Iden%fyingSen%mentandEmo%on inLowResourceLanguages JuliaHirschbergandZixiaofan (Brenda)Yang ColumbiaUniversity HumanitarianAssistanceandDisaster Relief(HADR)inDARPALorelei • Indisastersitua%ons,interna%onalrespondersmay notspeakthelanguageoftheareaindistressandmay haveliIlereliableaccesstolocalinformants – 7100+ac%velanguagesintheworld--hardtopredict whichlanguageswillbeneedednext • 44inBokoHaramarea(Hausa,Kanuri)~522languagesinallof Nigeria • 19inEbolaoutbreakareasinLiberia,SierraLeone,andGuinea • 20+MayanlanguagesspokenbyCentralAmericanrefugee children – Currentmethodsrequire3yearsand$10M’sperlanguage (mostlytopreparetrainingcorpora) • Wouldrequire$70Band230Kperson-yearstohandleall languages Challenge • Howcanwedeveloplanguagetechnologies quicklytohelpfirstrespondersunderstand textandspeechinforma%onvitaltotheir mission(socialmedia,hotlinemsgs,news broadcasts)? – Triageinforma%onbyurgencyandsen%ment/ emo%on(anger,stress,fear,happiness) – Displayinforma%oninaformthatreliefworkers caneasilyunderstand OurGoal • Iden%fysen%mentandemo%oninwriIenand spokendatatosharewithreliefworkers – Provideaddi%onal,extra-proposi%onalmeaning • Fearandstressofvic%ms • Happinessatsuccessofreliefefforts • Angeratreliefworkers – Method:Developwaystorecognizeandinterpret sen%mentandemo%oninLRLsbytrainingonHigh ResourceLanguagesandotherLRLs ThreeMainPossibili%es • Canwerecognizeemo%onsrelevanttoLorelei fromlabeledspeech(e.g.anger,stress,fear) • Cantext-trainedsen%mentsystemsbeusedto labelunlabeledspeechtranscriptstotrain sen%mentrecogni%oninspeech? • Cansystemstrainedonemo%on/sen%mentin speechofonelanguagebeusedtorecognize emo%on/sen%mentinanother? Angervs.Neutral • Corpus:MandarinAffec%veSpeech • Language Mandarin – Neutralsentences(e.g.“Itwillraintonight.”)and words(e.g.“train,”“apple”) – 5basicemo%ons(neutral,anger,ela%on,panic, sadness)simulatedby68students • Ourstudy:Anger:5100vs.Neutral:5100 FeatureExtrac%onUsingopenSMILE • Baselinefeatures(384) • ‘Standard’simplelow-levelacous%cfeatures (e.g.,MFCC’s;max,minandmeanframeenergy) • ‘Unique’features(e.g.slopeandoffsetofalinear approxima%onofMFCC1-12) – Largerfeatureset(6552) • MoreFunc%onalsandLow-LevelDescriptors MachineLearningResults • Randomforest:(Scikit-learn) – Traindecisiontreeclassifiersonvarious sub-samplesofthetrainingsetusing384 featureset – Usesaveragingtoimprovethepredic%ve accuracyandcontrolover-fipng • WeightedF-measure:0.88(0.50 baseline);P=.88;R=.88 UsefulFeatures • Arithme%cmeanandmaxvalueofMFCC[1](mel frequencycepstralcoefficients) • Theoffsetoflinearapproxima%onofroot-meansquareframeenergy • Arithme%cmeanandmaxvalueofMFCC[2] • Range,maxvalue,quadra%cerrorandstandard devia%onofthe1storderdeltacoefficientofMFCC[1] • Offsetoflinearapproxima%onofMFCC[1] • Arithme%cmeanofroot-mean-squareframeenergy English:Stressvs.Neutral • Corpus:SUSAS(Speechundersimulatedand actualstress) – Neutralwords(e.g.“break”or“eight”)simulated by9speakers – Stressproduceddoingsingletrackingtasks – Stress:630;Neutral:631 • Classifica%onresultonrandomforestmodel: WeightedF-measure:0.7031(.50baseline);P=. 70;R=.70 Mul%-labeledSemaineCorpus • Queen’sUBelfast,hIp://semaine-db.eu • Naturalinterac%onsinEnglishbetweenusersandan ’operator’simula%ngaSensi%veAr%ficialListener (SAL)agent • SALagentexamples – ‘Dotellmeallthedeliciousdetails.’ – ‘Ohh....thatwouldbelovely.’ – ‘Whatareyourweaknesses?’ – ‘It'sallrubbish.’ • Annota%onsby6-8ratersforeachconversa%on – Fullra%ngforvalence,ac%va%on,power, expecta%on/an%cipa%on,intensity – Op%onalra%ngforbasicemo%ons:anger,happiness, sadness,fear,contempt… • SolidSALpart:87conversa%ons,eachlas%ng approximately5minutes Examples • Valencescore:-0.8819 • Valencescore:0.1125 • Valencescore:0.5803 • Valencescore:0.8308 ComparingHumanSen%mentLabels toAutoma%cLabels • Ques%on: – Supposewehaveunlabeledspeech,canweannotate transcriptsautoma%callywithasen%mentannota%onsystem andusethoselabelsforunlabeledspeechinsteadofmanual labels? • Method: – Segmenttranscriptsintosentencesandalignwithspeech – TurnSemainemanual,con%nuouspos/neglabelsintobinaryfor useasgoldstandard – Labeltrainingtranscriptsentencesusingtext-trainedsen%ment analyzertolabelposi%ve/nega%ve/neutral – Buildclassifierfromsen%ment-labeledspeechandcompareto classifierbuiltusingmanualSemainespeechlabels EnglishText-basedSen%mentAnalysis • Sen%mentdetec%onsystem(Rosenthal2014) • Features(lexical,syntac%c): - - - - - Dic%onaryofAffectandLanguage(DAL) WordNet3.0 Wik%onary POStags Top500n-gramfeatures • Outputlabel:posi%ve/nega%ve/neutral Comparisonof Sen%mentLabelsvs.ValenceScores • Examples: – Anywayhewouldprobablydoallthewrongshopping. • Sen%mentanalysisoutputlabel:NegaDve • Valencescore:-0.4420 – Theremustbelot’sofhappythingsinyourlife. • Sen%mentanalysisoutputlabel:PosiDve • Valencescore:0.7451 – *AndhowamIgoingtowrapallthepresents? • Sen%mentanalysisoutputlabel:Neutral • Valencescore:-0.4090 – *Lifeisverybad,Idon’tsupposeyoursisanybeIer. • Sen%mentanalysisoutputlabel:PosiDve • Valencescore:-0.7500 Comparisonof Sen%mentLabelsvs.ValenceScores • Sen%ment:Posi%ve 1301,Nega%ve:978,Neutral:1177 • Distribu%onofsen%mentlabelsovervalencescores: ResultsofSen%mentAnalysisof Transcripts • Manuallyannotatedvalencescoresare unbalanced: – 2363sentenceswithposi%vescore(score>=0) – 1093sentenceswithnega%vescore(score<0) • Set‘neutral’thresholdto0.118 – 1728sentenceswithposi%ve/nega%vescore • Precisionofsen%mentlabelsusingnew threshold: – Posi%velabelprecision:57.88% – Nega%velabelprecision:60.22% Experiments: Sen%mentLabelsvs.ValenceScores • openSMILEbaseline(384)featureset • 4speechexperiments: - Trainonsen%mentlabels;testonsen%mentlabels - *Trainonsen%mentlabels;teston(human)valence scores - Trainon(human)valencescores;testonsen%ment labels - *Trainon(human)valencescores;teston(human) valencescores • 10-foldcrossvalida%on;weightedf-measure Experiments: Sen%mentLabelsvs.ValenceScores • Unbalancedclassesintrainingdata: – Movingthresholdscoreforabalanceddivision – Upsampling – Downsampling • Machinelearningalgorithms:(Scikit-learn) – Linearmodels:Linearregression;Ridge;Lasso – Nearestneighborsmodel:KNN – Treemodel:Decisiontree – Ensemblemodels:Randomforest;AdaBoost • Unbalancedclassesintestdata: – Evalua%on:WeightedF-measure Experiments: Sen%mentLabelsvs.ValenceScores • Baseline:Majorityclass(posi%ve) Trainon SenDmentLabels SemaineValenceScores Teston SenDment Labels Valence Scores SenDment Labels Valence Scores Baseline 0.4140 0.5526 0.4140 0.5526 RandomForest 0.5425 0.6111 0.4979 0.6897 • Shouldimprovewhenweaddlexicalfeaturesto acous%cones Cross-LingualTraining • GivenacorpusofangerinEnglish,canwe predictangerinMandarin? • GivenacorpusofangerinMandarin,canwe predictangerinEnglish? • TrainonEnglishSemaine,testonMandarin AffectCorpus:F1=0.56(cf.Mand/Mand0.88) TrainonMandarinAffect,testonEnglish Semaine:F1=0.62(cf.Eng/Eng:F1=.77) ConclusionsandFutureWork • Wecandetectemo%onslikeangerandstress fromlabeledMandarinandEnglishspeech reasonablywell • Wecandetectemo%ons(e.g.anger)bytraining ononelanguageandtes%ngonanotherwith performanceabovethebaselines • WecandetectmanuallylabeledEnglish emo%onslspeechfromtranscriptsautoma%cally labeledwithsen%ment,alsowithpromising results • Future:AppenLoreleiandBabellanguages (Turkish,Mandarin,Uyghur) – Developtext-basedsen%mentdetectorscrosslinguallyforLRL – Detectsen%mentinAppentranscripts – Labelalignedspeech – Trainsen%mentmodelson”labeled”speech – DeepLearning Thankyou! Ques%ons?
© Copyright 2025 Paperzz