Durham E-Theses Studies on the organic chemistry of boron Livingstone, J.G. How to cite: Livingstone, J.G. (1961) Studies on the organic chemistry of boron, Durham theses, Durham University. Available at Durham E-Theses Online: http://etheses.dur.ac.uk/9111/ Use policy The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or charge, for personal research or study, educational, or not-for-prot purposes provided that: • a full bibliographic reference is made to the original source • a link is made to the metadata record in Durham E-Theses • the full-text is not changed in any way The full-text must not be sold in any format or medium without the formal permission of the copyright holders. Please consult the full Durham E-Theses policy for further details. Academic Support Oce, Durham University, University Oce, Old Elvet, Durham DH1 3HP e-mail: [email protected] Tel: +44 0191 334 6107 http://etheses.dur.ac.uk (11 ft u 4 SIAO rsi ^> V 3^NVJ-i3>Vc)V3 Nl 39IMVH3 0 CM 6> 5 li 70 0 7D 0> 3 Ui o 70 0 6 ID 8 79 STUDIES THE ORGANIC OF ON CHEMISTRY BORON BY J . Gr« LIVINGSTONE A d i s s e r t a t i o n s u b m i t t e d f o r t h e Degree o f D o c t o r o f P h i l o s o p h y i n t h e Durham C o l l e g e s o f t h e U n i v e r s i t y o f Durham. 1961 CONTENTS Page Acknowledgments (1) Memorandum (II) Summary (Ill) FART I Introduction Page Organor-Derivatives o f B o r i c A c i d I T r i a l k y l - and T r i a r y l Boranes 8 Mixed T r i a l k y l and A r y l - A l k y l b o r a n e s 40 C y c l i c Boranes 43 B o r o n i c A c i d s and E s t e r s 46 B o r i n i c A c i d s and E s t e r s 54 Boroxines 62 A l k y l - and A r y l - D i h a l o b o r a n e s 65 D i a l k y l . and D i a r y 1 Haloboranes 72 PART I I P r e p a r a t i o n o f Reagents Page Chlorodiphenylborane 78 Chlorodi-p-tolylborane 79 Chlorodi-p-bromphenylborane 79 Pluorodimesitylborane 80 - Dimethylaminoborp^^feuLoride (22SEPIW ) 80 Page Diphenylphosphine 80 Di-m-tolylphosphine 81 Tri-m-tolylphosphine 81 Triphenylarsine 82 Diphenylarsine 82 Phenylphosphine 83 PART I I I Experimental Results Aminoboranes Page Aminodiphenylborane 85 Aminodimesitylborane 85 Dimethylarain o d i p h e n y l b o r a n e 86 DiTn.fttliyla.Triiriodi-p-tolyl'bora.jie 86 Dimethylaminodi-p-bromophenylborane 86 Diphenylaminodiphenylborane 88 Di-p-tolylamino:diphenylborane 89 D i p h e n y l a m i n o d i - p - t o l y l b o r a n e at 89 AMINO &I - o - t O L Y L b o » A N e . Phosphinoboranes Diphenyl(diethylphosphino)borane 90 D i - p - b r o r a p h e n y l ( d i e t h y l p h o s p h i n o ) b o r a n e 90 Diphenyl(diphenylphosphino)borane 91 Chlorodiphenyl(diphenylphosphino) borane 92 Triethylammoniura c h l o r o d i p h e n y l ( d i p h e n y l p h o s p h i n o ) borane 92 Diphenyl(di-m-tolylphosphino)borane Di-m-tolylphosphinodi-p-tolylborane Di-p-bromphenyl(di-m-tolylphosphino) borane Phenyl(bis-diphenylphosphino)borane Dichlorophenyl(phenylphosphino)borane Phenyl(phenylphosphino)borane Di~m-tolylphosphino( dimesityl)borane Di-m-to-lylphosphino( b i s - b i p h e n y l ) b o r a n Bis-diphenyl(phenylphosphino)borane Arsinoboranes Mphenylarsinodiphenylborane D i p h e n y i a r s i n o ( d i - p - 1 o l y 1 ) b orane Diphenylarsino(di-p-bromphenyl)borane Methods o f A n a l y s i s Boron Phosphorus D i p o l e Moment Measurements Theory o f Measurements Evaluation of Results P h y s i c a l Measurements Experimental Discussion Appendix I n t r o d u c t i o n t o B o r i n i c Acids Page Experimental 139 Discussion 140 I n t r o d u c t i o n t o w h i t e phosphorus 141 Reaction w i t h Phenyllithium 142 Reaction w i t h M e t h y l l i t h i u m 144 R e a c t i o n w i t h Boron T r i c h l o r i d e 144 Discussion 145 Tables References Experimental Page 139 Discussion 140 I n t r o d u c t i o n to white phosphorus 141 Reaction with Phenyllithium 142 Reaction with Methyllithium 144 R e a c t i o n w i t h Boron T r i c h l o r i d e 144 Discussion 145 Tables References (i) ACKNOWLEDGEMENTS The a u t h o r w i s h e s t o express h i s most s i n c e r e t h a n k s t o P r o f e s s o r G. E. Coates, M.A., D . S c , F.R.I.C., under whose d i r e c t i o n t h i s r e s e a r c h was c a r r i e d o u t , f o r h i s c o n s t a n t encouragement and e x t r e m e l y v a l u a b l e a d v i c e , and t o Dr. G. Kohnstam and Dr. P. G l o c k l i n g f o r t h e i r comments. The a u t h o r a l s o t a k e s t h i s o p p o r t u n i t y t o express, h i s t h a n k s t o t h e Senate o f Durham U n i v e r s i t y a t w h i c h l a b o r a t o r i e s t h i s work was c a r r i e d o u t , and t o t h e Department o f S c i e n t i f i c t h e award o f a g r a n t . and I n d u s t r i a l Research f o r (ii) MEMORANDUM The work i n c l u d e d i n t h i s t h e s i s was c a r r i e d out a t t h e Durham C o l l e g e s Science L a b o r a t o r i e s i n the U n i v e r s i t y o f Durham between September 1958 and September 1 9 6 1 , and has n o t been s u b m i t t e d f o r any o t h e r Degree. P a r t o f t h i s work has a l r e a d y been the subject o f a p u b l i c a t i o n i n t h e Journal o f t h e Chemical S o c i e t y . A l l t h e work d e s c r i b e d i s t h e o r i g i n a l work o f t h e a u t h o r , e x c e p t t h a t acknowledged by r e f e r e n c e . (iii) SUMMARY S e v e r a l a m i n o d i a r y l b o r a n e s ( A r B NR ) have been 2 2 p r e p a r e d by t h e methods: Ar BCl + LiNR 2 2 = Ar^B^NRg + L i C l (l) Ar^BCl + R NH + Bt^N = A r B NR + Et^NHCl .... 2 2 2ArMgBr + C1 B NR 2 ? = A r B NR + M g C l 2 (2) ? 2 2 (3) + MgBr . 2 Aminodiphenylborane (R = H, method 2 ) i s d i m e r i c and nonp o l a r i n benzene s o l u t i o n . Experiments w i t h m o l e c u l a r models i n d i c a t e t h a t l a r g e r groups a t t a c h e d t o t h e n i t r o g e n would cause s u b s t a n t i a l s t e r i c i n t e r f e r e n c e even w i t h t h e h y d r o g e n atoms i n o r t h o - p o s i t i o n s on t h e a r y l g r o u p s . Similarly, a m i n o d i r a e s i t y l b o r a n e i s monomeric. A l l t h e o t h e r aminodiarylboranes prepared are raonomeric i n nitrobenzene s o l u t i o n , though o f t e n s l i g h t l y associated i n benzene p a r t i c u l a r l y i n t h e more c o n c e n t r a t e d s o l u t i o n s . The monomeric a m i n o d i a r y l b o r a n e s have low d i p o l e moments whose d i r e c t i o n i s r e v e r s e d on p a s s i n g f r o m Ph B*NMe t o 2 Ph BNPh . 2 2 2 T h i s r e v e r s a l o f p o l a r i t y c o u l d be due t o t h e e l e c t r o n r e p e l l i n g e f f e c t o f a m e t h y l g r o u p , whereas a p h e n y l group can a c t as an e l e c t r o n a c c e p t o r i n such a system. A l l t h e observed moments a r e c o n s i s t e n t w i t h o n l y a s m a l l o r zero n e t p o l a r i t y f o r t h e B-N bond. (iv) The r a p i d and q u a n t i t a t i v e h y d r o l y s i s , by c o l d w a t e r , o f the aminoboranes was t h e b a s i s o f a method sometimes used f o r t h e i r a n a l y s i s , and more i m p o r t a n t v e n i e n t method f o r t h e p r e p a r a t i o n f o r a most con- of d i a r y l b o r i n i c acids. Some t w e l v e a c i d s have been p r e p a r e d as t h e monoethanolamine esters ( y i e l d s 51-93$) by h y d r o l y s i s , n f t h e diarylarainor- borane o b t a i n e d f r o m the r e a c t i o n o f a s l i g h t excess o f t b e appropriate Grignarrt r e a g e n t w i t h d i c h l o r o d i p h e n y l a m i n o b o r a n e . T h i s would appear t o be t h e most c o n v e n i e n t p r e p a r a t i v e method f o r d i a r y l b o r i n i c acids. P h o s p h i n o d i a r y l b o r a n e s are monomeric b u t u n l i k e the amino nompounds t h e y are q u i t e s t a b l e t o b o i l i n g d i l u t e and alkalies* acids However, q u a n t i t a t i v e o x i d a t i o n by aqueous a l c o h o l i c hydrogen p e r o x i d e t o b o r i c a c i d t h e p h o s p h i n i c and t h e p h e n o l has analysis. acid sometimes been used as a method f o r t h e i r T h e i r d i p o l e moments are g e n e r a l l y g r e a t e r those o f t h e c o r r e s p o n d i n g amino-compounds, and group i s a t t h e n e g a t i v e end of the d i p o l e . than the phosphino- This s u r p r i s i n g r e s u l t suggests t h a t phosphorus a c t s as a % donor ( t o b o r o n ) o n l y w e a k l y i f a t a l l i n these compounds, p o s s i b l y owing t o an u n f a v o u r a b l e r e l a t i o n between t h e " s i z e s " of b o r o n and phosphorus 3p- orbitals. 2p- (v) Formula I a c c o u n t s i n a q u a l i t a t i v e way not only f o r t h e observed d i p o l e moments, but a l s o f o r t h e of chemical r e a c t i v i t y , since b o t h boron and are (or p a r t l y so). co-ordinatively saturated r lack phosphorus Further — t h e i n d i c a t e d charge between boron and separation phosphorus s h o u l d r e s u l t i n B-P stretching f o r c e c o n s t a n t s g r e a t e r t h a n would be e x p e c t e d f o r B-P since s i n g l e bonds, t h e B-P bond would amount t o a o-bond p o s s i b l y w i t h a s m a l l Ti-component but some e l e c t r o s t a t i c a t t r a c t i o n i n a d d i t i o n . t h e B-P bond c o u l d perhaps be d e s c r i b e d I n t h i s sense as a "serai-polar double bond", t h u s a c c o u n t i n g f o r t h e r a t h e r h i g h (1400 - 1500 B-P bond. - 1 c m ) associated The frequencies w i t h the s t r e t c h i n g of the reason f o r the phosphinodiarylboranes being monomeric, when t h e s e r i e s R^B'PR^ (R = H, a l k y l ) form t r i m e r s , t e t r a m e r s , or p o l y m e r s , t h u s l i e s i n t h e atom i n t h e d i a r y l b o r a n e saturated with series being already boron coordinatively ( o r n e a r l y so) n o t by T C - b o n d i n g w i t h phosphorus b u t by ir-bonding w i t h t h e a r y l g r o u p s . The a r s i n o - d e r i v a t i v e s are s i m i l a r t o the phosphino- (vi) compounds but t h e y are l e s s p o l a r . Perhaps t h e most s i g n - i f i c a n t d i f f e r e n c e i s t h a t o x i d a t i o n w i t h aqueous a l c o h o l i c hydrogen p e r o x i d e a f f o r d s b o r i c a c i d , a r s e n i c appropriate phenols Ph B AsAr 2 2 smaller due to a smaller the e.g. + H,^ — The a c i d and 2PhOH + 2ArOH.+ H^BO^ + I^AsO^ d i p o l e moments of t h e a r s i n o b o r a n e s i s p r o b a b l y degree o f e l e c t r o n t r a n s f e r f r o m arsenic t o t h e a r y l groups bound t o i t . I t now seems e v i d e n t t h a t t h o u g h t h e o'-donor of n i t r o g e n , phosphorus, and arsenic character towards boron d i m i n i s h e s i n t h a t o r d e r t h e rc-donor c h a r a c t e r d i m i n i s h e s even more rapidly. The and phosphinoboranes Ph B ( P P h ) , Ph P ( B P h ) , (Ph B PPh) 2 (Ph B PPh) 2 have a l s o been p r e p a r e d . 2 2 They are a l l more s e n s i t i v e t o o x i d a t i o n t h a n t h e phosphinodiarylboran.es mentioned earlier. P A R T I I N T R O D U C T I O N 1. A) 1. ORGANO-DERIVATIVES OF BORIC ACID PREPARATION OF TRIALKYL- & TRIARYL BORATES The best known and most s t a b l e organo d e r i v a t i v e s of b o r i c a c i d are the t r i a l k y l and t r i a r y l borates (RO)^B; unsymmetrical e s t e r s ROB(OR') are known but they tend 2 to d i s p r o p o r t i o n a t e t o the symmetrical e s t e r s . Indeed d i s p r o p o r t i o n a t i o n i s a common and sometimes troublesome f e a t u r e o f organo-boron chemistry. 