Effective-mode approach to multidimensional vibronic-coupling problems Etienne Gindensperger Laboratoire de Chimie Quantique, Institut de Chimie, Université Louis Pasteur, Strasbourg E. Gindensperger – La Grande Motte – 02/2008 - p. 1 Content ● Content ■ Effective-mode approach Fluorobenzene cation Conclusion ■ ■ Effective-mode approach ◆ conical intersections and system-environment complexes ◆ Model Hamiltonian ◆ Construction of a hierarchy of effective Hamiltonians ◆ Sequential dynamics ◆ Illustrations Some applications on the fluorobenzene radical cation. Conclusion E. Gindensperger – La Grande Motte – 02/2008 - p. 2 Conical intersections ● Content ■ CIs are particular topologies of potential energy surfaces: Effective-mode approach ● Conical intersections ● molecular complex ● Model Hamiltonian ● Effective Hamiltonian ● Properties ● Hierarchy ● Hierarchy ● Sequential dynamics ● molecular complex adiabatic states are degenerate along the intersection seam → kinetic couplings diverge. ◆ diabatic representation is appropriate: transforms kinetic couplings into -smoothpotential couplings. ! W11 (q) W12 (q) H = TN 1 + W21 (q) W22 (q) 2 1.5 1 0.5 0 ● Illustration: model complex ● Illustration: results ◆ -0.5 ● "Important" modes ● HRE Fluorobenzene cation 4 vg 3 2 Conclusion 1 0 -1 -2 -10 -5 adiabatic surfaces E. Gindensperger – La Grande Motte – 02/2008 0 vu 5 10 - p. 3 System-environment complexes ● Content Effective-mode approach macrosystems ⇔ SYSTEM - ENVIRONMENT complexes SYSTEM = a few modes supposed to dominate the dynamics. what about the collective effects of the ENVIRONMENT on the SYSTEM ? ● Conical intersections ● molecular complex ● Model Hamiltonian ● Effective Hamiltonian ● Properties ● Hierarchy ● Hierarchy ● Sequential dynamics ● molecular complex ● Illustration: model complex ● Illustration: results ● "Important" modes ● HRE SYSTEM (few modes) l ENVIRONMENT (many modes) Fluorobenzene cation Conclusion E. Gindensperger – La Grande Motte – 02/2008 - p. 4 Model Hamiltonian ■ Hamiltonian of the complex (diabatic) : H = HS + HB ● Content Effective-mode approach ◆ ● Conical intersections SYSTEM (NS modes) : ● molecular complex ● Model Hamiltonian ● Effective Hamiltonian ● Properties HS = ● Hierarchy ● Hierarchy E1 + TS + W11 W21 W12 E2 + TS + W22 ! ● Sequential dynamics ● molecular complex ● Illustration: model complex ● Illustration: results ● "Important" modes ◆ ● HRE Fluorobenzene cation ENVIRONMENT (NB modes): NB X ωi 2 (pi + qi2 )1 + HB = 2 i=1 Conclusion PNB (1) κi qi Pi=1 NB i=1 λi qi ! PNB λi qi . PNi=1 (2) B i=1 κi qi HB is described by the linear vibronic coupling model (LVC). (H. Köppel et al., Adv. Chem. Phys. 57, 59 (1984)) ■ Idea: constructing effective modes for the environment. transform HB = H1 + Hr1 E. Gindensperger – La Grande Motte – 02/2008 - p. 5 Effective Hamiltonian Effective Hamiltonian H1 (3 modes) : ● Content 3 X Ωi 2 H1 = (Pi + Q2i )1 2 i=1 ! P3 (1) (1) P3 λ̄ i=1 Λi Qi κ̄ i=1 Ki Qi + P P (2) λ̄ 3i=1 Λi Qi κ̄(2) 3i=1 Ki Qi Effective-mode approach ● Conical intersections ● molecular complex ● Model Hamiltonian ● Effective Hamiltonian ● Properties ● Hierarchy ● Hierarchy ● Sequential dynamics ● molecular complex ● Illustration: model complex ● Illustration: results Residual Hamiltonian Hr1 (NB − 3 modes): ● "Important" modes ● HRE Hr1 Fluorobenzene cation Conclusion ■ ■ ■ NB NB 3 X X X Ωj 2 dij (Pi Pj + Qi Qj )1 (Pj + Q2j )1 + = 2 i=1 j=4 j=4 Hr1 diagonal: does not couple the electronic states. H1 contains all the "topology" of the environment. Unitary transformation: physics unchanged. L.S. Cederbaum, E. Gindensperger, and I. Burghardt, Phys. Rev. Lett. 94, 113003, (2005) E. Gindensperger – La Grande Motte – 02/2008 - p. 6 moments, dynamics and spectra ● Content Effective-mode approach Approximation: remplace H = HS + HB par H ′ = HS + H1 . NS + NB modes → NS + 3 modes ! Quantum dynamics manageable. ● Conical intersections ● molecular complex ● Model Hamiltonian ● Effective Hamiltonian ● Properties ● Hierarchy ● Hierarchy ● Sequential dynamics ● molecular complex ● Illustration: model complex ● Illustration: results This approximation is related to the moments of H. ■ autocorrelation function: P (t) = h0|e−iHt |0i. P∞ (−it)k ■ moments : P (t) = Mk ; Mk = h0|H k |0i k=0 k! ■ spectrum: Fourier transform of P (t) ● "Important" modes ● HRE Fluorobenzene cation Conclusion H ′ reproduce exactly the moments M0 , . . . , M3 of H. → short-time dynamics and band shapes of macrosystems. E. Gindensperger, I. Burghardt, and L.S. Cederbaum, J. Chem. Phys. 124, 144103 and 144104 (2006). E. Gindensperger – La Grande Motte – 02/2008 - p. 7 Hierarchy of effective Hamiltonians ■ ● Content ■ Effective-mode approach ■ ● Conical intersections ● molecular complex ● Model Hamiltonian ● Effective Hamiltonian ● Properties ● Hierarchy ● Hierarchy short-time dynamics → H1 is enough dynamics at longer times → include Hr1 (?) idea: constructing additional effective modes for Hr1 : " ! NB NB 3 X Ωj 2 X X 2 Hr1 = Pi dij Pj + Qi (Pj + Qj )1 + 2 j=4 i=1 j=4 NB X j=4 dij Qj !# 1 ● Sequential dynamics ● molecular complex ● Illustration: model complex ■ thus Hr1 (NB − 3) = H2 (3) + Hr2 (NB − 6) Fluorobenzene cation ■ Conclusion ■ property: Hr2 have the same mathematical form as Hr1 ! successive transformations: Hr2 (NB − 6) = H3 (3) + Hr2 (NB − 9), etc. ● Illustration: results ● "Important" modes ● HRE E. Gindensperger, H. Köppel, et L.S. Cederbaum, J. Chem. Phys. 126, 034106 (2007). E. Gindensperger – La Grande Motte – 02/2008 - p. 8 Hierarchy of effective Hamiltonians ■ full transformation of H: ● Content H = HS + Effective-mode approach N X Hm m=1 ● Conical intersections ● molecular complex with N the total number of effective Hamiltoniens, with ● Model Hamiltonian ● Effective Hamiltonian ● Properties ● Hierarchy H1 = ● Hierarchy ● Sequential dynamics 3 X i=1 ● molecular complex ● Illustration: model complex Ωi 2 (Pi + Q2i )1 + 2 and Hm , m > 1, ● Illustration: results ● "Important" modes P3 (1) κ̄ i=1 Ki Qi P3 λ̄ i=1 Λi Qi (1) ! P3 λ̄ i=1 Λi Qi (2) (2) P3 κ̄ K i Qi i=1 ● HRE Fluorobenzene cation Hm = Conclusion 3m X j=3(m−1)+1 Ωj 2 (Pj + Q2j )1 + 2 3(m−1) X 3m X dij (Pi Pj + Qi Qj )1 i=3(m−2)+1 j=3(m−1)+1 each Hm is comprised of 3 effective modes only and couples to Hm−1 . ■ only H1 couples directly to HS , via the electronic subsystem. Approach valid for nel states → each Hm is comprised