30.08.2013 Table • Introduction – Free-living amoebae – Symbiosis • Importance of amoebae Legionella and amoebae-resisting microorganisms – as reservoir, training ground, … • • • • • • Prof. Gilbert GREUB Institute of Microbiology University Hospital Center Lausanne, Switzerland Legionellales Mycobacteria Rickettsiales Chlamydiales Giant virus Conclusions r b i L e r u t c e r L o e h t n i u l a n O by D © I M Introduction: free-living amoebae y r a Introduction: free-living amoebae A ca ntha m oe ba p alestine ns is - 11300 species - amphizoïc - cosmopolite - 11300 species - amphizoïc - cosmopolite Ac an tham oeb a po lyph aga A ca ntha m oe ba c as tellan ii A ca ntha m oe ba rh ys od es A c anth am o eba lug dun ens is Ac an tham oeb a s p. V azaldua Ac an tham oeb a royreb a A ca ntha m oeb a triang ula ris A c anth am o eba griffin i Ac an tham oeba pe arce i Ac anth am o eba hatc he tti Ac an tham oeb a s tev ens oni A c anth am oe ba pus tulos a Ac anth am o eba cu lbe rtso ni Ac an tham oeba he alyi A ca ntha m oe ba c om and oni A ca ntha m oe ba p alestine ns is Ac an tham oeb a po lyph aga A ca ntha m oe ba c as tellan ii A ca ntha m oe ba rh ys od es A c anth am o eba lug dun ens is Ac an tham oeb a s p. V azaldua Ac an tham oeb a royreb a A ca ntha m oeb a triang ula ris Acanthamoeba sp. A c anth am o eba griffin i Ac an tham oeba pe arce i Ac anth am o eba hatc he tti Ac an tham oeb a s tev ens oni A c anth am oe ba pus tulos a Ac anth am o eba cu lbe rtso ni Ac an tham oeba he alyi A ca ntha m oe ba c om and oni A c anth am o eba tubias hi A c anth am o eba tubias hi Ba lam uthia m a ndrillaris Mas tig am o eba inv erte ns End olim ax n ana P hreatam oe ba balam uthi Van nella ang lic a - water - soil - air Fila m oe ba n ola ndi Geph rya m oe ba s p. Ha rtm an nella verm iform is Ec hin am o eba exun dans Interfaces, biofilms Pa ra flab ellula ho gua e R hiza m oeb a s p. Lep tom yxa re tic ulata Sac c am oe ba lim ax D .tho rnton i Va hlk am p fia abe rd onica Pa ratetram itus jug os us Tetra m itus rostra tus Va hlk am pfia ente ric a Vah lk am p fia lobo sp ino sa V ah lk am pfia av ara - water - soil - air Ba lam uthia m a ndrillaris Mas tig am o eba inv erte ns Balamuthia sp. End olim ax n ana P hreatam oe ba balam uthi Van nella ang lic a Fila m oe ba n ola ndi Geph rya m oe ba s p. Ha rtm an nella verm iform is Ec hin am o eba exun dans Interfaces, biofilms Pa ra flab ellula ho gua e R hiza m oeb a s p. Lep tom yxa re tic ulata Sac c am oe ba lim ax D .tho rnton i Va hlk am p fia abe rd onica Pa ratetram itus jug os us Tetra m itus rostra tus Va hlk am pfia ente ric a Vah lk am p fia lobo sp ino sa V ah lk am pfia av ara Vah lk am p fia inorn ata Vah lk am p fia inorn ata V ahlka m pfia da m aris c otta e V ahlka m pfia da m aris c otta e Naeg le ria a nde rs on i Naeg le ria a nde rs on i Nae gle ria m in or Nae gle ria m in or Nae gle ria jam ies oni Nae gle ria jam ies oni N aeg leria fow leri N aeg leria fow leri Naeg leria lov aniens is Nae gle ria a us tralien sis N aeg leria italic a N aeg leria gru beri Vah lk am p fia u stiana Naeg leria lov aniens is Naegleria sp. Nae gle ria a us tralien sis N aeg leria italic a N aeg leria gru beri Vah lk am p fia u stiana P.lante rna P.lante rna En tam o eba co li En tam o eba co li En tam o eba c hatto ni En tam o eba c hatto ni En tam o eba po lec ki En tam o eba po lec ki E ntam oeb a ran arum E ntam oeb a ran arum E nta m oe ba g ing iv alis E nta m oe ba g ing iv alis Entam oe ba hartm a nni Entam oe