1 Lappert" " i n h i s review describes s e v e r a l methods o f p p r e p a r a t i o n o f the borates. Ebelmen and Bouquet , t h e f i r s t workers t o mention orthoborates, prepared t r i m e t h y l , t r i e t h y l , and t r i a m y l borates by h e a t i n g the a p p r o p r i a t e a l c o h o l w i t h boron t r i c h l o r i d e i n a sealed tube, but attempts t o prepare t r i a l l y l and t r i b e n z y l borates were unsuccessful. M i c h a e l i s and H i l l r i n g h a u s ^ prepared t r i a r y l borates by the sealed tube method a t 100° but r e c e n t l y Golclough, 4 Gerrard and Lappert have shown t h a t h e a t i n g i s unnecessary, t r i a r y l borates being obtained i n n e a r l y q u a n t i t a t i v e y i e l d by the a d d i t i o n o f boron t r i c h l o r i d e ( 1 mole) t o the phenol (3 moles) a t - 80°C i n methylene c h l o r i d e . Wiberg and S u t t 5 e r l i n i n v e s t i g a t e d the r e a c t i o n sequences i n the boron 2. t r i c h l o r i d e - m e t h a n o l and boron t r i c h l o r i d e - e t h a n o l systems, employing high vacuum apparatus at -80°C, and obtained q u a n t i t a t i v e y i e l d s of the orthoborates when the c o r r e c t p r o p o r t i o n of reagents was used 3R0H + BC1 B(OR) + 3 3 3HC1 L a t e r l a r g e scale p r e p a r a t i o n s , by t h i s method, i n an i n e r t solvent (pentane) a f f o r d e d the borates almost instantaneously and i n n e a r l y q u a n t i t a t i v e y i e l d . When about 20-100 grams of b o r a t e , p a r t i c u l a r l y one of h i g h molecular weight, i s r e q u i r e d the best method comprises h e a t i n g boron t r i o x i d e w i t h the appropriate a l c o h o l i n toluene and a l l o w i n g the condensed vapours t o percolate through anhydrous copper sulphate i n a soxhlet e x t r a c t o r t o remove the water formed i n the r e a c t i o n . Trimethylborate was obtained i n good y i e l d 92% by Schechter^ when boron t r i o x i d e (2 moles) was added to methanol (3 moles) at 35-60° and the mixture digested 1 hour a t 25°C. 2B 0 2 3 4 3CH OH •+ 3HB0 + B(OCH ) . 3 2 3 3 7 P i c t e t and Geleznoff prepared several t r i a r y l and t r i a l k y l borates by warming phenols or alcohols w i t h boron acetate and s e p a r a t i n g the borate and a c e t i c a c i d by f r a c t ional distillation. 3!. Boric acid was f i r s t used t o prepare orthoborates 8 by Cohn :- B(OH) 4 3HOH 3 B(OR) + 3H 0. 3 2 The e s t e r i f i c a t i o n was performed i n the presence of hydrogen c h l o r i d e o r concentrated s u l p h u r i c a c i d . Later t h i s method was modified by use o f an i n e r t solvent such as benzene, toluene or carbon t e t r a c h l o r i d e and removal of the water o as a t e r n a r y azeotrope . 1 Recently Brown, Mead and Shoaf ^ have found a general synthesis f o r a l k y l borates by t h e r e a c t i o n between sodium borohydride and t h e appropriate a l c o h o l i n the presence o f one equivalent o f a c e t i c a c i d . 3R0H + NaBH + HOAC -r (RO) B + NaOAC + 4H 4 3 With t e r t i a r y alcohols higher temperatures 2 are needed t o d r i v e o f f the l a s t mole of hydrogen and y i e l d s of about 20$ are obtained:- 2R0H • NaBH^ + HOAC (R0) BH + NaOAC + 3^ 2 and a t higher temperatures, ROH + (RO) BH ^(ROj^B + Hg. 2 Brown and co-workers also recommend the t r a n s e s t e r i f i c a t i o n o f methyl borate when other methods f a i l . Less mention has been made o f t h e metaborates. Schiff^" observed t h a t t h e primary r e a c t i o n between ethanol and boron t r i o x i d e was t h e f o r m a t i o n of methyl metaborate, the same 4 compound was also obtained from t r i e t h y l b o r a t e and boron t r i o x i d e . C H OH + B 0 2 5 2 B(OC H ) 2 5 3 -* HOBO • C H OBO 3 2 + B 0 2 3 5 ~* 3 C H OBO 2 5 12 A c e t y l metaborate has been claimed by Dimroth as a product o f the p y r o l y s i s o f t e t r a c e t y l d i b o r a t e but no d e t a i l s were given. Goubeau and K e l l e r ^ r e p o r t e d t h a t boron t r i o x i d e and t r i m e t h y l borate when heated i n a sealed tube i n equimoiar p r o p o r t i o n s a f f o r d e d methyl metaborate which was t r i m e r i c ( c r y o s c o p i c ) and t h e r e f o r e formulated as a boroxole; i t decomposed a t 170-220°. By o x i d a t i o n of t r i m e r i c n - b u t y l b o r o n i c anhydride w i t h 1 dry a i r Gruinmitt ^ obtained n - b u t y l metaborate which, c o n t r a r y 15 t o h i s observations, has been shown by Lappert t o be trimeric• 1 O'Connor and Nace ^ prepared 1-menthyl and c y c l o h e x y l metaborates from t h e appropriate a l c o h o l and o r t h o b o r i c a c i d , the water formed was removed by azeotropic w i t h toluene. ROH + H B0 -*R0B0 •* 2H 0. 3 3 2 distillation Recently Lappert 11 1 has prepared the lower a l k y l 11 1 s (Me, E t , Pr , P r , Bu , Bu , Bu , but n o t Bu*) metaborates (RO.BO)^ by thermal or c a t a l y t i c decomposition corresponding o f the d i a l k y l chloroboronates, (ROjgBCl, or by heating the orthoborates w i t h boron t r i o x i d e . The l a t t e r method was also successful f o r preparing phenyl metaborate. I I . PROPERTIES ( a ) PHYSICAL Parachor and d i p o l e measurements have v e r i f i e d planar s t r u c t u r e s and e l e c t r o n d i f f r a c t i o n measurements on t r i methyl borate showed the BO^ c o n f i g u r a t i o n t o be planar w i t h angles 120 ; bond distances were also measured. I n f r a - r e d spectra o f metaborates showed strong absorp"l 1 8 t i o n bands near 720 and 735 cm- . (b) CHEMICAL The borates are g e n e r a l l y e a s i l y hydrolysed by water t o give o r t h o b o r i c a c i d and the a p p r o p r i a t e a l c o h o l ; t h e i r important r e a c t i o n w i t h organo-metallic compounds w i l l be mentioned i n d e t a i l l a t e r . They are g e n e r a l l y very s t a b l e 6. and can be heated t o q u i t e h i g h temperatures without sign- i f i c a n t decomposition. They react w i t h acids, t y p i c a l products 1Q being i n d i c a t e d by t h e f o l l o w i n g r e a c t i o n s :- B(OC H ) 3 160-180°C + 2B(OH) * B(OC H ) 3 + H S0 2 2 5 5 3C H OH + 3HB0 3 2 4 2 5 Heat » C H HS0 + 2C H 2 5 4 2 2 + HB0 + HgO 4 2 r B(OC H ) 2 5 3 + H S0 *H 0 2 4 2 l H e a t t o 140-150° y C H HS0 + B ( O H ) + ( C H ) 0 2 5 4 3 2 5 2 Addition of H 0 2 B(0C H ) 2 5 3 + H S0 + 2RC00H -» C H HS0 + B ( 0 H ) 2 4 2 5 4 R = CH , n - C H , n - C H , C H 3 B(0C H ) 3 + 3HN0 B(0C H ) 3 + H P0 2 2 5 5 3 3 ? 4 g 3 3C H 0N0 + B ( 0 H ) 4 BP0 + 3C H 0H 2 5 4 2 2 g 3 + 2RC00C H 2 5 5 3 5 Rapid d e a l k y l a t i o n occurs when borates c o n t a i n i n g powerful e l e c t r o n r e l e a s i n g groups, e.g. 1 p h e n y l e t h y l borate, w i t h hydrogen h a l i d e s : - react 2 7. B(OR) + 3HX 3 3RX + B(OH) 3 X = halogen I n c o n t r a s t t o most a l k y l borates, t h e a r y l borates being stronger Lewis acids, g e n e r a l l y form c o o r d i n a t i o n complexes w i t h ammonia and amines. 8 B) 1. TRIALKYL- AND TRIARYL BORANES PREPARATION The r a p i d development o f organo-boron chemistry i n the l a s t twenty years i s due t o three main f a c t o r s a) The use o f the v o l a t i l e t r i a l k y l s i n the study of the e l e c t r o n i c and s t e r i c e f f e c t s which i n f l u e n c e t h e f o r m a t i o n o f c o o r d i n a t i o n compounds. b) The a p p l i c a t i o n of t r i a l k y l s o f boron t o t h e i s o m e r i s a t i o n o f o l e f i n s and the p r e p a r a t i o n o f primary alcohols from o l e f i n s w i t h e i t h e r t e r m i n a l or non-terminal double bonds. c) The use o f the t r i a l k y l s of boron as c a t a l y s t s f o r the p o l y m e r i s a t i o n o f n e g a t i v e l y s u b s t i t u t e d v i n y l compounds. Compounds c o n t a i n i n g B-C bonds have been prepared by three d i f f e r e n t types o f r e a c t i o n , these are r e a c t i o n s between 1) another organo-metallic compound and a boron h a l i d e or borate e s t e r . 2) an o l e f i n and a boron hydride. 9. 3) a hydrocarbon and a boron h a l i d e . The l a s t of these i s g e n e r a l l y used t o prepare mono- or d i s u b s t i t u t e d boron h a l i d e s and w i l l be discussed later. The f i r s t r e a c t i o n i s the most successful and convenient f o r the p r e p a r a t i o n of t r i a l k y l s and t r i a r y l s of boron e i t h e r on a l a b o r a t o r y or l a r g e scale. The boron 20 h a l i d e s g i v e best y i e l d s when used as t h e i r ether complexes but a l k y l orthoborates appear t o be the most g e n e r a l l y satisfied reagents: B(OMe) + 3RMgX - R^B + 3fflgX0Me 3MgX0Me + 3HC1 - l^MgClg + l^MgXg + 3Me0H 3 Where quaternary anions (BAr^~) may be formed excess of reagent must be avoided and t h i s i s p a r t i c u l a r l y important when o r g a n o - l i t h i u m compounds are used as a l k y l a t i n g agents. The f i r s t t r i a l k y l s were prepared by Frankland and Duppa' i n 1859 by the a c t i o n of excess d i a l k y l zinc (methyl and e t h y l were used) on t r i e t h y l borate. 3R Zn i . 2B(OC H ) 2 2 5 3 = 2BR • 3 Z n ( 0 C H ) . 3 2 5 3 This r e a c t i o n has not been much used since, because i t i s apt t o become v i o l e n t and the y i e l d s are not as good as those 10:. r e s u l t i n g from Grignard r e a c t i o n s . However c a r e f u l c o n t r o l of the r e a c t i o n between dimethyl zinc and boron t r i c h l o r i d e 22 has been used by Wiberg and Ruschmann t o prepare the unstable methyl boron c h l o r i d e s ; these products r e a d i l y d i s p r o p o r t i o n a t e t o t r i m e t h y l b o r a n e and boron t r i c h l o r i d e . This d i s p r o p o r t i o n a t i o n i s p a r t i c u l a r l y i n t e r e s t i n g since 2 ~\ McCusker, Ashby and Iffakowski J r e p o r t t h a t the e t h y l and higher d i a l k y l b o r o n c h l o r i d e s showed no tendency t o d i s p r o p o r t i o n a t e below 170°, even a f t e r repeated d i s t i l l a t i o n s at atmospheric pressure. The most s a t i s f a c t o r y a l k y l a t i n g agents f o r the p a r a t i o n of organo-boron compounds now pre- appear t o be the a l k y l s of a l u m i n i u m ^ ; no quaternary s a l t s are formed and the f a c t t h a t many of the r e a c t i o n s r e q u i r e no solvent or diluent i s a p a r t i c u l a r l y a t t r a c t i v e feature f o r large scale preparations. T r i e t h y l b o r a n e was obtained by d i s t i l l a t i o n i n SOfo y i e l d , r e l a t i v e t o boron t r i f l u o r i d e , from the r e a c t i o n B P 0 E t + Et ALOEt —* E t B + E t A l F 0Et The use of amine complexes i s r a t h e r b e t t e r and y i e l d s of 3 2 3 2 3 2 2 11. over 90$ o f t r i p r o p y l b o r a n e are obtained when a mixture of t r i p r o p y l a l u m i n i u m and t r i e t h y l a m i n e - b o r o n t r i f l u o r i d e i s heated t o 150-160° n Et N.BP + P r A l 3 Pr^B + Et^N 3 AlP^ Perhaps t h e most s a t i s f a c t o r y method i s the r e a c t i o n between an aluminium a l k y l and a borate e s t e r , no solvent being necessary. A mixture o f t r i e t h y l aluminium and e t h y l o r t h o - borate spontaneously heats t o over 100° and t r i e t h y l b o r o n can be d i s t i l l e d o f f i n over 90% y i e l d : B(0Et) f Et AL = E t B -»• A L ( 0 E t ) 3 3 3 3 A u s e f u l v a r i a t i o n o f t h i s method i s the p r e p a r a t i o n o f boronic esters by t h e use of appropriate r e a c t a n t r a t i o s : n n n Et AL + 3B(OBu ) = 3 E t B ( 0 B u ) + A L ( 0 B u ) . 