of nel (nel + 1)/2 modes ■ E. Gindensperger – La Grande Motte – 02/2008 - p. 9 Sequential dynamics ■ in practice: truncate the hierarchy at the order n. ● Content H = HS + Effective-mode approach ● Conical intersections ● Model Hamiltonian ● Properties ■ ● Hierarchy ● Hierarchy ● Sequential dynamics ● molecular complex ● Illustration: model complex ● Illustration: results ● "Important" modes ● HRE moment analysis: Pn theorem: using the Hamiltonian truncated at the order n, HS + m=1 Hm , suffices to reproduce exactly all the moments of the full macrosystem up to the order 2n + 1 included. Analytical proof, valid for nel electronic states, whatever HS is, and for an arbitrary large value of NB . E. Gindensperger and L.S. Cederbaum, J. Chem. Phys. 127, 124107 (2007) Fluorobenzene cation Conclusion Hm m=1 ● molecular complex ● Effective Hamiltonian n<N X ■ sequential dynamics: each Hm comes into play at a later time than Hm−1 . E. Gindensperger – La Grande Motte – 02/2008 - p. 10 System-environment complexes The H AMILTONIANS subsumes all the environment on a given time-scale. HIERARCHY OF EFFECTIVE ● Content Effective-mode approach ● Conical intersections SYSTEME ● molecular complex ● Model Hamiltonian (few modes) ● Effective Hamiltonian ● Properties l ● Hierarchy ● Hierarchy ● Sequential dynamics PRIMARY ● molecular complex ● Illustration: model complex ● Illustration: results EFFECTIVE MODES ● "Important" modes l ● HRE Fluorobenzene cation Conclusion SECONDARY EFFECTIVE MODES .. . 3 Q, P 3 Q, P E. Gindensperger – La Grande Motte – 02/2008 ... - p. 11 Illustration: model complex 2 ■ 1.5 model complex: 2 states – 22 modes ◆ system, HS : prototype of CI (2 modes νg , νu ) ◆ environment, HB : 20 modes vg (weakly coupled) calculations up to 22 dimensions (MCTDH). 1 0.5 0 ● Content -0.5 Effective-mode approach ● Conical intersections 4 ● molecular complex ● Model Hamiltonian ● Effective Hamiltonian ● Properties ■ ● Hierarchy 3 2 1 0 -1 -2 -10 0 -5 vu 10 5 system (adiabatic surfaces) ● Hierarchy ● Sequential dynamics ● Illustration: results ● "Important" modes ● HRE P(t) Fluorobenzene cation sys + 20 sys 0.6 P(E) ● Illustration: model complex Conclusion PE spectrum (40 meV) autocorrelation function (state 1) 1 sys + 20 sys 0.8 ● molecular complex 0.4 0.2 0 9.5 0 E. Gindensperger – La Grande Motte – 02/2008 50 100 Time [fs] 150 200 10 10.5 11 11.5 Energy [eV] - p. 12 Illustration: results 1 (40 meV) ● Content 0.5 Effective-mode approach ● Conical intersections ● molecular complex 0 ● Model Hamiltonian ● Effective Hamiltonian ● Properties 0.1 ● Hierarchy ● Hierarchy (20 meV) 0.05 ● molecular complex [arb. unit] ● Sequential dynamics 0 ● Illustration: model complex 1 ● Illustration: results ● "Important" modes ● HRE Fluorobenzene cation 0.5 Conclusion (10 meV) 0 0.1 9.9 10 0.05 0 0 20 40 60 80 100 Time [fs] E. Gindensperger – La Grande Motte – 02/2008 120 140 160 180 9.5 10 10.5 11 11.5 Energy [eV] - p. 13 Effective vs. "important" modes ● Content Comparison of the effective-mode and "conventional" approaches. Effective-mode approach 1 ● Conical intersections sys + 20 sys + 3 eff sys + 10 sys + 5 sys ● molecular complex ● Model Hamiltonian 0.8 ● Effective