Introduction Model Results Conclusions Antibaryon nuclear bound states Jaroslava Hrtánková and Jiří Mareš Nuclear Physics Institute, Řež, Czech Republic NUFRA 2013, Kemer, Sept 29 - 6 Oct 2013 1 Introduction Model Results Conclusions Introduction study of p̄, Λ̄, Σ̄, Ξ̄ bound states in selected nuclei: behavior of B̄ in the nuclear medium changes of the nuclear binding energy, single particle energies and density distributions testing models of (anti)hadron–hadron interactions knowledge of B̄–nucleus interaction for future experiments (PANDA@FAIR) 2 Introduction Model Results Conclusions RMF approach standard RMF models TM1(2); density dependent RMF model TW99 Dirac equation for nucleons and antibaryon ~ + β(mj + Sj ) + Vj ]ψjα = αj ψjα , [−i α ~∇ j = N, B̄ , 1 + τ3 A0 + Σ R , 2 ∂gρN ∂gωN ∂gσN ΣR = ρVN ω0 + ρIN ρ0 − ρSN σ . ∂ρVN ∂ρVN ∂ρVN Klein-Gordon equations for meson fields Sj = gσj σ, Vj = gωj ω0 + gρj ρ0 τ3 + ej (−4 + mσ2 )σ = −gσN (ρVN )ρS −gσB̄ (ρVN )ρS B̄ (−4 + mω2 )ω0 = gωN (ρVN )ρV +gωB̄ (ρVN )ρV B̄ (−4 + mρ2 )ρ0 = gρN (ρVN )ρI +gρB̄ (ρVN )ρI B̄ −4A0 = eρp +eB̄ ρB̄ . 3 Introduction Model Results Conclusions Antibaryon potential -400 0.6 ξ=1 -600 0.5 TM -800 -20 TM 16 -40 16 16 -60 16 0 1 2 3 4 r [fm] 16 Op 16 OΛ 16 OΣ0 16 OΞ0 5 0 1 2 3 4 r [fm] Op -1000 OΛ -1200 OΣ0 -1400 OΞ0 5 -3 S+V [MeV] 0 0.8 ξ=0.25 ξ=0.5 ξ=0.75 ξ=1 208 0.4 208 208 Pbp TM1 Pb Pbp TW99 0.7 0.6 0.5 0.4 0.3 0.3 0.2 0.2 0.1 -3 0.7 ρcore [fm ] 0.8 -200 ρcore [fm ] 0 20 0.1 -1600 6 Fig.1: The B–nucleus (left) and B̄–nucleus (right) potentials in 16 O (ξ = 1). 0 1 2 3 4 r [fm] 5 60 1 2 3 4 r [fm] 5 6 Fig.2: The core density distribution 208 Pbp̄ , calculated for different values of the parameter ξ in the TM1 and TW99 models. Introduction Model Results Conclusions Density dependent model 0.1 Pbp TW99 Pbp TM1 0.08 18 -0.01 16 0.06 -0.02 14 0.04 -0.03 12 0.02 0 -0.02 0 -0.04 ξ=0.25 ξ=0.5 ξ=0.75 ξ=1 -0.05 -0.06 Pb 2 3 r [fm] 4 0 1 2 3 r [fm] 4 10 8 208 6 Gσ Gω Gρ Pbp TW99 ξ=1 4 208 1 G [-] -3 ρp - ρn [fm ] 20 0 208 208 5 Fig.3:The isovector density in 208 Pb , calculated within the p̄ TM1 and TW99 model. 2 0 1 2 3 4 r [fm] 5 6 7 8 Fig.4:Coupling constants as a function of radial coordinate r in 208 Pbp̄ for corresponding meson fields. Introduction Model Results Conclusions The issue of the p̄ self-interaction KG equations for a meson field acting on nucleons: 1.2 2 (−4 + mM )ΦN =gMN ρMN 0.8 acting on p̄: 2 )Φp̄ =gMN ρMN (−4 + mM X XX +gM p̄ ρX MX p̄ 1 -3 ρp [fm ] + gM p̄ ρM p̄ ξ=0.25 ξ=0.5 ξ=0.75 ξ=1 208 208 Pbp TM1 1.2 1 0.8 Pbp TM1 0.6 no self-interaction 0.6 0.4 0.4 0.2 0.2 0 0.5 1 r [fm] 1.5 0 0.5 1 r [fm] 1.5 2 Fig.5: The p̄ density in 208 Pbp̄ , calculated with and without the p̄ self-interaction. 6 Introduction Model Results Conclusions The p̄ absorption 1.2 p̄–nucleus optical potential: 1.0 0.8 fs [-] 2π ReVp̄ =ξVRMF , X ImVp̄ = fs Br Imb0 ρRMF , πω 0.6 ηω πρ ρω 2ω 0.4 3π 0.2 4π 5π ξ = 0.2, Imb0 = 1.9 fm 6π 0 0.5 s 1/2 1 [GeV] 1.5 7π 2 Fig.6: The phase space suppression factor fs as a function of the √ center-of-mass energy s. Introduction Model Results Conclusions The p̄ absorption Table 1: The 1s single particle energies Ep̄ and widths Γp̄ (in MeV) in 16 Op̄ , calculated dynamically (Dyn) and statically (Stat) with the real, complex and complex with fs potentials (TM2 model), consistent with p̄–atom data. Ep̄ Γp̄ Real Dyn Stat 193.7 137.1 - Complex Dyn Stat 175.6 134.6 552.3 293.3 Complex + fs Dyn Stat 192.3 136.6 145.4 116.8 8 Introduction Model Results Conclusions Conclusions p̄, Λ̄, Σ̄, Ξ̄ are strongly bound in atomic nuclei large polarization effects of the nuclear core due to B̄ p̄ absorption in a nucleus – p̄ widths are suppressed due to the phase space reduction, but still remain large for potentials consistent with p̄–atom data 9
© Copyright 2026 Paperzz