3 3 2 3 A l k y l metaborates also give good y i e l d s of t r i a l k y l s o f boron when allowed t o r e a c t w i t h aluminium a l k y l s or more conv e n i e n t l y i n some instances a l k y l a l u m i n i u m sesquihalides. The exothermic r e a c t i o n i s conveniently c a r r i e d out i n a 25 mineral o i l d i l u e n t . 3 E t A L C l + (Me0B0) = 3Et B + AL(0Me) * A L 0 * 2A1C1-J. 3 2 3 3 3 3 2 3 12. The second general method, the a d d i t i o n of B-H bonds t o o l e f i n s , i s one of the most important developments i n boron chemistry. The r e a c t i o n between diborane and 9fi olefins aliphatic 97 and styrene whereby organo-boron compounds are formed was reported some years ago. The successful development of these r e a c t i o n s as u s e f u l l a b o r a t o r y methods r e s u l t e d from improvements i n processes f o r the p r e p a r a t i o n of diborane (by adding a s o l u t i o n of sodium borohydride i n 2,5,8-trioxanonane (CH^OCHgCHg) also known as d i e t h y l e n e g l y c o l dimethyl ether or 'diglyme 1 t o a s o l u t i o n of b o r o n t r i f l u o r i d e - e t h e r complex i n the same solvent) 2 7 a 3WaBH + 4BF^ 4 2B Hg + 3NaBF 2 4 and from the discovery t h a t the a d d i t i o n of diborane t o o l e f i n s i s s t r o n g l y catalysed by ethers. Good y i e l d s of boron t r i a l k y l s are also obtained when triethylamine-borane (Et^N.BH^) i s heated w i t h o l e f i n s at 200°. 25 The p r e p a r a t i o n of organo-boron compounds by B-H a d d i t i o n t o o l e f i n s does not n e c e s s a r i l y i n v o l v e the p r e p a r a t i o n of diborane. One recent method depends on the 13. f o r m a t i o n of diborane or some other a c t i v e B-H compound from sodium borohydride and a l i t t l e aluminium c h l o r i d e and i t s use on s i t u . For example, t r i - n - p e n t y l b o r o n has been prepared by adding 1-pentene (0.5 mole) t o a s t i r r e d s o l u t i o n of sodium borohydride (0.25 mole) and c h l o r i d e (0.084 mole) i n diglyme (250 c . c ) . aluminium When s t i r r i n g had been continued three hours a t room temperature and one hour on a steam bath, solvent was pumped from the cooled r e a c t i o n m i x t u r e , and t r i - n - p e n t y l b o r a n e c o l l e c t e d on 88$ o 27b y i e l d a t 94-95 /2 mm.- More recent work has shown the r e a c t i o n t o work e q u a l l y w e l l u s i n g more e a s i l y obtainable ethers ( d i e t h y l e t h e r , t e t r a h y d r o f u r a n , and t r i g l y m e ) d i f f e r e n t hydride sources and s e v e r a l other Lewis a c i d s . The a d d i t i o n of B-H bonds t o t e r m i n a l o l e f i n s i s f a s t e r than a d d i t i o n t o non t e r m i n a l o l e f i n s , and treatment of a mixture o f 1 - and 2-pentene w i t h a d e f i c i e n c y of diborane r e s u l t s i n the s e l e c t i v e conversion of the t e r m i n a l o l e f i n into tri-n-pentylborane. The a d d i t i o n of diborane t o 2- pentene gives a mixture of products, since o x i d a t i o n of the r e s u l t i n g t r i a l k y l b o r a n e y i e l d s a roughly 2:1 mixture o f 2- 14 and 3-pentanol: 28b H Pr 11 CH:CH B ^ ^ n ^ 2 2°2 95# n-C H OH OH5 i;L B,JL EtCH:CHCH 3 H ^°5 ll^3 B -^-^63$ Pr OH— 11 CHOHCH + 37$ EtgCHOH 3 Various attempts a t the p r e p a r a t i o n o f mixed t r i a l k y l b o r a n e s RRgB, have shown t h a t these compounds tend t o d i s p r o p o r t i o n a t e and, more p a r t i c u l a r l y , t o isomerise i n the sense t h a t compounds are favoured i n which chain branching i s absent or r e l a t i v e l y remote from the boron atom. I f the mixed alkylboranes resulting 1 from the r e a c t i o n o f diborane w i t h 2-pentene are b o i l e d i n d i glyme' f o r f o u r hours, they are converted i n t o t r i - n - p e n t y l boron since o x i d a t i o n w i t h a l k a l i n e hydrogen peroxide a f f o r d s 1-pentanol: B„H EtCHrCHCH, - ^ - X EtCH CHCH EtCH'CHCH T73 0 3 B / n-C H OH 5 1:L l 8 4 / 4 ]Lours H^O, , 2 2 (n-Cj^^B V 0HNot only does t h i s r e a c t i o n provide a method f o r o b t a i n i n g primary a l c o h o l s from non-terminal o l e f i n s , but i t s scope has 15. been extended by t h e discovery t h a t t h e r e a c t i o n i s reversible. A t r i a l k y l b o r a n e whose a l k y l chains are three or more carbon atoms long r e v e r s i b l y d i s s o c i a t e s when heated: 2(RCH CH ) B * (RCH CH ) BH-BH(CH CH R) + 2CH :CHR 2 2 3 2 2 2 2 2 2 2 Consequently a d d i t i o n of a less v o l a t i l e longer chain o l e f i n OA pQ w i l l displace a more v o l a t i l e shorter chain o l e f i n . * ( D i - s e c - b u t y l ) t-butyl-borane has been prepared by McCusker, Hennion and Rutkowski and was found t o be stable t o d i s o 29 proportionation or re-arrangement below 60. An important d i s t i n c t i o n between a l k y l b o r o n and a l k y l - aluminium compounds i s t h a t t h e former r e a c t w i t h both terminal/'olefins ( c o n t a i n i n g C:CH group). 2 The a d d i t i o n of o l e f i n s t o t r i a l k y l b o r a n e s i s catalysed by small amounts of t r i a l k y l a l u m i n i u m . ^ Both boron 31 and aluminium32 hydrides react w i t h acetylenes by c i s a d d i t i o n , and t h i s provides an important route t o c i s o l e f i n s R H R H \ / HOAC \S Q RC:CR + B H 2 2 6 6 ' d l W 0° * g ^ / \ R B/ J / \ R H 16. This r e a c t i o n which has teen c a l l e d the hydroboration r e a c t i o n , i s not s a t i s f a c t o r y when a p p l i e d t o t e r m i n a l acetylenes since complete r e d u c t i o n occurs by a d d i t i o n o f two B-H bonds. This d i f f i c u l t y has been overcome by the use o f a less r e a c t i v e B-H compound ( P r ^ H M e ) BH, i t s e l f 2 prepared from diborane and 2-methyl-2-butene: n (P^CHMe^BH • Bu C*CH n Bu CH: CHB( CHMePr ) 2 HOAC n Bu CH:CH 2 H„0 n Bu CHO. The hydroboration of c y c l i c o l e f i n s r e s u l t s i n s t e r e o specifie cis hydration. For example i f diborane i s passed i n t o a s o l u t i o n of 1-methylcyclopentene i n t e t r a h y d r o f a r a n f o r two hours a t 0° and the r e a c t i o n mixture hydrolysed and oxidised w i t h a l k a l i n e hydrogen peroxide, trans-2-methylcyclopentanol i s obtained i n 85$ y i e l d w i t h only about 2$ cis impurity.^ O CH •} -CH ! 13X„ 17 The Long and Dollimore m o d i f i e d Grignard method has proved t h e most successful i n p r e p a r i n g the t r i a r y l b o r a n e s . A l l o f them are a i r s e n s i t i v e ( r e q u i r i n g work under n i t r o g e n ) and t h i s , coupled w i t h t h e i r r e l a t i v e l y low v o l a t i l i t y , can make t h e i r s e p a r a t i o n from r e a c t i o n mixtures d i f f i c u l t . 3CgH MgBr+BP .0(0 H ) -»(C H ) B+l-5MgP + l - 5 M B r 5 3 2 5 2 6 5 3 2 g 2 + (C R" ) 0. 2 5 2 Further r e a c t i o n can occur w i t h excess Grignard t o give t e t r a p h e n y l b o r a t e anions. (CgH ) B • C H MgBr 5 3 6 MgBr"* 5 BtCgH^ 7 This p r o p e r t y has proved u s e f u l i n preparing small amounts of pure t r i p h e n y l b o r a n e . A f t e r h y d r o l y s i s and removal of mag- nesium as carbonate, trimethylamine hydrochloride i s added t o the s o l u t i o n c o n t a i n i n g t e t r a p h e n y l b o r a t e ions when ( C H ) 3 B(CgH(j)^ 3 NH ™ i s p r e c i p i t a t e d and t h i s decomposes when heated i n a stream o f n i t r o g e n a t 200? (CH ) ftH 3 3 B(C H ) 6 5 4 " ( C H ) N + CgHg + ( C g H ^ B 3 The t r i p h e n y l b o r a n e i s d i s t i l l e d 3 i n vacuum a f t e r the benzene and trimethylamine have been swept away; the y i e l d (from t e t r a phenylborate) i s about 90$. A new method f o r the p r e p a r a t i o n of t r i p h e n y l b o r a n e makes 18. use o f the r e a c t i o n between benzene (present i n excess) and diethylborane E t ^ Bg a t 180° under p r e s s u r e d I I . PROPERTIES (a) PHYSICAL Molecular weight measurements^ (cryoscopic i n benzene) of s e v e r a l t r i a r y l b o r a n e s have shown them t o be monomeric. Stock and Z e i d l e r ^ showed the methyl and e t h y l homologues t o be monomeric (vapour d e n s i t y ) and Bamford, L e v i and •37 Newitt a r r i v e d a t s i m i l a r conclusions (methyl, i s o - p r o p y l , n - p r o p y l ) by e v a l u a t i o n o f Trouton's constant. The f o r c e constants o f trimethylborane c a l c u l a t e d by Goubeau from Raman and u l t r a - v i o l e t spectra would suggest t h a t resonance of the type found i n the boron h a l i d e s was u n l i k e l y , _i.£. the B-C bonds are e s s e n t i a l l y s i n g l e . (b) CHEMICAL Generally h y d r o l y t i c a l l y s t a b l e i n a c i d , a l k a l i n e , o r n e u t r a l s o l u t i o n , t h e t r i a l k y l b o r a n e s are q u i t e s t a b l e except i n the presence of o x i d i s i n g agents, (thus they r e q u i r e an i n e r t atmosphere f o r t h e i r m a n i p u l a t i o n ) . 19. Trimethylborane, though s t a b l e t o water under o r d i n a r y c o n d i t i o n s , i s slowly (7 hours) hydrolysed at 180° w i t h loss o f one methyl group. S t i l l more r e s i s t a n t t o hydrogen sulphide i t reacts a t 280° g i v i n g boron sulphide, * B S 2 3 +- CH 280° 18D° 4 K S + Me B * H 0 * Me B0H + CH 4 2 3 2 2 4 T r i a l l y l b o r a n e i s most unusual i n i t s ease of hydrolysis. 40 and r e a c t i o n w i t h b u t a n o l ; (CH :CH CH ) B + H 0 -> (CHg-.CH CH )B(0H) 2 2 3 2 2 n n (CH :CH CH ) B + Bu 0H 2 2 2 CH :CH C H B ( 0 B ) 3 2 2 U 2 T r i a r y l b o r a n e s are not s e n s i t i v e t o water but t r i p h e n y l borane reacts w i t h a l c o h o l t o give e t h y l diphenylborate. ( C H ) B * EtOH g 5 3 (C H ) BOEt • CgHg. 6 5 2 The chemical r e a c t i v i t y o f t h e t r i a l k y l - and t r i a r y l boranes may be accounted f o r by t h e i r very powerful Lewis a c i d p r o p e r t i e s and so as h i g h l y r e a c t i v e e l e c t r o p h i l e s many o f t h e i r r e a c t i o n s , a t l e a s t i n the i n i t i a l stages, probably i n v o l v e c o o r d i n a t i o n . 20. (i) OXIDATION The lower t r i a l k y l b o r a n e s are spontaneously inflammable but t h e i r pyrophoric character decreases as the size o f t h e hydrocarbon group increases. The t r i a r y l b o r a n e s are much less e a s i l y o x i d i s e d , tri-e<-naphthylborane being s t a b l e i n a i r but t h i s i s probably due t o slowness o f a t t a c k by oxygen on account of s t e r i c hindrance. 