ba hartm a nni E ntam oeb a terra pin ae E ntam oeb a terra pin ae E ntam oeb a s p. E ntam oeb a s p. En tam o eba in solita E nta m oeb a d is par E nta m oeb a h is tolytica E nta m oe ba m os hko vs kii 0.1 He xam ita s p En tam o eba in solita E nta m oeb a d is par E nta m oeb a h is tolytica E nta m oe ba m os hko vs kii 0.1 He xam ita s p Neurology 1991; 41:1993-5 NEJM 1994 E C S Introduction: symbiosis 1879 De Bary Introduction: symbiosis Concept of symbiosis (lichens) Green moss (= plant) Lichens = Fungi: - provide water/min. salt to algua - protect algua from dessication 1879 De Bary 1974 Drozanski 1975 1978 Proca-Ciopanu Krishnan-Prasad Concept of symbiosis (lichens) Lysis of free-living amoebae due to bacterial infection Endosymbiont of amoebae Amoebae as a reservoir + Algua: - provides glucides elaborated through photosynthesis « life did not take over the globe by combat, but by networking… » Margulis & Sagan, 1986 cooperation, interactions, mutualistic dependency = key factor in evolution 1 30.08.2013 Rickettsiales (Holosporaceae) Rickettsiales (Rickettsiaceae) Caedibacter Rickettsia-like symbionts Observed since 1985 in Acanthamoeba Fritsche T. 1993 J Clin Microbiol. Observed in Acanthamoeba 85.4% similarity with R. sibirica Fritsche T. 1999 Appl Env Microbiol. Taxonomic position confirmed by 16S sequ + FISH Close to symbionts of the ciliate Paramecium caudatum: Caedibacter acanthamoebae Paracedibacter acanthamoebae Paraceadibacter symbiosus 93.3% 87.5% 86.5% y r a Distribution ? Prevalence ? Host range ? Human pathogenicity ? Interactions with amoebae ? Caedibacter Holospora caryophilus obtusa r b i L e 85.8% 84.5% 84% Horn M. 1999 Env Microbiol r u t c e r L o e h t n i u l a n O by D © I M Rickettsiales (Holosporaceae) Cytopathic effect Odysella thessalonicensis 550 Isolated from an air conditionning system in Greece AMOEBAL PATHOGEN 22°C: stable symbiont for at least 3 weeks ENDOSYMBIONT Birtles 2000 Int J Syst Bact; Beier et al. Appl Env Microbiol 2002 Number of living 3 A. polyphaga per mm 30 to 37°C: amoebal lysis after 7 and 4 days, resp. 500 Hall 25°C Neg. 25°C Hall 28°C Neg. 28°C Hall 30°C Neg. 30°C Hall 32°C Neg. 32°C Hall 35°C Neg. 35°C Hall 37°C Neg. 37°C 450 400 350 300 250 200 150 100 Parachlamydia also lytic versus symbiotic according to the incubation temperature 50 0 0 1 2 3 4 5 6 7 8 9 Endosymbiontic Lytic day Greub et al 2003 NY Acad Sci Greub et al. Ann NY Acad Sci 2003 E C S Importance of amoebae Importance of amoebae A reservoir for Legionella spp. Rowobotham 1980 Legionella & Acanthamoeba Amoebae feed on bacteria … Some bacteria (such as legionella) evolved to resist to amoebae AMOEBAE-RESISTING BACTERIA Lausanne hospital Amoebae Samples positive for Legionella 33% No amoebae 3% (p<0.001) Thomas and Greub, Appl Env Microbiol, 2006 2 30.08.2013 Importance of amoebae Importance of amoebae … also a reservoir for mycobacteria Amoebae Samples positive for mycobacteria y r a Adekambi et al. JCM 2004 Mycobacterium massiliense in Acanthamoeba polyphaga Lausanne hospital … also a reservoir for Parachlamydia No amoebae 47% 18% (p=0.009) r b i L e Parachlamydia acanthamoebae Thomas and Greub, Appl Env Microbiol, 2006 Greub et al. Clin Microbiol Rev 2004 r u t c e r L o e h t n i u l a n O by D © I M Importance of amoebae Importance of amoebae A protective armour A protective armour Trophozoites Kyste Encystment Biofilm Eau water Légionelles Eau water Disencystment E C S Importance of amoebae Importance of amoebae A training ground A training ground