys. Chem. Ref. Data 22, 659 共1993兲.
共1991兲 combined with ⌬H 0f of BF3 and F⫺ listed in the present compila109
J. C. Traeger and B. M. Kompe, Int. J. Mass Spectrom. Ion Processes
tion.
77
101, 111 共1990兲.
R. Walsh, J. Chem. Soc., Faraday Trans. 1 79, 2233 共1983兲.
110
78
P. Jimenez, M. V. Roux, and C. Turrion, J. Chem. Thermodyn. 21, 759
Based upon ⌬H f (0 K) recommended in M. I. Nikitin, N. A. Igolkina, E.
共1989兲.
V. Skokan, I. D. Sorokin, and L. N. Sidorov, Russ. J. Phys. Chem. 60, 22
111
W. V. Steele, R. D. Chirico, S. E. Knipmeyer, and A. Nguyen, J. Chem.
共1986兲. The correction to 298 K is taken from Ref. 26.
Thermodyn. 24, 499 共1992兲.
79
X.-W. An and M. Mansson, J. Chem. Thermodyn. 15, 287 共1983兲.
112
W. V. Steele, R. D. Chirico, S. E. Knipmeyer, A. Nguyen, N. K. Smith,
80
A. Bauder and H. H. Günthard, Helv. Chim. Acta 41, 670 共1958兲.
and I. R. Tasker, J. Chem. Eng. Data 41, 1269 共1996兲.
81
V. P. Kolesov and T. S. Papina, Russ. Chem. Rev. 52, 425 共1983兲.
113
R. Sabbah and A. Rojas Aguilar, Can. J. Chem. 73, 1538 共1995兲.
82
B. Ruscic and J. Berkowitz, J. Chem. Phys. 95, 2416 共1991兲.
114
K. Nishiyama, M. Sakiyama, and S. Seki, Bull. Chem. Soc. Jpn. 56, 3171
83
Computed from the standard enthalpy of deprotonation of H2SO4 reported
共1983兲.
in A. A. Viggiano, M. J. Henchman, F. Dale, C. A. Deakyne, and J. F.
115
S. J. W. Price and H. J. Sapiano, Can. J. Chem. 57, 685 共1979兲.
0
⫹
Paulson, J. Am. Chem. Soc. 114, 4299 共1992兲 combined with ⌬H f of H
116
M. Mansson and S. Sunner, J. Chem. Thermodyn. 13, 671 共1981兲.
117
and H2SO4 listed in the present compilation.
S. P. Verevkin, H.-D. Beckhaus, C. Rüchardt, R. Haag, S. I. Kozhushkov,
84
Computed from the adiabatic EA of PF5 reported in T. M. Miller, A. E.
T. Zywietz, A. de Meijere, H. Jiao, and P. v. R. Schleyer, J. Am. Chem.
Soc. 120, 11130 共1998兲.
Stevens Miller, A. A. Viggiano, R. A. Morris, and J. F. Paulson, J. Chem.
118
M. Mansson, Acta Chem. Scand. Ser. B 28, 895 共1974兲.
Phys. 100, 7200 共1994兲 and its ⌬H 0f listed in the present compilation.
119
85
S. S. Wong and E. F. Westrum, Jr., J. Am. Chem. Soc. 93, 5317 共1971兲.
Computed from ⌬H 0f of PCl3 listed the present compilation and the stan120
Recalculated from the data reported in H. S. Hull, A. F. Reid, and A. G.
dard enthalpy of the reaction PCl3⫹Cl2→PCl5 reported in Ref. 26.
Turnbull, Inorg. Chem. 6, 805 共1967兲 with ⌬H 0f of cyclopentadiene listed
86
Computed from standard enthalpies of deprotonation reported in C. H.
in the present compilation.
DePuy, S. Gronert, S. E. Barlow, V. M. Bierbaum, and R. Damrauer, J.
121
M. Mansson, N. Rapport, and E. F. Westrum, Jr., J. Am. Chem. Soc. 92,
Am. Chem. Soc. 111, 1968 共1989兲 and ⌬H 0f of H⫹, CH3CH2CH3, cyclo7296 共1970兲.
propane, and C2H6 listed in the present compilation.
122
W. E. Acree, Jr., V. V. Simirsky, A. A. Kozyro, A. P. Krasulin, G. J.
87
J. L. Holmes and F. P. Lossing, J. Am. Chem. Soc. 104, 2648 共1982兲.
Kabo, and M. L. Frenkel, J. Chem. Eng. Data 37, 131 共1992兲.