1 C o n t r o l l e d oxidation^" " o f t h e lower t r i a l k y l b o r a n e s leads t o t h e f o r m a t i o n of e s t e r s o f a l k y l b o r i n i c a c i d s , e.g. 2 Bu n 3 B * 0 2 2 Bu n 11 2 BOBu That t h e primary ( o r a t l e a s t an e a r l y ) step i n t h e r e a c t i o n i s t h e f o r m a t i o n o f a peroxide has been confirmed i n t h e case o f t r i m e t h y l b o r a n e . At pressures below t h e explosion l i m i t Me B00Me i s obtained; t h i s explosive substance i s 2 reduced t o methyl d i m e t h y l b o r i n a t e by sodium i o d i d e a t -78°C I n a sealed tube a t room temperature i t rearranges t o give about 90$ dimethyl methylboronate. MeB(OMe),,. The o x i d a t i o n o f organo-boron compounds w i t h a l k a l i n e ( o r a l c o h o l i c a l k a l i n e ) hydrogen peroxide smoothly breaks the B-C bonds, w i t h q u a n t i t a t i v e f o r m a t i o n o f an a l c o h o l 21. and a b o r i c a c i d . This i s a general r e a c t i o n o f a n a l y t i c a l importance. (ii) REACTIONS WITH HALOGENS AND HYDROGEN HALIDES The lower t r i a l k y l s o f boron inflame i n c h l o r i n e o r bromine, but t r i p r o p y l b o r a n e reacts smoothly w i t h i o d i n e at about 150°, g i v i n g Pr*B + 1 iododipropylborane: n 2 Pr BI + PA The corresponding c h l o r i d e and bromide have been obtained by the a c t i o n o f antimony t r i c h l o r i d e ( o r SbBr^) on t h e iodidef^ When hydrogen c h l o r i d e i s bubbled i n t o t r i b u t y l b o r a n e at 110° d i b u t y l b o r o n c h l o r i d e (b.p. 173°) i s formed almost 44. quantitatively . Bu^B + HC1 -* B u n BC1 + C H 4 10 Further r e a c t i o n w i t h hydrogen c h l o r i d e takes place between 180° and 210°, but mixtures o f products r e s u l t . (iii) REACTIONS WITH ALKALI METALS AND THEIR HYDRIDES T r i a l k y l b o r a n e s r e a c t w i t h a l k a l i metals o r t h e i r amides i n l i q u i d ammonia ( e s s e n t i a l l y ammonia c o o r d i n a t i o n compounds are formed):- 22. R^B -v NH M* (R B-NH )~ + $ H 3 3 2 2 R^B-NH-j+M 2 B'NH + NaNH —? Na*(R BNH )~ «• NH 3 3 2 3 2 3 These s a l t s can be c r y s t a l l i s e d from ether, but are only s l i g h t l y soluble i n benzene and are i n s o l u b l e i n l i g h t petroleum. S i m i l a r compounds are formed i n ethylamine 45 s o l u t i o n , e.g. Me B'NH Et 3 2 Li L i * (Me-jB-NHEt)" + ^Hg I n the absence of ammonia, t r i - n - b u t y l b o r a n e i n ether s o l u t i o n very s l o w l y develops a colour on standing i n contact w i t h l i q u i d sodium/potassium a l l o y , but no compound has been i s o l a t e d . I n c o n t r a s t t h e t r i a r y l b o r a n e s form w e l l defined adducts w i t h a l k a l i metals. Although s t e r i c e f f e c t s l a r g e l y o f f s e t t h e enhanced acceptor p r o p e r t i e s o f the more e l e c t r o n e g a t i v e a r y l groups, strong acceptor p r o p e r t i e s are s t i l l evidenced i n t h e i r r e a c t i o n s w i t h the a l k a l i metals Ar^B •* Na Ar-jB* Na* 46 The r e s u l t i n g compounds which are prepared i n ether 23 s o l u t i o n w i t h r i g o r o u s exclusion of moisture, oxygen and even carbon d i o x i d e , are n e c e s s a r i l y r a d i c a l s ( i f monomeric). The t r i p h e n y l b o r a n e anion-radical i s i s o - e l e c t r o n i c w i t h the t r i p h e n y l m e t h y l n e u t r a l r a d i c a l , and i n f a c t the colours of the two s e r i e s are s i m i l a r , Triphenylborane-sodium reacts w i t h t r i p h e n y l m e t h y l w i t h the f o r m a t i o n of the t r i p h e n y l m e t h y l , + Ph B "toa + Ph C* 3 anion,: Ph B + Ph^C~Na*. 3 3 A b r i l l i a n t red compound r e s u l t s from t r i p h e n y l m e t h y l t r i p h e n y l b o r a n e ; t h i s may (Ph B-CPh )*. 3 w e l l be a r a d i c a l of c o n s t i t u t i o n There i s some e v i d e n c e ^ t h a t 3 sodium i s dimeric ( Ph B«BPh 3 and a 3 triphenylborane- Na"*"*) since i t i s d i a 2 magnetic* The conductance of these compounds i n ether s o l u t i o n i s very small, i n d i c a t i n g extensive ion-association. Tri-o^-naphthylborane can add successively one atom of sodium t o give the brown-yellow compound (0-^11^) ( o r i t s dimer) and then a second t o give the deep v i o l e t (C H ) 1 0 7 + 3 B=Na +. 48 2 Studies on the molecular weights of s o l u t i o n s of the a d d i t i o n compounds, and on t h e i r magnetic s u s c e p t i b i l i t i e s , 24 have shown a marked dependence of t h e p o s i t i o n of t h e monomer-dimer e q u i l i b r i a on ( a ) t h e aromatic groups bonded t o boron, and (/b )\ t h e s o l v e n t . 49 ^ The tendency t o form monomeric anions (which, however, e x i s t as i o n p a i r s ) increases w i t h the degree of s t e r i c hindrance about t h e boron, i n t h e order: phenyl < 1-naphthyl < 2-naphthyl <• m e s i t y l The e f f e c t of t e t r a h y d r o f a r a n i n d i s s o l v i n g s o d i u m - t r i 1-naphthyl ~ borane as the green monomeric form, i n c o n t r a s t t o d i e t h y l ether d i s s o l v i n g i t as the orange dimeric form has been a t t r i b u t e d t o t h e s t r o n g e r donor character of t e t r a h y d r o f a r a n r e s u l t i n g i n a B-0 covalent bond (1-C H )3*B~- 0 ( C H ) } 10 7 2 4 + Na . The t r i a r y l b o r a n e - a l k a l i metal3 compounds are v e r y r e a c t i v e ; i o d i n e i n ether i s immediately d e c o l o r i s e d 2 Ph B Na* + I 3 2 = 2 Ph^B + 2NaI The r e a c t i o n w i t h methanol gives a boron hydride 50 derivative: 2Ph B~Na+ + MeOH - Na* j~Ph B-0Me~| ~ * Na+ j~Ph BH ~ J " 3 3 3 25- Trimethylborane reacts w i t h l i t h i u m aluminium hydride at room temperature (24 hours) t o form dimethyl aluminium hydride^ 1 LiAIH + Me-jB 4 LiBH^Me + Me AlH 2 52 Recently Wiley and co-workers have shown t r i e t h y l - borane t o form an a d d i t i o n compound w i t h sodium h y d r i d e . Sodium ( o r l i t h i u m ) t r i p h e n y l b o r o h y d r i d e can be obtained by the d i r e c t a d d i t i o n ( i n e t h e r ) o f t r i p h e n y l b o r a n e 53.54 to sodium o r l i t h i u m hydride, though a b e t t e r method ' i s t o add, say, L i H t o Ph^B and heat a t 180° u n t i l the melt solidifies. They are moderately r e a d i l y hydrolysed by water, but v i g o r o u s l y evolve hydrogen w i t h acids, Na £ph BHj" + H 0* = Na* + Ph^B + H + H 0. + 3 (iv) 3 2 2 REDUCING PROPERTIES The f o l l o w i n g examples o f r e a c t i o n s w i t h a l c o h o l s , aldehydes, ketones and c a r b o x y l i c acids show the reducing p r o p e r t i e s o f the t r i a l k y l b o r a n e s . B(C H ) 3 + RCHO B(C H ) 3 + RCH OH -» ( C H ) B(C H ) 3 t RCOOH -* ( C 5 ^ 2 2 2 2 5 5 5 (C H ) 2 5 2 2 H 2 2 5 BOCHg R + C H 2 BOCH R + C H 2 B 4 2 0 0 C R + 2 H °2 6 g 26. Using these r e a c t i o n s , Meerwein, Hinz, Majart and 55 Sonke prepared boronous esters and also d i a l k y l b o r o n i t e s . T r i a r y l b o r a n e s r e a c t w i t h alcohols t o form b o r i n i c esters. (C H ) 6 (v) 5 3 B + C H OH -* ( C H ) 2 5 6 5 2 BOC H + CgHg 2 5 REACTIONS WITH ALKALIS T r i a r y l b o r a n e s react w i t h a l k a l i s t o form complexes c o n t a i n i n g f o u r - covalent boron. A compound which c r y s t a l - l i s e d w i t h water or a l c o h o l was obtained by D. L. Fowler 56 and C. A. Kraus' from t r i p h e n y l b o r a n e w i t h t e t r a m e t h y l ammonium hydroxide i n a l c o h o l i c s o l u t i o n . Ph B + ( O H ) to -* ( 0 H ) n I Ph,BOH 1 3 3 4 3 4 Fusion o f triphenylborane w i t h a l k a l i - m e t a l hydroxide + gives t h e sodium s a l t Na j^Ph^BOlTJ"* which c r y s t a l l i s e s w i t h solvent o f c r y s t a l l i s a t i o n from ether. Although s o l u b l e i n water the s a l t hydrolyses and a c e t i c a c i d causes immediate p r e c i p i t a t i o n o f t r i p h e n y l b o r a n e . A similar compound, Na* j~Ph BCN~l ~, prepared by G. W i t t i g and P. 57 3 Raff, i s more stable t o acids and i s n e u t r a l i n aqueous solution. The l i t h i u m , sodium, potassium and ammonium s a l t s are soluble i n water, t h e rubidium s a l t i s s l i g h t l y 27. soluble and the ceasium s a l t i s i n s o l u b l e . 1:1 Complexes between t r i p h e n y l b o r a n e and sodamide and t e t r a - n - b u t y l ammonium hydroxide were confirmed by C. A. Kraus and W. WV 58 Hawes. I n the former case, the e l e c t r i c a l c o n d u c t i v i t y and the d i s s o c i a t i o n constant were measured, and i n the l a t t e r t h e p o l a r i s a t i o n curve. accurately T r i - ot-naphthylborane was t i t r a t e d i n a l c o h o l i c S o l u t i o n o f sodium meth- oxide, ethoxide, or isopropoxide, using phenolphthaiein as i n d i c a t o r . + ( 0 H ) B + Na OGH " 1 0 (vi) 7 3 3 Na*j~ 59 (C H ) BOCH 10 7 3 AMINE COMPLEXES The v o l a t i l e t r i a l k y l b o r a n e s , being Lewis acids, are s t r o n g l y e l e c t r o p h i l i c and t h i s p r o p e r t y makes them u s e f u l i n the study of t h e e l e c t r o n i c and s t e r i c e f f e c t s i n f l u e n c i n g coordination compounds. The most e x t e n s i v e l y studied compounds are the 1:1 complexes between ammonia or amines and the t r i a l k y l b o r a n e s (and the t r i a r y l b o r a n e s ) . These are prepared by i n t e r a c t i o n a t low temperatures i n e q u i molar p r o p o r t i o n s o f f under vacuum. or excess base, the excess being pumped I n cases where complex f o r m a t i o n has f a i l e d s t e r i c hindrance has g e n e r a l l y been the cause. 28. Trimethylborane can conveniently be stored and a l s o p u r i f i e d using i t s s o l i d complex w i t h trimethylamine (CH ) 3 B«H ( C H ) . 3 3 3 Pure t r i m e t h y l b o r a n e i s regenerated w i t h hydrogen chloride a f t e r resublimation (CH ) 3 3 B«N ( C H ) 3 3 + HC1 —» ( C H ) B + ( C H ) NHC1 3 3 3 3 T r i e t h y l b o r a n e has also been p u r i f i e d by i t s amine complex by the same workers, H. C. Brown and R. B. Johannesen^ T r i a r y l b o r a n e s l i k e t r i a l k y l b o r a n e s do n o t coordinate t o ethers or other oxygen donors but form a number of 1:1 complexes w i t h ammonia and amines. So great i s the s t e r i c s t r a i n i n these c o o r d i n a t i o n compounds t h a t ammonia the l e a s t s t e r i c a l l y hindered donor forms t h e most stable compounds. With t r i - c x - n a p h t h y l b o r o n , which can e x i s t i n two isomeric forms ( r o t a t i o n about B-C bonds) the order o f donor s t r e n g t h o f the methylamines i s NH 7 CH NH ^ ( C H ) 3 3 2 3 2 NH * ( C H ) 3 3 N, ammonia forms a s t a b l e compound y e t trimethylamine does n o t combine. (vii) COMPLEXES WITH ORGANO-METALLIC COMPOUNDS Trimethylborane reacts w i t h e t h y l - l i t h i u m i n benzene s o l u t i o n t o form a c r y s t a l l i n e compound L i B ( C H ) C H ^ , 3 which would normally be regarded as a s a l t L i + 3 2 B(CH?Kc H 3 3 25 29. hence i t s s o l u b i l i t y i n benzene, a s u i t a b l e solvent f o r c r y s t a l l i s a t i o n i s remarkable. H. I . Schlesinger and H. C. Brown*'"'" r e p o r t e d t h a t the compound d i s s o l v e s i n water t o give a c l e a r s o l u t i o n but w i t h i n a few seconds a gas i s evolved. A s i m i l a r compound LiB(CH-j) was pre- 4 pared from m e t h y l - l i t h i u m and t r i m e t h y l b o r a n e by D. Hurd. T. L i t h i u m t e t r a p h e n y l b o r a t e formed by the r e a c t i o n of p h e n y l - l i t h i u m w i t h an ether s o l u t i o n of t r i p h e n y l b o r o n was prepared by G. W i t t i g , C. Keicher, A. Ruckert and P. R a f f . ^ The s a l t , more s t a b l e than the a l k y l s a l t s , i s s t a b l e t o water and i s decomposed by acids only a t or more. 80° I t c r y s t a l l i s e s from ether as L i ( B P h ) 8 E t 0 , 4 the ether being l o s t i n h i g h vacuum. 