Selection of virulence traits Mouse model of infection with Mycobacterium avium Environment Adaptation to macrophages Lower respiratory tract Adapté de : Greub et al. Clin Microb Rev 2004 Cirillo et al. Infection & Immunity 1997;65:3759-3767 3 30.08.2013 Importance of amoebae Importance of amoebae A Trojan horse Adaptation to macrophages Endoplasmic reticulum cytoplasm golgi apparatus late endosomes y r a r b i L e lysosome bacteria endocytosis early endosome Cirillo et al. Infection & Immunity 1997;65:3759-3767 r u t c e r L o e h t n i u l a n O by D © I M Moliner et al. FEMS Rev 2010 Importance of amoebae Adaptation to macrophages Amoebae as a melting pot for genes exchange Amoebal microorganisms Relatives C. burnetii L. drancourtii + 50% 4,169,142 bp 1,892,616 bp 3,461,078 bp ± 115,392 bp P. acanthamoeba Louse-borne pathogens A. baumanii AYE A. baumanii SDF 3,936,291 bp 3,421,954 bp F. tularensis L. pneumophila Coxiella burnetii: survive to acidic pH of the lysosome 1,995,275 bp Relatives A. baylyi ADP1 3,598,621 bp + 50% ~ 3 Mbp Chlamydia sp. Candidatus ‘P. amoebophila’ 1,134,536 bp ± 95,694 bp B. henselae B. quitana 1,931,047 bp 1,581,384 bp 2,414,465 bp - 18% + 15% Legionella pneumophila: prevent the fusion of phagosome & lysosome R. bellii Rickettsia sp. 1,525,528 bp ± 3,452 bp 1,298,322 bp ± 186,826 bp B. recurrentis B. duttonii mimivirus 1,242,163 bp 1,574,910 bp - 21% + 65% 1,181,404 bp - 5% Virus R. conorii ≥ 407,339 bp 1,268,755 bp R. prowazekii 1,111,523 bp - 12% Gene content reflects the ecology of a bacteria E C S Protochlamydia amoebophila: genes exchanges A 100 kb genomic island: Pam100G Protochlamydia amoebophila: genes exchanges tra operon is encoding a putative DNA conjugative transfer system Protochlamydia pNL1 (Sphingomonas) F factor (E. coli) A genomic island encodes a potentially functional F-like conjugative DNA transfer system First evidence of a possible conjugative system in chlamydiae (and in strict intracellular bacteria) Greub et al BMC Microbiol 2004 Greub et al BMC Microbiol 2004 4 30.08.2013 Protochlamydia amoebophila: genes exchanges Nucleotides transporters Tra operon Chlamydia also present in: - Parachlamydia acanthamoebae Greub et al PLoS One 2009 ADP - Simkania negevensis (on a plasmid) Myers et al, oral communication y r a ATP ntt1 - Rickettsia belii (a rickettsia that may grow in amoebae) Protochlamydia amoebophila ATP ntt4 r b i L e ADP H+ ntt5 GTP/ATP ADP Ogata et al. PLOS Genet 2006 NTP Waddlia chondrophila ADP Likely functionnal & likely transferred in amoebae ntt2 UTP H+ ntt3 ntt2 NTP NAD+ ntt1 ATP r u t c e r L o e h t n i u l a n O by D © I M ntt5 NTP? UTP H+ ntt3 NTP? ntt2 NTP ntt4 Amoebae as a melting pot for genes exchange Moliner et al. FEMS Rev 2010 Chlamydiae-Planctomycetes common ancestor 1 Cyanobacteria Ancestral gamma-proteobacteria NDP NTP = non-specific nucleotide transporter 3 NAD+ Horizontal transfer ADP ADP ntt1 ATP NAD+ ntt4 NTP ntt2 Horizontal Ancestral Rickettsiales 7 transfer NTP 9 ADP ntt1 6 Arabidopsis plastid ADP ATP NAD+ ntt4 Other plastids E C S ATP ? ? ATP GTP BTP tlc2 +3 tlc1 tlc4 tlc5 3,421,954 bp A. baylyi ADP1 ~ 3 Mbp Chlamydia sp. Candidatus ‘P. amoebophila’ 1,134,536 bp ± 95,694 bp R. bellii Rickettsia sp. 1,525,528 bp ± 3,452 bp 1,298,322 bp ± 186,826 bp mimivirus Species divergence B. henselae B. quitana 1,931,047 bp 1,581,384 bp - 18% 1,181,404 bp NTP ntt2 Conclusion B. recurrentis B. duttonii 1,242,163 bp 1,574,910 bp - 21% Virus R. conorii ≥ 407,339 bp 1,268,755 bp Chlamydiaceae ATP ntt1 - 5% 