Water Camp Overview Day 1 - H2O and You Overview: Today students will begin their journey of exploring the wonderful world of water. The focus for day one is for students to understand how important water is for human beings and all living things. They will begin by exploring how much of our bodies are comprised of water and then discover how important it is to drink water every day. Students will also start a week-long investigation that they will check on every day throughout the week. A fun, thematic recess activity is suggested followed by the daily STEM Career Connection. Students will be challenged to think about the importance of access to clean water and how it can be transported through an Engineering Challenge. In between these activities, there is a Mind Snack built in as they work to complete their Engineering Challenge. Day one wraps up with the daily STEM Camp Notebook reflection activity. The “Dive into Digital” project is also provided as an option for facilitators to include. Learning Objectives: To explain the importance of water for living things To determine the water composition of our bodies To explore the concepts of access to and transport of water Background Fresh water is vital to all life on Earth. Humans, plants, and animals need it to grow and thrive. The amount of fresh water on the Earth does not change; it is constantly moving through the water cycle. That means the fresh water that is here now is essentially the same fresh water that was here millions of years ago, and it is the same water we will have in the future, which is a strong argument for preventing pollution and encouraging conservation. In the U.S., we are lucky to enjoy easy access to clean water. In other parts of the world, it is not so easy. In fact, at least 1.2 billion people worldwide do not have access to clean water. The average American uses eighty gallons of water a day. However, household water use accounts for just 8 percent of total water usage. Most fresh water used in the United States is used for industry and farming. While fresh water seems like an abundant resource, it actually represents only about 3 percent of the world’s total water supply. Of that 3 percent, much of the fresh water exists as ice in glaciers. People use water in its various phases (solid, liquid, and gas) for many different purposes. Uses of liquid fresh water are almost endless, and include recreation, transportation, and food preparation, in addition to basic survival. Uses of ice (solid water) include cooling of food and drink (and, in the past, buildings); preservation of perishable materials; treatment of injuries; and recreation (e.g., skiing and skating). In extremely cold climates, ice can be used as insulation and even as building material. Water vapor is used in cooking (e.g., steaming vegetables); cleaning; sterilization of laboratory and medical equipment; household heating (radiators); and, perhaps most importantly, the generation of electricity. Day 2 - Properties of Water Overview: Today students will explore the amazing properties of water. The focus for day two is for students to understand the basic chemistry of water. They will begin with assessing how much they know about the properties of water and learn the basic chemistry of water with a fun camp song. Following that, they will explore properties of water during handson digital activities and a hands-on lab. A fun, thematic recess activity is suggested followed by the STEM Career Connection. After the Mind Snack, students are challenged to build a boat that floats across a kiddie pool carrying a weight during the Engineering Challenge. Day two wraps up with the daily STEM Camp Notebook reflection activity. The “Dive into Digital” project is also provided as an option for facilitators to include. Learning Objectives: To explain the basic chemistry of water To investigate properties of water including cohesion and surface tension Background Cohesion: Water is attracted to water. Adhesion: Water is attracted to other substances. Adhesion and cohesion are water properties that affect every water molecule on earth and also the interaction of water molecules with molecules of other substances. Essentially, cohesion and adhesion are the "stickiness" that water molecules have for each other and for other substances. Water drops are composed of water molecules that like to stick together, which explains why water falls from the sky as raindrops rather than individual molecules. Rain therefore is an example of the property of cohesion. When one corner of a piece of paper towel is dipped into a glass of water the water will climb the fibers of the paper. The water molecules are attracted to the molecules of the fabric with greater force than gravity and therefore are able to climb up the paper. Therefore adhesion is when water molecules are attracted to another surface. Surface tension is caused by the attraction of the particles at the surface layer by the quantity of the liquid. For water, surface tension happens when a water molecule is surrounded on all sides by other water molecules, which creates a sphere or ball. In the case of surface tension, cohesion is affected by the volume of water at the surface layer resulting elastic like force. The helps to explain why some small insects, like a water strider, can walk on water. In the case of a water strider the weight of the insect is less than the force necessary to penetrate the surface of the water. Buoyancy is an upward force exerted that opposes the weight of a fully or partially immersed object. If the upward force exerted is equal to or greater than the density of the immersed object the object is deemed buoyant. This is the principle that allows large cruise ships and fishing vessels to remain afloat even though individual pieces of the vessel would sink if not part of the whole. Day 3 - Water and Ecosystems Overview: Today students will understand that water is a vital, natural resource for both plant and animal survival. Students will discover that although many areas have water resources available, it does not mean the supply is unlimited. They will begin to think about the major water resources in their area as well. In the morning, they will explore water ecosystems and create a model of a watershed. For their major project of the day, they spend part of the morning and afternoon building an Aquarium Terrarium, an aquatic/terrestrial ecosystem. A