2 The sodium s a l t i s best prepared by adding excess sodium c h l o r i d e t o the product of the r e a c t i o n between boron t r i f l u o r i d e and excess phenyl magnesium bromide ( a f t e r p r e c i p i t a t i o n of magnesium as carbonate). I t i s now a v a l u a b l e a n a l y t i c a l reagent p a r t i c u l a r l y f o r potassium, rubidium, and caesium as the s a l t s of these c a t i o n s are p r a c t i c a l l y i n s o l u b l e i n water. Several other c a t i o n s form t e t r a p h e n y l b o r a t e s whose i n s o l u b i l i t y renders them s u i t a b l e f o r gravimetric. a n a l y s i s , e.g [ph P] [BPh ] 4 4 [<30(CO )H ] 4 [BPh 1 4 30. Mixed complexes are w e l l e s t a b l i s h e d ; the compound L i ^Ph CSCB(Ph)^| was prepared by G. W i t t i g and P. Raff who warmed t r i p h e n y l b o r a n e and l i t h i u m phenyl- a c e t y l i d e and then cooled t o -80°G. The complex generates phenylacetylene w i t h acids and w i t h aqueous i o d i n e gave p h e n y l e t h i n y l i o d i d e . Triphenylborane and p-dimethylaminophenyllithium a f f o r d e d a complex from 65 which G. W i t t i g and W. Herwig i s o l a t e d an i n t e r e s t i n g " z w i t t e r i o n " m.p. 337°-339° a f t e r conversion t o the potassium s a l t and h e a t i n g w i t h methyl i o d i d e i n acetone. Mel [ M e H 2 < )> B P h + 3 Prolonged h e a t i n g o f the complexes i n aqueous c e l l o s o l v e r e s u l t e d i n decomposition. G. A. Razuvaev and T. G. B r i l k i n a ^ found t h a t benzene, phenol and d i p h e n y l b o r i n i c acid were obtained from sodium or potassium t e t r a p h e n y l boronates. Mixed complexes also reacted. K |BPh J -* CgHg + C H 0H + PhgBOH 4 g NH ^-C H BPh J 4 10 7 3 5 -s, C H 8 «. BPh NH 3C H g + PhB(0H) . 10 10 3 3 2 31 Mixed a r a l k y l complexes were r e c e n t l y obtained from a l k y l l i t h i u m (methyl, e t h y l ) compounds and t r i arylboranes (phenyl,cx-naphthyl). Lithium methyltri— borane decomposed on exposure t o a i r and f r e s h aqueous s o l u t i o n s gave no v i s i b l e evidence o f r e a c t i o n s w i t h potassium or ammonium s a l t s ; prolonged standing, however, caused p r e c i p i t a t i o n o f ammonium tetraphenylborane. (viii) INTERNAL COORDINATION COMPOUNDS When t r i v a l e n t boron i s bonded t o an atom* o f donor 2 character by t r i g o n a l Sp bonds i t i s possibles f o r the covalency o f the boron t o increase from three t o f o u r by i n t e r n a l c o o r d i n a t i o n . methyl Thus, f o r example i n aminodi- borane the boron atom assumes a s i m i l a r e l e c t r o n i c c o n f i g u r a t i o n t o t h a t o f the carbon atoms i n ethylene. - +• Me B-NH — 9 Me B - NH Coordination s a t u r a t i o n can also be achieved by 2 2 2 2 a s s o c i a t i o n , u s u a l l y d i m e r i s a t i o n , and J. Goubeau and 67 R. L i n k have obtained the above compound i n two d i f f e r e n t forms a monomeric gas (b.p. 1°) and c o l o u r l e s s c r y s t a l s (m.p. 9°). 32. Me B 2 = NH Me «B NH2 BMe2 a r e v e r s i b l e e q u i l i b r i u m i s observed i n the gas phase at room temperature. The nature of t h e atoms or groups attached t o t h e boron or n i t r o g e n determine which form of c o o r d i n a t i o n s a t u r a t i o n occurs. When r e l a t i v e l y e l e c t r o p o s i t i v e groups are bound t o boron double bonding i s favoured, e.g. Me BNMe i s m o n o m e r i c ^ ' ^ and t h e B-N 70 x 2 2 f o r c e constant ( f r o m i t s Raman spectrum B - N double bond(Me N) B, 2 3 71 ) indicates a S i m i l a r l y trisdimethylaminoboron, methoxy dimethylboron ( M e B 0 M e ) 2 methyl borate (MeO)^B are a l l monomeric. 6 9 , 7 2 and The degree o f c o o r d i n a t i v e s a t u r a t i o n i s n a t u r a l l y g r e a t e s t i n the t r i o x y or amino- compounds, and t h i s i s r e f l e c t e d i n a considerable d i m u n i t i o n of r e a c t i v i t y . 71 I n compounds l i k e Cl B-NMe 2 i s achieved by d i m e r i s a t i o n . 2 coordinative saturation Double bonding (B - N) i s e v i d e n t l y much weakened by t h e B-Cl, and t h i s substance can be obtained i n two forms; the v e r y r e a c t i v e l i q u i d monomer slowly changes i n t o a remarkable, u n r e a c t i v e s o l i d dimer. The dimer s t a b l e t o hot acids, i s converted back t o t h e 33. monomer on v a p o r i s a t i o n . The monomer i s v i o l e n t l y hydrolysed by c o l d water 2 Cl B-NMe 2 ^ 2 C1 ~BC^ ^>B~C1 2 2 N + Me 2 Reactions between boron t r i c h l o r i d e ( o r BBr^) and secondary amines w i t h r e l a t i v e l y bulky a l k y l or c y c l o a l k y l groups give aminoboron h a l i d e s which remain monomeric, e.g. 1 Pr NBCl , B u ^ B C l . 2 2 2 I n c o n t r a s t , p i p e r i d i n o - and morpholino- boron d i 73 c h l o r i d e g r a d u a l l y form dimers: / \ y B ci s / \ C 1 .B 2 / B 2 ci \ 2 The B o r a z i n e s , another s e r i e s of c y c l i c internal c o o r d i n a t i o n compounds, have been the s u b j e c t of a r e c e n t 74 review. Since the p r e p a r a t i o n of t h e parent compound b o r a z i n e , B^N^Hg, b . p . 5 3 ° by A. S t o c k 7 5 i n 1 9 2 6 the chemistry of t h i s c l a s s of compounds has been g r e a t l y extended. The compound was o r i g i n a l l y obtained by the thermal decomposition of the diborane-diammonia complex 34. B H .2NH 2 6 3 (now formulated as NHyBH'-NH^BH"). The planar e s s e n t i a l l y aromatic s t r u c t u r e of borazine has been confirmed by v a r i o u s electron 76 d i f f r a c t i o n and s p e c t r o s c o p i c studies. The main d i s t i n c t i o n from the u s u a l aromatic r i n g i s the a l t e r n a t i n g e l e c t r o n d e n s i t y r e s u l t i n g from the d i f f e r e n t e l e c t r o n e g a t i v i t i e s of the boron and n i t r o g e n atoms. Though borazine i t s e l f slowly decomposes a t room temperature, many of i t s d e r i v a t i v e s w i t h a r y l or a l k y l groups s u b s t i t u t e d f o r hydrogen ( e i t h e r on the boron or n i t r o g e n atoms) a r e s t a b l e when kept a t room temperature and some d e r i v a t i v e s have been studied as part of r e s e a r c h programmes aimed a t m a t e r i a l s r e s i s t a n t to high temperatures. S e v e r a l new methods have been devised f o r the p r e 77 p a r a t i o n of b o r a z i n e , one of which i s the r e a c t i o n 3 LiBH 4 + 3 NH C1 4 = (NH-BH) * 9 H 3 2 + 3 LiCl. R e a c t i o n of l i t h i u m borohydride w i t h methylammonium chloride s i m i l a r l y affords 3 LiBH 4 N-trimethylborazine: + 3 MeNH Cl = (MeN-BH) + 9 H 3 3 2 + .3 L i C l 35. Another method f o r the p r e p a r a t i o n of borazine i s the r e d u c t i o n of B - t r i c h l o r o b o r a z i n e w i t h sodium borohydride i n t r i e t h y l e n e g l y c o l dimethyl ether ( 2 , 3 , 8 , 1 1 - t e t r a 78 oxadecane)I B - t r i c h l o r o b o r a z i n e i s now relatively easily prepared from ammonium c h l o r i d e and boron t r i c h l o r i d e mixed w i t h pumice soaked i n c o b a l t n i t r a t e s o l u t i o n , d r i e d and reduced. B C 1 NH 01 4 1 N n 3 1 or HN / ^ C1B 2 6 -2 4 1 BCl \ NrA HH ^VCJ I ^ N a B H NH / HN \ NH HB / BH \ / N N H H B - t r i a l k y b o r a z i n e s are best prepared 80 of trialkylborane-ammine complexes: by the p y r o l y s i s 330° Me.B'NH. 3 3 > 20atm. (MeB-NH), + CH, 3 4 N - s u b s t i t u t e d borazines a l r e a d y mentioned above can a l s o be obtained by the r e d u c t i o n of the B - t r i c h l o r o - N 81 t r i a l k y l ( o r a r y l ) borazines w i t h l i t h i u m aluminium hydrideV 36. C1B„ BOl HB. iH R R Since the B - t r i c h l o r o - N - s u b s t i t u t e d borazines are f a i r l y r e a d i l y a c c e s s i b l e from boron t r i c h l o r i d e and the appropriate amine hydrochloride B-N s u b s t i t u t e d borazines are a l s o r e a d i l y prepared from the B - t r i c h l o r o compounds Op and Grignard or organo l i t h i u m reagents, or by F r i e d e l - Q •J Craft arylation. A somewhat remarkable development has been the p r e p a r a t i o n B-N s u b s t i t u t e d borazines by the a c t i o n of Grignard and organo-lithium reagents, not on B C 1 compounds 81 but on the B-H compounds. BH B^ X H B \ ^ n R BH m R'Li f ^ ( o r R'MgBr) ii R B \ N R i / N R R ^iH(orHMgBr) i B R I t i s p o s s i b l e to prepare borazines w i t h one, two, or a l l t h r e e B-H groups s u b s t i t u t e d . Borazines a r e much more c h e m i c a l l y r e a c t i v e than 37. analogous benzene compounds. Borazine i t s e l f adds water, methanol, a l k y l i o d i d e s and hydrogen h a l i d e s , the n e g a t i v e p a r t s of these reagents becoming attached to boron. BH BHC1 \H I I HB. BH *y \H I I HC1B N H _ 9 ^BHCl Nf H, 2 y m ^1 " B^ 1 \H I I C1B. BC1 NH [ B-trichloroborazine. The h y d r o l y t i c s e n s i t i v i t y i s c o n s i d e r a b l y a f f e c t e d by the s u b s t i t u e n t s e.g. B-tripheny-N-trimethylborazine i s r e l a t i v e l y e a s i l y hydrolysed w h i l s t B-trimethyl-Ntriphenyl borazine i s r e s i s t a n t . The h i g h l y s u b s t i t u t e d b o r a z i n e s . e.g. hexamethylborazine m.p.99, b.p.221°, a r e g e n e r a l l y substances of f a i r l y high thermal s t a b i l i t y . R a p i d l y developing i s the chemistry of a s e r i e s of i n t e r n a l c y c l i c c o o r d i n a t i o n compounds i n which each boron atom i s bonded t o two phosphorus ( o r a r s e n i c ) atoms or vice versa. These compounds a r e g e n e r a l l y t h e r m a l l y s t a b l e and r e s i s t a n t t o chemical a t t a c k and these p r o p e r t i e s have d i r e c t e d a t t e n t i o n t o the p o s s i b l e development of l i n e a r polymers of these g e n e r a l t y p e s . 38 R e a c t i o n between dimethylphosphine and bromodiraethylborane i n the presence of 1 mol. t r i e t h y l a m i n e g i v e s the f u l l y methylated phosphinoborane: Me PH 4 Me BBr •+ Et^N 2 2 Me P PMe 2 2 + Et NHBr 3 Me B^ BMe 2 / 2 0 0 X r Me 2 T h i s compound m.p. 333-334? i s r e s i s t a n t h y d r o l y s i s below 300? u n s t a b l e , but Me PBH 2 2 to acid I n c o n t r a s t , H PBMe i s r a t h e r 2 2 from Me^H-BH^ a t 150? forms 84 e x c e p t i o n a l l y s t a b l e c y c l i c t r i m e r s and t e t r a m e r s . Dimethylphosphinoborane polymers (Me PH«BH ). 2 2 n have been obtained w i t h n about 80 by the p y r o l y s i s of MegPH'BH^ i n the presence of an amine ( e . g . t r i e t h y l a m i n e ) as a c h a i n end b l o c k i n g group. These polymers melt a t c a . , 170° but at t h i s temperature sometimes rearrange t o form the thermo85 dynamically more s t a b l e c y c l i c t r i m e r s and t e t r a m e r s . 86 The only a r s e n i c analogues so f a r d e s c r i b e d , ( M e A s B H ) , m.p. 49.7 - 50.6? and (Me AsBH )^ m.p. 149.5 2 2 3 2 2 150.5? a r e d e c i d e d l y l e s s s t a b l e both t h e r m a l l y and t o hydrolysis. and Me B H , i 4 2 2 7 The sulphur compound? MeSBMe , from MeSH 2 s monomeric and e a s i l y hydrolysed 39. ( c . f . Me BOMe). 2 S e v e r a l phosphinoboranes have r e c e n t l y been prepared by two g e n e r a l methods, ' ^ by r e d u c t i o n of d i a l k y l ( o r d i a r y l ) chlorophosphines or o x y c h l o r i d e s i n ethylene g l y c o l dimethyl e t h e r or •diglyme e.g. P h P C l + NaBH 2 Me POCl 2 4 NaBH^ 1 w i t h sodium borohydride (Ph PBH ) 2 2 3 (Me PBH ) 2 2 2 (PhHP-BH K and ( E t J P B H ) , have a l s o been mentioned. 