Hamiltonian ● Properties ● Hierarchy P(t) ● Hierarchy ● Sequential dynamics ● molecular complex 0.6 0.4 ● Illustration: model complex ● Illustration: results ● "Important" modes 0.2 ● HRE Fluorobenzene cation 0 Conclusion 0 10 20 30 40 50 Time [fs] To truncate the original environment does not reproduce even the low-order moments! E. Gindensperger – La Grande Motte – 02/2008 - p. 14 Hartree residual environment approximation The new form of H ● Content H = HS + Effective-mode approach ● molecular complex ● Effective Hamiltonian autocorrelation function Hm + Hrm . m=1 ● Conical intersections ● Model Hamiltonian n X 0.3 allows new approximations. 0.2 Example: use a single configuration for the modes entering Hrm (TDH approximation): ! (1) (1) ΨS+ef f ΨRE Ψ(t) = (2) (2) ΨS+ef f ΨRE 0.1 ● Properties ● Hierarchy ● Hierarchy ● Sequential dynamics ● molecular complex ● Illustration: model complex ● Illustration: results ● "Important" modes ● HRE Fluorobenzene cation Conclusion 0 0.03 0.02 - very small numerical requirement - straightforward implementation in MCTDH 0.01 0 0 E. Gindensperger – La Grande Motte – 02/2008 20 40 60 Time [fs] 80 100 - p. 15 Fluorobenzene radical cation Experimental finding: NO fluorescence in the first excited states of FBz+ . However, optical transitions are allowed. ● Content Effective-mode approach Fluorobenzene cation ● Fluorobenzene radical cation ● Hamiltonian ● Linear and quadratic models ● XA subsystem ● BCD subsystem ● XABCD - population dynamics ● XABCD - PE spectrum Conclusion → Ultrafast electronic relaxation process. The 5 lowest electronic states of the cation, X̃ 2 B1 , Ã2 A2 , B̃ 2 B2 , C̃ 2 B1 , D̃2 A1 , are divided in two bands: X̃ − Ã and B̃ − C̃ − D̃. Photoelectron spectrum of FBz (G. Bieri et al., J. Electron Spectr. Relat. Phenom. 13, 281 (1981)) 12 E. Gindensperger – La Grande Motte – 02/2008 10 Energie [eV] 8 - p. 16 Hamiltonian 5-state Hamiltonian, 19 modes (out of 30). H = (TN + V0 ) 1 + EX + κX Q + gX Q2 B B B X B (X,A) B Qj λ B j B j∈B B 2 B B 0 B B B B B B 0 B B B B @ 0 0 X j∈B2 (X,A) Qj λ j 0 EA + κA Q + gA Q2 X j∈B1 X j∈B1 (A,B) λ Qj j 0 (A,B) Qj λ j EB + κB Q + gB Q2 X 0 (B,C) Qj λ j j∈A2 X (B,D) Qj λ j j∈B2 0 0 X j∈A2 (B,C) λ Qj j EC + κC Q + gC Q2 X j∈B1 (C,D) Qj λ j 1 0 0 X (B,D) λ Qj j j∈B2 X (C,D) Qj λ j j∈B1 ED + κD Q + gD Q2 with κα Q ≡ X i∈A1 (α) Qi , κ i gα Q 2 ≡ X i∈A1 (α) 2 Qi . g i ab initio data : J. Franz. 3 examples: XA, BCD, and XABCD. E. Gindensperger – La Grande Motte – 02/2008 - p. 17 C C C C C C C C C C C, C C C C C C C C C A Linear and quadratic models Linear vibronic model Köppel, Chem. Phys. 329, 65 (2006)). (I. Bâldea, J. Franz, P. Szalay, and H. 16 ~2 D A1 ● Content Effective-mode approach Fluorobenzene cation → CI(Ã − B̃) inactive. 