HW 23 Solutions March 26, 2013 10.5.7 Find the solution of the heat conduction problem 100uxx = ut , 0 < x < 1, t > 0; u(0, t) = 0, u(1, t) = 0, t > 0; u(x, 0) = sin(2πx) − sin(5πx), 0 ≤ x ≤ 1 Solution: Note from equation 19 that the answer takes the form u(x, t) = ∞ X 2 π2 t cn e−100n sin(nπx). n=1 Substituting for t = 0 yields u(x, 0) = ∞ X cn sin(nπx) = sin(2πx) − sin(5πx). n=1 Therefore, c2 = 1, c5 = −1, otherwise cj = 0. It follows immediately that 2 2 u(x, t) = e−400π t sin(2πx) − e−2500π t sin(5πx). 10.5.8 Find the solution of the heat conduction problem uxx = 4ut , 0 < x < 2, t > 0; u(0, t) = 0, u(2, t) = 0, t > 0; u(x, 0) = 2 sin(πx/2) − sin(πx) + 4 sin(2πx), 0 ≤ x ≤ 2. 1 Solution: The answer must take the form u(x, t) = ∞ X 2 π 2 t/16 cn e−n sin(nπx/2). n=1 Using the boundary conditions, u(x, 0) = ∞ X cn sin(nπx/2) = 2 sin(πx/2) − sin(πx) + 4 sin(2πx) n=1 from which it follows that c1 = 2, c2 = −1, c4 = 4, else cj = 0. Plugging in these values yields u(x, t) = 2e−π 2 t/16 sin(πx/2) − e−π 2 t/4 2 2 sin(πx) + 4e−π t sin(2πx).
© Copyright 2026 Paperzz