0 0 40. C) MIXED TRIALKYL AND ARYL-ALKYLBORANES D i - i s o b u t y l - t - b u t y l b o r a n e has been prepared from d i - i s o b u t y l f l u o r o b o r a n e (BUgBF) and t-butylmagnesium bromide and by f o u r other methods? 0 As a l r e a d y mentioned i t may be d i s t i l l e d without d i s p r o p o r t i o n a t i o n or r e a r r a n g e ment provided the b o i l i n g point does not exceed 60°, o t h e r wise Bu^B i s formed. I t seems t h a t not more than two t - b u t y l groups may be attached t o the same boron atom, and then only when the remaining group i s unbranched. m d i - t - b u t y l b o r a n e , b,p. Al l°/l'7 n-Butyl- mm and n - p e n t y l - d i - t - butylborane, b.p# 42*5 - 42»7°/0 5 mm., have been prepared, the f i r s t from boron t r i f l u o r i d e and t-butylmagnesium c h l o r i d e i n e t h e r c o n t a i n i n g a l a r g e excess of 1-butene; both compounds rearrange r a p i d l y when heated, g i v i n g a 2:1 mixture of Bu^jB and (n-C^H^J^B. (n-C^H^jBulB 37 I t has a l s o been p o s s i b l e to prepare n - a m y l - i s o b u t y l t-butylborane, b.p. 43*5 - 44°/0*5 mm., w i t h three d i f f e r e n t a l k y l groups; i t gave the c o r r e c t a l c o h o l s i n equal amounts 92 when o x i d i s e d w i t h a l k a l i n e hydrogen peroxide. q "i M i k h a i l o v and Shchegoleva^ J have prepared mixed tri- a l k y l b o r a n e s by the a d d i t i o n of organo-lithium compounds 41. i n e t h e r to n - b u t y l - d i - n - b u t y l b o r o n i t e i n the same s o l v e n t a t -70°C, e.g. pAi n + (Bu ) B0Bu n Bu^BPr 2 11 b.p. 76-80°/9 mm. The d i s c o v e r y t h a t the c o o r d i n a t i o n complex t - b u t y l borane-trimethylamine r e a c t s u n u s u a l l y r a p i d l y w i t h o l e f i n s at 50-60° has provided an improved route t o t - b u t y l d i - 94 alkylboranes^ Bi^BHgBMe^ ••• 2CH :CHEt = B u S u ^ B + NMe ^ 2 The exchange of r a d i c a l s R B f R*B ^ 3 R R*B + RR B 2 2 does not take p l a c e a t an a p p r e c i a b l e r a t e below 100°, u n l e s s R isec-branched ( e . g . P r , Bu ). The exchange i s , however, s t r o n g l y c a t a l y s e d by t r a c e s of t r i a l k y l a l u r a i n i u i t i through the formation R R Al 3 / R intermediates: R' y R.B + R,A1 3 of bridged ,B N s \ , R R R A l + RR B. 2 0 2 0 R 96 Dimethylbromoborane^ r e a c t s w i t h v i n y l sodium and p r o p e n y l l i t h i u m to form two mixed t r i a l k y l b o r a n e s which 42 r e a d i l y d i s p r o p o r t i o n a t e e.g. 2 Me B CH:CHR 2 -» Me^B * MeB(CH:CHR) 2 Mixed t r i a r y l b o r a n e s have only r e c e n t l y "been prepared. Disproportionation i s suppressed by working w i t h amine ( u s u a l l y p y r i d i n e ) complexes but once prejared the mixed arylboranes are r e l a t i v e l y s t a b l e t o d i s p r o p o r t i o n a t i o n . There i s evidence t h a t organo-lithium, Grignard reagents and other e l e c t r o n d i f i c i e n t compounds c a t a l y s e t h i s kind of d i s p r o p o r t i o n a t i o n , so the e s s e n t i a l point would appear to be c o o r d i n a t i v e s a t u r a t i o n of the boron during the p r e p a r a t i v e stages i n v o l v i n g such reagents. p-Tolyllithium and the p y r i d i n e complex B u ^ B P ^ p y y i e l d s p-GH^CgH^BPhgpy m.p. 156-158°. The p y r i d i n e can be removed by the a c t i o n Oif aqueous a c i d , e t h e r e a l hydrogen c h l o r i d e , or p i c r i c a c i d i n benzene. These methods have y i e l d e d the mixed a r y l s p-CH C H BPh , b.p. 170-173°/3 mm., ( l - C 3 6 4 2 1 ( ) H ) B P h , m.p. 7 2 146-148°, b.p. 230-240°/2 mm., and ( 1 - C H ) B C H 0 C H , 1 0 7 2 6 4 3 97 b.p. 197-199°/0-08 mm., Torsell? 8 obtained O-CH-jCgR^BPhg b.p. 167-9°/3 mm., and (0-CH CgH ) BPh from diphenylchloroborane and p h e n y l 3 4 2 difluoroborane r e s p e c t i v e l y w i t h the c o r r e c t proportions 43. of o-tolylmagnesium bromide. CYCLIC-BQRANES Attempts t o prepare a r a l k y l b o r a n e s such as PhBMeg have given only d i s p r o p o r t i o n a t i o n products, Ph^B + Me^B. i n this case T h i s ready d i s p r o p o r t i o n a t i o n has been a s c r i b e d t o the formation of r e l a t i v e l y low energy bridged dimers s i m i l a r t o those formed by aluminium a l k y l s : Ph \ Me / B 1 Me + Me Ph Me Me I \.' \ / B 5* )B )B / Me \ / \ Ph Me Ph Me X / m e Ph Me \ \ Me B +• B^ / \ \ Me Ph Me A l i c y c l i c boranes should t h e r e f o r e be s t a b l e t o d i s p r o p o r t i o n a t i o n and t h i s was confirmed by t h e p r e p a r a t i o n of ( a ) and ( b ) from phenyldifluoroborane qq and 1 , 5 - d i l i t h i o p e n t a n e : " Ph and 1 , 4 - d i l i t h i o b u t a n e Ph B u t y l analogues were unexpectedly obtained i n attempts t o prepare BUgBCCHg^B Bu!J ( n - 4 or 5) from d i - n - b u t y l c h l o r o borane and tetramethylene - (and pentamethylene-) dimagnesium bromide 44. 2Bu^BCl * BrMg(CH ) MgBr 2 Bu B( CHg ) BBUg + 2MgBrCl n 2 n I CH (CH ) X y 9 2 BBu n +• Bu*B on 2 Diboron t e t r a c h l o r i d e and ethylene form the compound ClgB CH 2 CH BC1 » which adds two moles of t r i e t h y l a m i n e , 2 1 0 1 2 and whose s t r u c t u r e has been confirmed by x-ray d i f f r a c t i o n 102 The c h l o r i n e atoms i n t h i s have been r e p l a c e d by methoxy (by methanol) or by methyl. C1 BCH CH BC1 2 2 2 2 + 2Me Zn -* Me BCH CH BMe 2 2 Slow p y r o l y s i s of Me BCH CH BMe 2 2 2 2 2 2 + 2ZnCl 2 2 a t .100 r e s u l t s i n the formation of much trimethylborane and of v a r i o u s v o l a t i l e and polymeric products t o which the f o l l o w i n g s t r u c t u r e s were a s s i g n e d :.103 MeB^ C 2 / ^BMe B C V H ^; 2 4— H 2 4 C B H 2 4 •B—CgHj— B — L Me Me J -CI* 2"4 B- •B \ / H °2 4 n 45. The r e a c t i o n , a l r e a d y mentioned, between t-butylborane-trimethylamine and o l e f i n s provides a neat method of p r e p a r i n g c y c l i c boranes: CH CH :CH.CH:CH 2 2 ^BHgKMe^B^B^ \H 2 - CH 2 | 2 - CH (60$). 2 These compounds appear t o deserve f u r t h e r study. 46. BORONIC ACIDS AND ESTERS 1. PREPARATION U n t i l very r e c e n t l y the main use of the e s t e r s was as p r e c u r s o r s to the a c i d s and so a t t e n t i o n w i l l , he concentrated on the a c i d s , s p e c i a l methods f o r the e s t e r s being mentioned i n a f i n a l sub-section. The more important methods f o r the p r e p a r a t i o n of boronic a c i d s and e s t e r s have depended on one of the f o l l o w i n g procedures: ( 1 ) the o x i d a t i o n borane to a boronic e s t e r followed of a t r i a l k y l - by h y d r o l y s i s to obtain the a c i d ; ( 2 ) the a d d i t i o n of a m e t a l l i c a l k y l or a r y l to a t r i a l k y l borate and the h y d r o l y s i s of the boronic e s t e r thus formed; ( 3 ) the a d d i t i o n of a m e t a l l i c a l k y l or a r y l to a boron t r i h a l i d e to obtain the a l k y l - or arylboron d i h a l i d e which on h y d r o l y s i s g i v e s the boronic a c i d or on a l c o h o l y s i s the e s t e r , (a) OXIDATION OF TRIALKYLBORONS S e v e r a l a l k y l b o r o n i c a c i d s have been prepared by a l l o w i n g t r i a l k y l b o r a n e s to stand f l a s k s and then h y d r o l y s i n g i n l o o s e l y stoppered 104 the products. Prankland 105 and Duppa ^ obtained d i e t h y l ethylboronate by the con- t r o l l e d oxidation of t r i e t h y l b o r a n e ; h y d r o l y s i s of t h e 47. e s t e r afforded e t h y l b o r o n i c a c i d . 2H 0 — ^ 9 B(C H ) 2 (b) 5 3 • 0 2 -» C H B ( O C H ) 2 5 2 5 2 C H B(OH) 2 5 * 2C H OH 2 2 5 METAL ALKYLS OR ARYLS ON TRIALKYL BORATES P h e n y l - and m - t o l y l b o r o n i c a c i d s and some of t h e i r a l k y l e s t e r s were prepared when Khotinsky and Melamed added e t h e r e a l s o l u t i o n s of t r i a l k y l borates (methyl, e t h y l , n-propyl, i s o - b u t y l , i s o - a m y l ) t o t h e arylmagnesium bromides a t 0°C. 2H 0 — % P B(OR) 3 + ArMgBr ArB(OR) 2 ArB(OH) 2 A d d i t i o n of t h e appropriate Grignard reagent to an e t h e r e a l s o l u t i o n of t r i - n - b u t y l borate cooled t o - SO°C 107 has been used e x t e n s i v e l y to prepare a r y l b o r o n i c a c i d s as w e l l as a l i p h a t i c (primary, secondary, and t e r t i a r y ) TO ft alkyl acids. P. B. B r i n d l e y , W. Gerrard and M. P. Lappert have shown f o r d i - n - b u t y l n-butylboronate t h a t employing n - b u t y l l i t h i u m i n s t e a d of the Grignard reagent improved the y i e l d by some 50 p e r cent, but u s i n g p h e n y l l i t h i u m i n p l a c e of phenylmagnesium bromide decreased the y i e l d , only about 3 6 per cent of phenylboronic a c i d being (c) obtained. METAL ALKYLS OR ARYLS ON BORON HALIDES M i c h a e l i s and Becker^"^ heated boron t r i c h l o r i d e and 48. diphenyl^-mercury i n a s e a l e d tube f o r 1 hour a t 180°- 200°C and thus obtained phenylboron d i c h l o r i d e which hydrolysed or a l c o h o l y s e d w i t h v i g o u r to give phenylboronic a c i d d i e t h y l phenylo-boronate, r e s p e c t i v e l y . and Several arylboronic a c i d s have been prepared u s i n g t h i s method^^" Hg(Ar) 2 + 2BC1 -* 2 A r B C l 3 t+ 2 Boron t r i b r o m i d e has advantages 2ArB(0H) 2 over the t r i c h l o r i d e i n t h a t r e f l u x c o n d i t i o n s can be used, i n s t e a d of the 112 p r e s s u r e v e s s e l , and the r e a c t i o n i s more r a p i d . The most s u c c e s s f u l m o d i f i c a t i o n i n v o l v e d the a d d i t i o n of the d i e t h y l e t h e r a t e of boron t r i b r o m i d e to the a l k y l - ^ " ^ or a r y l - " ^ ^ Grignard reagent i n e t h e r a t 0°C, and h y d r o l y s i s of the a l k y l - or a r y l b o r o n d i f l u o r i d e s to a f f o r d the boronic a c i d s . (d) OTHER METHODS FOR BORONIC ACIDS 115 S c h l e s i n g e r , F l o d i n and Burg J have prepared methyl- boronic a c i d by the h y d r o l y s i s of symmetrical d i m e t h y l d i borane. (CH BH ) 3 2 2 + 2H 0 -» 2CH 2 3 B(0H) 2 + 2H 2 E t h y l - and n-propylboronic a c i d s were formed when monoa l k y l ^ d i b o r a n e s , RB H^, were hydrolysed. 2 Amino-boronic a c i d s have been obtained by r e d u c t i o n of the corresponding n i t r o a c i d s , u s i n g e i t h e r hydrogenation 49 i n the presence o f p l a t i n u m 117 o r f r e s h l y p r e c i p i t a t e d 118 f e r r o u s hydroxide. By o x i d a t i o n of d i - n - p r o p y l b o r i n i c a c i d , formed by the h y d r o l y s i s o f di-n-propylboron oxide, HQ some n-propylboronic a c i d was obtained. ^ The o x i d a t i o n of d i a r y l b o r i n i c acids by halogens ( c h l o r i n e , bromine) 120 a f f o r d e d t h e corresponding boronic a c i d s . Ar BOH * H 0 + X 2 2 g -> 2ArB(0H) -v H I f ArX 2 Paraphenylene d i b o r o n i c acid, (OH) BCgH^B(OH) , and s e v e r a l esters have been prepared from methyl or b u t y l borate and paraphenylenedimagnesium bromide i n t e t r a h y d r o 121 2 2 f u r a n o r by the use o f paraphenylene d i l i t h i u m . (e) SPECIAL METHODS FOR BORONIC ESTERS A number o f a l k y l esters of a r y l b o r o n i c acids have been prepared i n n e a r l y q u a n t i t a t i v e y i e l d s from the approp r i a t e boronic a c i d and a l c o h o l , the water of e s t e r i f i c a t i o n being removed by r e f l u x i n g through a Soxhlet e x t r a c t o r o f anhydrous copper sulphate (methyl e s t e r s ) , o r by azeotropic d i s t i l l a t i o n w i t h excess o f t h e a l c o h o l ( n - p r o p y l and n - b u t y l e s t e r s ) , or by azeotropic d i s t i l l a t i o n w i t h excess 122 of the a l c o h o l and benzene ( e t h y l e s t e r s ) . Many other esters o f phenylboronic acid have also been prepared by t h i s 50. 