3,598,621 bp + 65% 10 Gene loss Protochlamydia amoebophila CTP ADP ADP GTP ATP NAD + NTP A. baumanii SDF 3,936,291 bp + 15% GTP ntt3 NTP ntt2 Species divergence Gene duplication A. baumanii AYE 2,414,465 bp 8 CTP ntt5 Species divergence ? Louse-borne pathogens + 50% P. acanthamoeba Gene duplication ATP Ancestral plastid 1,995,275 bp 1,892,616 bp 3,461,078 bp ± 115,392 bp Transfer to Rickettsiales Gene duplication ADP Greub & Raoult. AEM 2003;69:5530-5535 Greub et al, unpublished Relatives F. tularensis L. pneumophila NTP ntt2 Gene duplication 4 5 C. burnetii + 50% 4,169,142 bp Ancestral Chlamydiales ADP Transfer to plant plastids Relatives L. drancourtii ntt2 Gene duplication Duplicated in an ancestral Chlamydiae 1.3 billion years ago Amoebal microorganisms Uncharacterized transporter 2 R. prowazekii 1,111,523 bp - 12% Gene content reflects the ecology of a bacteria Other amoebae-resisting bacteria • may (like Legionella) resist to amoebae • might also survive to another phagocytic cell: the human macrophage • are good candidate as agents of pneumonia of unknown etiology Greub; Clin Microbiol Infect 2009 Co-culture to discover new pathogens (amoebae-resisting micro-organisms) 5 30.08.2013 Importance of amoebae: a cell culture system Investigated sample Importance of amoebae: a cell culture system y r a Investigated sample No lysis serial dilutions serial dilutions r b i L e Estrella Photo Lyse/non lysées Photo Lyse/non lysées Lysis Amoebal co-culture Amoebal co-culture Adapted from Lamoth & Greub, FEMS Microbiol Rev 2010; Greub, Clin Microbiol Infect 2009; Corsaro et al 2007. Rhabdochlamydia crassificans Adapted from Lamoth & Greub, FEMS Microbiol Rev 2010; Greub, Clin Microbiol Infect 2009; Corsaro et al 2007. r u t c e r L o e h t n i u l a n O by D © I M Genome of Criblamydia: detoxification Lausannevirus Genome of Criblamydia: detoxification Size Bacterial Chromosome Plasmid 2’968’813 bp 89’525 bp GC content 38.2 % 40.8 % Nb of genes 2’674 101 Criblamydia megaplasmid 13% of the proteins are of phagic origin mostly within the Proteobacteria clade Efflux pump and other transporters - Several efflux systems and multidrug transporters - Orthologues in the genomes of Parachlamydia acanthamoebae and Protochlamydia amoebophila Criblamydia sequanensis within Acanthamoeba sp. Electron microscopy. Bars: 2 μm (A, C), 0.2 μm (B, D). Thomas et al. Env Microbiol 2006 Bertelli & Greub, unpublished E C S Genome of Criblamydia sequanensis Criblamydia megaplasmid encodes an arsenate operon arsC arsR arsB Arsenate reductase Arsenite resistance protein (transporter) Arsenical resistance operon repressor Mimivirus arsM Arsenite methyltransferase As[V] As[V] arsR arsC As[III] arsM Trimethylarsenite (volatile) arsB As[III] La Scola et al Science 2003 Bertelli & Greub, unpublished 6 30.08.2013 y r a Infectious particles recovered using 0.22 µm filtration Thomas et al. Env Microbiol 2011 Thomas et al. Env Microbiol 2011 r u t c e r L o e h t n i u l a n O by D © I M Conclusions: Acknowledgments David Baud Claire Bertelli Antony Croxatto Marie De Barsy Nicolas Jacquier Carole Kebbi Free-living amoebae Tool (culture) Linda Muller Trestan Pillonel Ludovic Pilloux Brigida Rusconi Reservoir Training ground Genetic exchange Amoebae & intracellular micr-organisms C S r b i L e Sébastien Aebi Joel Gyger Selection of virulence traits Many collaborations: Prof D. Raoult (Marseille), Prof T. Soldati (Geneva) Prof A. Goessmann (Bielefeld), …. Legionella, Rickettsiales, Chlamydiales… E 7
© Copyright 2026 Paperzz