fun, thematic recess activity is suggested followed by the daily STEM Career Connection. They round out their day with a virtual fishing game where every player becomes a part of the mini ecosystem. Day three wraps up with the daily STEM Camp Notebook reflection activity. The “Dive into Digital” project is also provided as an option for facilitators to include. Learning Objectives: To identify varying water ecosystems To explain that water is a vital, natural resource To determine reasons that can stress the water supply Background Water ecosystems include rivers, streams, ponds, lakes, marshes, estuaries, and oceans. Marshes are sometimes referred to as wetlands. Each water ecosystem has different kinds of water. Water can be classified as fresh, salt, or brackish (both salt and fresh). The movement of the water also helps to define the water ecosystem. Some waters move in waves, other waters flow, while some do not move at all. Each water ecosystem also has different kinds of organisms that live there. These organisms are specially suited for their environment. Physical adaptations help them survive. Some also have the ability to alter their environment to meet their needs. Humans are organisms that have learned to change their environment to meet their needs. However, some of these changes come at the expense of other organisms. We are learning the importance of protecting these water ecosystems. Day 4 - Water as an Energy Source Overview: Today students will learn that beyond the obvious need of water by living things, we depend on water for many industrial processes. They will begin by exploring the hydrological cycle, nature’s way of recycling water. Then students will investigate water as an energy source as well as how water impacts the environment and vice-versa. A fun, thematic recess activity is suggested followed by the daily STEM Career Connection. In their Engineering Challenge, students work in teams to create a water turbine that creates enough electricity to power a light bulb. Day four wraps up with the daily STEM Camp Notebook Reflection activity. The “Dive into Digital” project is also provided as an option for facilitators to include. Learning Objectives: To explain how water is used to create electricity To determine nature’s way of recycling, i.e., hydrological cycle To explore water effects on the environment and environmental effects on water Background Hydropower is the force or energy of moving water. It has been transformed to mechanical energy for centuries. Water wheels have historically been used to power mills for processing grains, lumber, and mineral ore, among many other things. Now, moving water is used to power turbines, which spin generators to produce electricity. How much electricity is produced depends on the available hydropower. In most cases, hydropower comes from the potential energy of water collected behind dams. The greater the volume or water behind a dam, and the greater the height difference between the intake (above the dam) and outtake (below the dam) of water, the greater the hydropower available. Waterwheels at the bases of dams are spun by the force of the water falling over the dam, or through pipes. Hydroelectricity is considered clean energy because it does not produce any harmful emissions such as greenhouse gases. Hydroelectricity is the most commonly used form of renewable energy in the world. However, hydroelectric power has its drawbacks as well. Dam failures have killed thousands of people in catastrophic floods. Dams also have a huge impact on the environment both upstream and downstream of the dam. Large reservoirs form upstream of the dam, and people and cities must be relocated out of the area of flooding. Upstream flooding also destroys and divides habitats. Dams create obstacles for fish such as salmon that must swim upstream to spawn. Dams also trap sediment, which piles up behind the dam and reduces the amount of water that can be stored. Water emerging from a hydroelectric dam may also be warmer than the normal temperature of the river. This can lead to changes for the plants and animals that live below the dam, as well as changing the ability of the river to freeze during winter. Day 5 - Your Effect on Water Overview: Today students will conclude their week long journey of exploring the wonderful world of water! Today’s focus is about the importance of fresh water, acid rain, and ways that we can improve polluted groundwater. They will begin with constructing a model representing how human activity effects the watershed. Then students will explore human impact on water quality with hands-on activities and digital media resources. A fun, thematic recess activity is suggested followed by the daily STEM Career Connection. They round out their day completing their week long project and their daily STEM Camp Notebook Reflection activity. Day five wraps up with a STEM Showcase as a culminating event to celebrate their student work. Learning Objectives: To explain the effects of pollution on the water supply To explore ways humans impact the water supply To determine ways to conserve water Background Humans live in the midst of many ecosystems, yet often behave as though their activities have no effect on these systems. Humans are very much connected to the natural world around them and are ultimately affected by every action they take that harms their environment. The harm may not be immediate in space or time, but hurting the environment will result in harmful consequences for humans at some point in the longer term. This is because all organisms—including humans—are interconnected. Anything that destroys the survivability of one organism in an ecosystem also threatens the other organisms in that ecosystem. Pollutants can have drastic effects on ecosystems, and often it is the substances people find useful, such as fertilizers, that wreak the most havoc on the natural environment. Toxic substances, such as pesticides and oil spills, are well known as pollutants, and the harm they cause is well understood. Yet humans do not always consider the effect of residential and agricultural fertilizer runoff on local lakes and streams. Even the products used on lawns can negatively impact the environment. Excess fertilizer, washed into storm drains and carried to local lakes, can cause an overproduction of plant life, unbalancing the aquatic ecosystem and endangering its creatures.
© Copyright 2026 Paperzz