123 me thodT A m o d i f i c a t i o n was t o use the phenylboronic 124 anhydride i n s t e a d of t h e a c i d . ArB(0H) -v 2R0H ^ ArB(0R) (CgH BO) + 6R0H 5=^ 3C H B(OR) + 3H" 0. 2 5 3 6 2H 0 2 2 5 2 2 Good y i e l d s (60-90 per cent) o f esters o f a r y l b o r o n i c acids w i t h c e r t a i n p o l y h y d r i c alcohols have been prepared by simply 125 mixing the two components, whereupon the e s t e r s p r e c i p i t a t e d . This method i s l i m i t e d i n i t s a p p l i c a t i o n t o those compounds where t h e esters are l e s s s o l u b l e than e i t h e r of t h e i r parent acids or a l c o h o l s . Alcoholysis. o f boronates was a good method f o r p r e p a r i n g esters of higher molecular weight from those o f lower molecular weight and the n - b u t y l s e c - b u t y l , i s o - b u t y l and octan-2-yl P esters of phenylboronic acid were prepared from d i e t h y l phenylboronate by r e a c t i o n w i t h the a p p r o p r i a t e a l c o h o l . ArB(0R) f 2R'0H ^* ArB(0R') * 2R0H Tetramethoxysilane and methyldibromoborane a f f o r d e d d i m e t h y l 127 me t h y l b o r o n a t e 2 Si(0Me ) 3 2 4 + MeBBr II. (a) MeB(0Me) + ( M e 0 ) S i B r 2 2 2 2 PROPERTIES PHYSICAL 128 129 Alkyl— and a r y l — boronic acids are monomeric y 51. (cryoscopic i n nitrobenzene) although s l i g h t a s s o c i a t i o n occurs i n benzene s o l u t i o n . The d i s s o c i a t i o n constants of many boronic a c i d s , mainly aromatic have been measured and i t i s i n t e r e s t i n g t o note t h a t phenylboronic a c i d i s three times as s t r o n g as b o r i c a c i d ^ " ^ (b) (i) CHEMICAL ACIDIC PROPERTIES Boronic acids r e a d i l y form anhydrides and e s t e r s . R e l a t i v e l y few s a l t s have been described although phenylboronic a c i d formed both a sodium and a calcium s a l t when t r e a t e d w i t h the a p p r o p r i a t e hydroxide^"^" n-Butylboronic acid formed a hydrated sodium s a l t when t r e a t e d w i t h very 1^2 concentrated sodium hydroxide. A r y l b o r o n i c acids are e a s i l y deboronated w i t h water at elevated temperatures, or more r a p i d l y w i t h acids or ( p r e f e r a b l y ) bases}"^ C H B(OH) + H 0 -» CgHg * B(OH) , 6 5 2 2 3 I n c o n t r a s t the deboronation of a l k y l b o r o n i c acids i s rather d i f f i c u l t . (ii) BORON-CARBON CLEAVAGE REACTIONS A l k y l b o r o n i c acids are r e a d i l y a u t o x i d i s e d i n d r y a i r 52. 1 t o the a l c o h o l and b o r i c a c i d ^ but the a r y l acids are quite stable. Both a l k y l - and a r y l - b o r o n i c acids are q u a n t i t a t i v e l y o x i d i s e d t o o r t h o b o r i c a c i d by hydrogen peroxide; use has been made of t h i s i n e s t i m a t i n g the'boron content o f such 135 compounds. Phenylboronic a c i d i s decomposed by halogens under q u i t e m i l d c o n d i t i o n s , i n aqueous s o l u t i o n ^ * * PhB(OH) + B r 2 2 + H 0 = PhBr + HBr + H B 0 2 3 3 and by mercuric h a l i d e s conveniently mercuric c h l o r i d e i n sodium c h l o r i d e s o l u t i o n , PhB(OH) 4. H g C l 2 2 + H 0 = PhHgCl 2 HC1 * H B0 . 3 3 This r e a c t i o n has also been used i n q u a n t i t a t i v e a n a l y t i c a l 137 procedures. A r y l b o r o n i c acids are best c h a r a c t e r i s e d as 138 diethanolamine esters (e.g.a) o r as the p y r i d i n e complexes - of the corresponding boroxines"* ^' (e.g.b) ym 0^ 2 PhB- NH / \ OC .CH CH 2 o — OcHcN-BPh 5 5 \ 0 — BPh 0 / BPh 2 ( a ) m.p. 214-215° ( b ) m.p. 154-156 1 53. The boronic esters are g e n e r a l l y e a s i l y hydrolysed. C y c l i c esters are somewhat more s t a b l e , but a s u b s t a n t i a l resistance t o h y d r o l y s i s only develops when the boron i s coordinatively saturated. 54 F. 1. BORINIC ACIDS AND ESTERS PREPARATION The b o r i n i c acids have g e n e r a l l y been prepared by h y d r o l y s i s methods using h a l i d e s , e s t e r s , or borines. Diphenylborinic a c i d , the f i r s t b o r i n i c a c i d t o be p r e - pared, was obtained by the h y d r o l y s i s of diphenylboron c h l o r i d e which was obtained i n low y i e l d from the r e a c t i o n of diphenyl mercury w i t h phenylboron d i c h l o r i d e . ^ " ^ ' ^ ^ R-0 (C H ) 6 5 2 Hg + PhBCl -> Ph BCl 2 2 PhgBOH A number of d i a r y l b o r i n i c acids have been prepared by the r e a c t i o n of 2 moles of a r y l Grignard reagent w i t h 1 1 mole of t r i - i s o - b u t y l b o r a t e , o r t r i - n - b u t y l b o r a t e , " " ^ " and y i e l d s v a r i e d w i t h c o n d i t i o n s , p a r t i c u l a r l y temperature 14-4and order of a d d i t i o n . Recently M i k h a i l o r and Vaver I K orf v i e i d s ) 0 have prepared several d i a r y l b o r i n i c a c i d s v ' J by the a c t i o n of arylmagnesium bromide on t r i - i s o - b u t y l b o r a t e i n ether a t -60°C. ArMgBr •»- (iso-BuO)^B -»• Ar BOH 2 (ArBO)^ + iso-BuOH H^BO^ MgBr . The h y d r o l y s i s of b o r i n i c esters obtained by various 2 55. 14-5 methods has been e x t e n s i v e l y used t o prepare d i a r y l 1 dialkyl- ^ 6 1 and mixed a l k y l a r y l b o r i n i c acids (CgH^CH-jBOH) The h y d r o l y s i s o f s u i t a b l e methyldiboranes ( d i - , tri- and t e t r a - ) , such t h a t two methyl groups were attached t o 14-8 the boron atom gave d i m e t h y l b o r i n i c acid and s i m i l a r l y 14.Q the e t h y l - and p r o p y l - homologues were obtained. Recently T. P. Povlock and W. T. l i p p i n c o t t 1 5 0 have reported a new synthesis of a r y l b o r i n i c acids (62$ y i e l d s ) from aromatic Grignard reagents (mole r a t i o 9:1) and t r i methoxyboroxine a t 25°C. The three main methods of p r e p a r i n g b o r i n i c esters u t i l i s e ( 1 ) t r i a l k y l - and t r i a r y l b o r a n e s , ( 2 ) i n t e r a c t i o n of orthoborates or boronic e s t e r s w i t h organometallie compounds or ( 3 ) t h e e s t e r i f i c a t i o n of b o r i n i c acids, anhydrides, or d i a l k y l - or d i a r y l b o r o n c h l o r i d e s , (l) T r i a l k y l b o r a n e s and T r i a r y l b o r a n e s . B o r i n i c esters were f i r s t prepared by the r e a c t i o n of t r i e t h y l b o r a n e w i t h c e r t a i n aldehydes (CCl^CHO, CgH^CHO \ 151 p-ClCgH^CHO) or w i t h the corresponding a l c o h o l s . B ( C H ) + RCHO -» ( C H ) BOCH R * 2 5 B(C H ) 2 5 3 3 2 5 2 + RCH OH -+ ( C H ) 2 2 5 2 2 BOCHgR + CgHg 56. Triphenylborane reacted w i t h a l c o h o l t o form e t h y l diphenylborinate: Ph-jB -K EtOH = Ph BOEt + CgHg 2 The 2-aminoethyl esters of both d i p h e n y l b o r i n i c and di-of-naphthylborinic acids were prepared i n an analogous manner, from the appropriate t r i a r y l b o r a n e and 152 ethanolamine, by heating i n b o i l i n g benzene. However w i t h methanol and the t r i a r y l b o r a n e the r e a c t i o n was more complex; the <x-naphthyl compound a f f o r d e d naphthalene and t r i m e t h y l borate, w h i l s t w i t h triphenylborane and a l a r g e excess of methanol phenyl d i p h e n y l b o r o n i t e , ( ^ 5 ^ ) 2 BOCgH^, was i s o l a t e d as an ammonia complex. Triethylborane reacted w i t h c a r b o x y l i c acids t o give 15 3 aryl diethylboronites. B ( C H ) + RCOOH -* (0 H ) BOOCR + C 6 ' H 2 Oxidation 5 3 2 5 2 2 of t r i a l k y l b o r a n e s t o produce b o r i n a t e s has 154- been mentioned e a r l i e r . (2) Organometallic Compounds The a d d i t i o n of 2 moles of allylmagnesium bromide t o 155 1 mole of t r i m e t h y l borate affibrded methyl d i a l l y l b o r o n i t e ; 156 by s i m i l a r r e a c t i o n n - b u t y l d i - n - o c t y l b o r o n i t e was obtained. 57. The b u t y l esters of d i p h e n y l b o r i n i c by t h i s method: 2 ArMgBr + B ( O C H - i ) 4 9 3 acid were also prepared -* Ar BOC H -i 2 4 g D i a l k y l arylboronates react w i t h arylmagnesium bromides 157 t o produce mixed boronites Ar B0R Ar'MgBr + ArB(OR) Ar n - O c t y l l i t h i u m reacted w i t h t r i - n - b u t y l borate t o give n - b u t y l 158 2^ 9 c di-n-octylboronite. J Both n - b u t y l - and n - p r o p y l l i t h i u m w i t h d i i s o b u t y l phenylboronate gave mixed b o r o n i t e s . R LiR ••- C H B ( O C H - i ) E s t e r i f i c a t i o n methods 6 (3) 5 4 g 2 C 6 5^ > B O C 4 H 9 - i H + LiOR D i - n - b u t y l b o r i n i c anhydride heated w i t h 1-butanol y i e l d e d the 0 ester^ ( C H ) B 0 + 2C H OH 4 The g 2 2 4 g 2 ( 0 ^ ) ^ 0 ^ + H0 2 a d d i t i o n of 2-amino-2=methyl-l-propanol of an aqueous e t h a n o l i c s o l u t i o n of the mixed <x-naphthyl-phenylborinic a c i d , obtained by h y d r o l y s i s of the 2-aminoethyl ester w i t h a concentrated e t h e r e a l s o l u t i o n of hydrogen c h l o r i d e , gave the appropriate 0;0' ester. - D i b e n z y l d i l i t h i u m and t r i - n - b u t y l borate reacted 58. t o give a product which on h y d r o l y s i s and e s t e r i f i c a t i o n 1 w i t h e t h a n o l i c ethanolamine a f f o r d e d t h e ester:" "^ CH2 " CH2 v X \ n l u n 2 Mixed n - b u t y l b o r o n i t e s were prepared s i m i l a r l y , using d i - n - b u t y l phenyl- ( o r ©<_naphthyl) boronate andc*-naphthyl ( o r phenyl) magnesium bromide, * 0 Mixed n-propyl d i a r y l - b o r o n i t e s were also prepared from mixed d i a r y l b o r i n i c acids, obtained i n s i t u , by e s t e r i f i c a t i o n w i t h 1-propanol, t h e water produced being removed as an azeotrope w i t h excess of the alcohol?"^ A r y l b o r o n i c acid d i a l k y l esters r e a t w i t h a l k y l c magnesium bromide i n mole r a t i o 1:1 a t -65° t o -60° t o form 165 esters of a r y l - a l k y l b o r i n i c a c i d s , i f t h e Grignard reagent i 3 added i n mole r a t i o 2 s l t o t h e boronic e s t e r , d i s p r o p o r t i o n a t i o n occurs w i t h f o r m a t i o n of t r i - a l k y l b o r a n e s and t r i a r y l boranes. II (1) PROPERTIES PHYSICAL Pew p h y s i c a l p r o p e r t i e s of the b o r i n i c acids have so f a r been determined and even t h e reported boiling 59. p o i n t s may w e l l be those o f the anhydrides. The values f o r the l a t e n t heat o f v a p o r i s a t i o n and Trouton's constant f o r methyl dimethyboronite have been obtained, and i t s molecular weight showed i t t o be monomeric^^ D i p h e n y l b o r i n i c a c i d was also shown t o be mono167 meric (cryoscopic i n camphor). (2) CHEMICAL The d i a l k y l - and d i a r y l b o r i n i c acids are very weak acids, they r e a d i l y form anhydrides and can e a s i l y be esterified. D i p h e n y l b o r i n i c a c i d was s a i d not t o form 168 salts with alkalis. Several b o r i n i c acids have been q u a n t i t a t i v e l y o x i d i s e d 16° f i r s t t o boronic acids and subsequently t o o r t h o b o r i c a c i d , J by c h l o r i n e , bromine or hydrogen peroxide, Ar BOH + Y 2 2 * H 0 -* ArB(OH) ArB(OH) 4- Y 2 2 2 2 ArY + HY + H 0 -* B(OH) * ArY + HY 2 3 Y = C I , Br or OH. When di-<x-naphthylborinic acid was heated f o r 6 hours at 120-130°C, naphthalene.was obtained as a sublimate and 170 a residue of (X-naphthylboronic anhydride remained. Similar cleavage was e f f e c t e d by h e a t i n g the a c i d w i t h an aqueous 60. 