14 o o o ~2 o C B1 12 ● Fluorobenzene radical cation ● Hamiltonian ~2 A A2 ● Linear and quadratic models ● XA subsystem ———– ● BCD subsystem 10 ● XABCD - population dynamics ● XABCD - PE spectrum Conclusion -6 Linear model augmented by the quadratic contributions for the totally symmetric modes ~2 B B2 ~2 X B1 o -4 -2 0 2 4 8 Qeff 6 16 ~2 D A1 (E. Gindensperger, I. Bâldea, J. Franz, et H. Köppel, Chem. Phys. 338, 207 (2007)) 14 o → CI(Ã − B̃) energetically accessible. o o ~2 A A2 10 -6 E. Gindensperger – La Grande Motte – 02/2008 o ~2 C B1 12 -4 o ~2 B B2 ~2 X B1 o -2 0 2 4 6 - p. 18 8 Qeff XA subsystem ● Content Effective-mode approach 3-mode system (2 tuning, 1 coupling) + 12 modes "environment" (all LVC). A Fluorobenzene cation ● Fluorobenzene radical cation XA - population of state A ● Hamiltonian ● XA subsystem ● BCD subsystem exact Hs + H 1 Hs + H 1 + H 2 Hs + H 1 + H 2 + H 3 0.9 ● XABCD - population dynamics ● XABCD - PE spectrum 0.8 Conclusion 0.6 intensity [arb. unit] ● Linear and quadratic models 1 0.7 B 0.5 0.4 0.3 0.2 0.1 0 0 50 100 Time [fs] 150 200 11.5 11 10.5 energy [eV] E. Gindensperger – La Grande Motte – 02/2008 - p. 19 BCD subsystem ● Content no system’s modes ; 19-mode environment (LVC) Effective-mode approach Fluorobenzene cation BCD - population of state D 1 exact H1 H1 + H 2 H1 + H 2 + H 3 ● Fluorobenzene radical cation ● Hamiltonian ● Linear and quadratic models ● XA subsystem ● BCD subsystem ● XABCD - population dynamics ● XABCD - PE spectrum Conclusion 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 0 20 40 60 80 100 120 Time [fs] E. Gindensperger – La Grande Motte – 02/2008 - p. 20 XABCD - population dynamics XABCD - system(2) + effective modes(10) 1 X A B C D 0.8 ● Content Effective-mode approach Fluorobenzene cation ● Fluorobenzene radical cation ● Hamiltonian 2-mode system (2 tuning, QVC) 17-mode environment (LVC). ———————————————12-mode system (QVC) 0.6 0.4 ● Linear and quadratic models ● XA subsystem 0.2 ● BCD subsystem ● XABCD - population dynamics ● XABCD - PE spectrum 0 0 50 16 100 Time [fs] 150 200 XABCD - system(12) Conclusion ~2 D A1 1 X A B C D 14 o o o ~2 o C B1 12 ~2 A A2 10 0.8 o ~2 B B2 0.6 ~2 X B1 o 0.4 -6 -4 -2 0 2 4 6 8 Qeff 0.2 0 0 E. Gindensperger – La Grande Motte – 02/2008 50 100 Time [fs] 150 - p. 21 200 XABCD - PE spectrum ● Content Effective-mode approach Fluorobenzene cation ● Fluorobenzene radical cation ● Hamiltonian ● Linear and quadratic models ● XA subsystem ● BCD subsystem ● XABCD - population dynamics ● XABCD - PE spectrum Conclusion 14 E. Gindensperger – La Grande Motte – 02/2008 13 12 11 Energy [eV] 10 9 8 - p. 22 Some remarks ● Content Effective-mode approach Fluorobenzene cation - product form of H → adapted for MCTDH (original and transformed) - best convergence criterium: compare results for original and fully transformed H. Conclusion ● Some remarks ● Thanks to The effective-mode approach allows to compute the quantum dynamics of truly large molecular complexes involving CIs on a given time-scale. E. Gindensperger – La Grande Motte – 02/2008 - p. 23 Thanks to ● Content ■ ■ co-workers ◆ Pr. Lorenz S. Cederbaum (Heidelberg) ◆ Dr. Irene Burghardt (CNRS/ENS, Paris) ◆ Pr. Horst Köppel (Heidelberg) ◆ Pr. H.-Dieter Meyer (Heidelberg) and ◆ M. Basler (HRE) ◆ Dr. J. Franz (FBz+ ) ◆ Dr. I. Bâldea (FBz+ ) Alexander von Humboldt Stiftung (www.avh.de) DFG – Deutschen Forschungsgemeinschaft (www.dfg.de) CNRS (www.cnrs.fr) ■ ... and Fabien Gatti for inviting me. Effective-mode approach Fluorobenzene cation Conclusion ● Some remarks ● Thanks to ■ ■ E. Gindensperger – La Grande Motte – 02/2008 - p. 24
© Copyright 2026 Paperzz