88
123
R. Walsh, in The Chemistry of Organic Silicon Compounds, edited by S.
W. V. Steele, R. D. Chirico, S. E. Knipmeyer, A. Nguyen, and N. K.
Patai and Z. Rappoport 共Wiley, New York, 1989兲, p. 371.
Smith, J. Chem. Eng. Data 41, 1285 共1996兲.
89
124
An average of the values reported in M. Weissmann and S. W. Benson,
A. R. Dias, M. E. Minas Da Piedade, J. A. Miartinho Simões, J. A.
Int. J. Chem. Kinet. 12, 403 共1980兲 and D. F. McMillen and D. M.
Simoni, C. Teixeira, H. P. Diogo, Y. Meng-Yan, and G. Pilcher, J. Chem.
Golden, Annu. Rev. Phys. Chem. 33, 493 共1982兲.
Thermodyn. 24, 439 共1992兲.
90
125
W. R. Roth, A. Adamczak, R. Breuckmann, H.-W. Lennartz, and R.
J. J. Kirchner, W. E. Acree, Jr., G. Pilcher, and L. Shaofeng, J. Chem.
Boese, Chem. Ber. 124, 2499 共1991兲. ⌬H 0f of CH2vCHCwCH recalcuThermodyn. 18, 793 共1986兲.
126
lated with ⌬H 0f of CH3共CH2兲2CH3 listed in the present compilation.
Recalculated from the data reported in M. A. Ring, H. E. O’Neal, A. H.
0
91
Kadhim, and F. Jappe, J. Organomet. Chem. 5, 124 共1966兲 with ⌬H vap
R. H. Boyd, K. R. Guha, and R. Wuthrich, J. Phys. Chem. 71, 2187
⫽15.0 kcal/mol computed from the vapor pressure data reported in D. R.
共1967兲.
92
K. Byström, J. Chem. Thermodyn. 14, 865 共1982兲.
Stull, Ind. Eng. Chem. 39, 517 共1947兲.
93
127
D. S. Barnes, C. T. Mortimer, and E. Mayer, J. Chem. Thermodyn. 5, 481
T. Clark, T. Mc, O. Knox, M. A. McKervey, H. Mackle, and J. J.
共1973兲.
Rooney, J. Am. Chem. Soc. 101, 2404 共1979兲.
94
128
Computed from the data reported in E. A. Brinkman, S. Berger, and J. I.
C. L. Chernick and H. A. Skinner, J. Chem. Soc. 1401 共1956兲.
This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to IP:
118.163.199.183 On: Mon, 24 Feb 2014 08:17:39
J. Chem. Phys., Vol. 113, No. 21, 1 December 2000
129
M. A. V. Ribeiro da Silva, G. Pilcher, and R. J. Irving, J. Chem. Thermodyn. 20, 95 共1988兲.
0
130
Computed from ⌬H 0f 共cr兲 reported in Ref. 56 combined with ⌬H subl
reported in V. Oja and E. M. Suuberg, J. Chem. Eng. Data 43, 486 共1998兲.
131
An average of ⌬H 0f 共cr兲 reported in X.-W. An, H. Jun, and B. Zheng, J.
Chem. Thermodyn. 28, 1115 共1996兲 and V. P. Kolesov, S. M. Pimenova,
V. K. Pavlovich, N. B. Tamm, and A. A. Kurskaya, ibid. 28, 1121 共1996兲
0
combined with ⌬H subl
from the former reference.
132
Note that in Ref. 6 Z IJ was erroneously identified with (Z I Z J ) 1/2.
133
GAUSSIAN 94, M. J. Frisch, G. W. Trucks, H. B. Schlegel, P. M. W. Gill,
Standard enthalpies
9389
B. G. Johnson, M. A. Robb, J. R. Cheeseman, T. A. Keith, G. A.
Petersson, J. A. Montgomery, K. Raghavachari, M. A. Al-Laham, V. G.
Zakrzewski, J. V. Ortiz, J. B. Foresman, J. Cioslowski, B. B. Stefanov, A.
Nanayakkara, M. Challacombe, C. Y. Peng, P. Y. Ayala, W. Chen, M.
W. Wong, J. L. Andres, E. S. Replogle, R. Gomperts, R. L. Martin, D. J.
Fox, J. S. Binkley, D. J. Defrees, J. Baker, J. J. P. Stewart, M. HeadGordon, C. Gonzalez, and J. A. Pople, Gaussian, Inc., Pittsburgh, PA
共1995兲.
134
J. M. L. Martin 共private communication兲. C. W. Bauschlicher, Jr. and H.
Partridge, Chem. Phys. Lett. 240, 533 共1995兲.
This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to IP:
118.163.199.183 On: Mon, 24 Feb 2014 08:17:39