171 e t h a n o l i c s o l u t i o n of 2-(diraethylamino) ethanol. 3(o(-C H ) BOH 3 C H • (o<-C H B0) 10 o<-C H 10 7 2 1Q 8 10 7 3 7 rBOH + H 0 C Hg * C H B ( 0 H ) 2 10 6 5 2 H °6 5 Boronic esters are g e n e r a l l y e a s i l y o x i d i s e d ( r e q u i r i n g work under n i t r o g e n ) . Hydrolysis of t h e b o r i n i c esters has already been mentioned. aminoethyl diphenylboronite The r e l a t i v e s t a b i l i t y o f 2towards both o x i d a t i o n and h y d r o l y s i s ( i t can be r e c r y s t a l l i s e d from water) has l e d 172 t o t h e suggestion t h a t i t s s t r u c t u r e i s as shown. H °6 5 C H 6 5 \ CH, / N• H, -CH, Such c h e l a t i o n has also been suggested t o account f o r the i n a b i l i t y f o r both t h i s e s t e r and i t s cy-naphthyl analog t o 17} undergo a l c o h o l y s i s r e a c t i o n s . 2-Aminoethyl ptf-naphthyl phenylboronite reacted w i t h e t h a n o l i c hydrogen peroxide and w i t h aqueous zinc c h l o r i d e 61 t o give crt-naphthol and naphthalene, r e s p e c t i v e l y ^ ^ Amine complexes of several a r y l b o r i n i c acids have been 175 used as a method f o r p u r i f y i n g the acids. Methyl d i - methylboronite formed a 1:1 complex (m.p. 51-52°C) w i t h dimethylamine. Phenyl d i p h e n y l b o r o n i t e formed a 1:1 176 complex w i t h ammonia and a s i m i l a r complex formed 177 i s o b u t y l diphenylboronite s l o w l y evolved ammonia". 62. BOROXINES 1. PREPARATION The c y c l i c anhydrides o f boronic acids are commonly known as boroxines, o f e m p i r i c a l formula (BOR)^, R being an a r y l or a l k y l group. U n t i l r e c e n t l y the a l k y l boroxines were normally ~L7ft prepared by dehydration o f a l k y l b o r o n i c acids whilst 179 a r y l boroxines were obtained by h e a t i n g the acids. Recently an azeotropic d i s t i l l a t i o n process f o r the dehydration o f l a r g e amounts o f organo-boronic acids has been used t o prepare a l k y l b o r o x i n e s , some of them h i t h e r t o unknown. The most convenient p r e p a r a t i v e method f o r normal a l k y l b o r o x i n e s i s the r e a c t i o n between t r i a l k y l lfil boranes and anhydrous b o r i c oxide. BR 0 R.B 4- B„0 RB 0 For example h e a t i n g equimolar q u a n t i t i e s o f t r i - n - b u t y l borane and b o r i c oxide a t r e f l u x (200°) f o r 40 hours and vacuum d i s t i l l a t i o n o f the product gives almost 70$ y i e l d 63* of t r i - n - b u t y l b o r o x i n e . T r i - e t h y l , -n-propyl, - i s o b u t y l , - c y c l o h e x y l and -phenylboroxines have been prepared by t h i s method but i s o m e r i s a t i o n can occur i n t h i s r e a c t i o n . T r i - n - b u t y l b o r o x i n e r e s u l t s from t r i - s - b u t y l b o r a n e and b o r i c oxide. II. (a) PROPERTIES PHYSICAL Molecular weight measurements (cryoscopic i n nitrobenzene) on a r y l - and a l k y l - boroxines show them t o be t r i m e r i c . E l e c t r o n d i f f r a c t i o n measurements on t r i - m e t h y l b o r o x i n e are i n agreement w i t h a planar six-membered r i n g w i t h methyl groups bonded, i n the plane o f the r i n g , t o boron. 18 ^ Bond distances and angles were determined. (b) CHEMICAL I n c o n t r a s t t o d i a l k y l - s i l i c o n oxides the boroxines show no tendency t o form higher c y c l i c or l i n e a r polymers. They are r e a d i l y hydrated t o the a c i d s ^ " ^ and r e a c t w i t h alcohols^®^ (RBO)^ -»• 3 H 0 2 m 3RB(OH) 2 (RBO) + 6R»OH - 3RB(OR') + 3 H 0 . 3 2 2 T r i - a l k y l and - a r y l boroxines form 1:1 c o o r d i n a t i o n 64, complexes, those between t r i a r y l b o r o x i n e s and p y r i d i n e being s u i t a b l e f o r i d e n t i f i c a t i o n purposes. The t r i a l k y l b o r o x i n e s are slowly oxidised by atmospheric oxygen. T r i - n - b u t y l b o r o x i n e y i e l d s n-butyldichloroborane and di-n-butylchloroborane on treatment w i t h aluminium chloride and the mixed t r i a l k y l b o r a n e BuBMe^ i s said t o be formed w i t h t r i m e t h y l a l u m i n i u m or methylaluminium • • 188 sesqui-xodide AlCl. Me,A1 BuBCl + BuBCl <s BU-JB^O-J —^=-> BuBMe 2 2 65. ALKYL- AND ARYL- DIHALOBORANES 1. PREPARATION I n view o f t h e i r importance t o t h e research t o be described, t h e boron h a l i d e s are reviewed i n more d e t a i l than the other compounds. S u b s t i t u t e d dihaloboranes are g e n e r a l l y prepared by one of the f o l l o w i n g r e a c t i o n s : (a) REACTIONS WITH ORGANO-METALLIC COMPOUNDS Dimethyl zinc was r e p o r t e d t o r e a c t w i t h boron t r i c h l o r i d e t o give methyldichloroborane and d i m e t h y l 190 chloroborane 189 but t h e r e a c t i o n could n o t be confirmed*J 2(CH ) 2n * 3 B C 1 3 2 3 (CH^BCl 4- 2CH,BC1 2 *- ZnClg Reaction between t r i a l k y l a l u m i n i u m compounds and boron h a l i d e s has been used t o prepare s e v e r a l a l k y l dihaloboranes 1 9 1 ' 1 9 2 . Several a r y l d i c h l o r o b o r a n e s have been obtained from the r e a c t i o n between boron t r i c h l o r i d e and t h e a p p r o p r i a t e 19 "\ d i - a r y l mercury compound. Ar Hg + BC1 ArHgCl + ArBClg. 2 3 Phenyldifluoroborane and p - t o l y l d i f l u o r o b o r a n e have 66 been prepared by d i r e c t d i s t i l l a t i o n from the r e a c t i o n between boron t r i f l u o r i d e - e t h e r complex and the Grignard 194- 1Q5 reagent i n ether. ^*- -? Z, X J Boron t r i c h l o r i d e heated w i t h 2-chlorovinylmercuric c h l o r i d e i n kerosine i n a sealed tube f o r 2 hours a t 50°C ( o r a l l o w i n g the mixture t o stand f o r 12 hours a t room temperature) gave t h e d i c h l o r i d e ^ ^ Phenyldichloroborane can now be prepared i n good 197 y i e l d s from boron t r i c h l o r i d e and t e t r a p h e n y l t i n i n benzene Ph Sn + 4BC1 4 3 4PhBCl + SnCl . 2 4 t h e r e s t i l l appears t o be some doubt about the mechanism 198 of the r e a c t i o n * The new method f o r making PhBClg from benzene and boron t r i c h l o r i d e may make t h i s the most convenient r o u t e nqq t o phenylboronic a c i d . * The p r e p a r a t i o n of boronic (and b o r i n i c ) esters by r e a c t i o n between o l e f i n s and l e s s than 1 mol. diborane i s at present being d e v e l o p e d ? ^ ( b ) TRIALKYLBORANES Hydrogen c h l o r i d e bubbled i n t o t r i - n - b u t y l b o r a n e a t 110°, i n the presence of aluminium c h l o r i d e , has been used 67. t o prepare n - b u t y l d i c h l o r o b o r a n e , RJB + HC1 -» R BC1 0 5 d HC1 > A1C1 201 RBC1, + RH. d 3 Trimethylborane r e a c t s w i t h boron t r i c h l o r i d e t o give 202 m e t h y l d i c h l o r o b o r a n e ^ Me^B + 2BC1^-* 3MeBCl 2 (c) BORONIC AND BORINIC ACIDS AND DERIVATIVES The r a p i d r e a c t i o n , a t atmospheric pressure, between t r i a l k y l b o r o x i n e s and boron t r i c h l o r i d e i s t h e most con203 venient method f o r the p r e p a r a t i o n of a l k y l d i e h l o r o b o r a n e s . (RBO) + 2BC1 = 3RBG1 -» 3 3 2 * °y 2 Slow d i s p r o p o r t i o n a t i o n of t h e d i a l k y l c h l o r o b o r a n e s a t temperatures above 180° and take o f f of t h e more v o l a t i l e RBOl.^ a t t h e t o p of t h e column has also been u s e d . ^ ^ The r e a c t i o n between t r i - o r g a n o b o r o x i n e s and boron t r i f l u o r i d e or t r i c h l o r i d e has been claimed as a general method f o r the p r e p a r a t i o n o f organo s u b s t i t u t e d d i h a l o boranes. * The y i e l d s o f d i f l u o r o b o r a n e s are g e n e r a l l y much lower than those o f dichloroboranes. Phenyldichloroborane, f o r example, i s best prepared by t h e dropwise a d d i t i o n of l i q u i d boron t r i c h l o r i d e (cooled t o -39°C) t o t r i p h e n y l b o r o x i n e i n methylene c h l o r i d e cooled to -80°C. 207 68 (d) OTHER METHODS n - B u t y l d i f l u o r o b o r a n e has been prepared by s a t u r a t i n g ?nft di-n-butylboronate w i t h boron t r i f l u o r i d e . Phenyldichloro- borane was s i m i l a r l y prepared, the accompanying d i c h l o r o b o r o n i t e being e i t h e r unstable ( i f secondary a l k y l ) or decomposed by a t r a c e amount o f f e r r i c c h l o r i d e , t o f a c i l i t a t e separation.209 RB(0R') + 2BP 2 RBP + 2R'0 BFg. 3 2 Triphenylboroxine when heated, w i t h phosphorus p e n t a c h l o r i d e , under r e f l u x (120-130°) f o r 24 hours gives p h e n y l d i c h l o r o 210 borane. Recently a r y l d i f l u o r o b o r a n e s have been obtained by the a c t i o n of antimony t r i f l u o r i d e and s i m i l a r f l u o r i n a t i n g agents on the corresponding 211 eratures. II. (a) d i c h l o r o compounds a t low temp- PROPERTIES PHYSICAL A l k y l - and a r y l - dihaloboranes density 2 1 2 ' 2 1 3 ' 2 1 4 - are monomeric (vapour and cryoscopic i n c h l o r o f o r m 216 E l e c t r o n d i f f r a c t i o n measurements 2 1 5 ). on m e t h y l d i f l u o r o - borane have shown molecule t o be planar and s i m i l a r i n con- 69. f i g u r a t i o n t o boron t r i f l u o r i d e . (b) CHEMICAL Methyldichloroborane 217 easily i s said to disproportionate whereas the a l k y l - d i c h l o r o (and d i f l u o r o ) boranes ( e t h y l t o h e x y l ) are q u i t e s t a b l e t o d i s p r o p o r t i o n a t i o n up to 0 170 . 2 1 8 Alkyldihaloboranes are pyrophoric the c h l o r o compounds being more so than the f l u o r o compounds. I t is interesting to note t h a t the pyrophoric nature i s not dependent on v o l a t i l i t y since n - b u t y l d i f l u o r o b o r a n e can be r a p ^ l y poured i n a i r whereas the secondary and t e r t i a r y compounds are spontaneously inflammable. I t has been suggested t h a t hyper conjugation may account f o r the unexpectedly reduced e l e c t r o p h i l i c character of the boron i n s t r a i g h t chain compounds,~~ P R I c H — H CI =^ B; ci R— 4- c CI - B H C o n t r i b u t i o n s from q u i n o i d s t r u c t u r e s may CI account f o r the l a c k of pyrophoric nature i n aryldihaloboranes. Alkyldihaloboranes form 1:1 complexes w i t h ethers the B-0 bond being stronger i n the c h l o r o - than i n the f l u o r o - 70 compounds. n-Amyldifluoroborane- ether complex completely d i s s o c i a t e s on f r a c t i o n a l d i s t i l l a t i o n whereas n - b u t y l d i 220 chloroborane- ether decomposes, 6 n Et 0 - Bu BCl 2 n 2 -» EtCl + (EtO)tfu BCl. 221 r~ h Phenyldichloroborane r e a c t s w i t h most ethers F 2° and (C1CH 0H ) 0 do not r e a c t j a t h i g h temperatures, a l k y l 2 2 2 c h l o r i d e s are produced e x c l u s i v e l y from the more e l e c t r o n r e l e a s i n g group i n a mixed e t h e r , as w e l l as an a l k y l - or a r y l - phenylchloroboronite IL Ph .01 ^ 0 : + PhBCl,-* . B R' ^0' C 1 R N R' P h X ?<ci R + CI * PhB^ OR + Cl OR RC1 + PhBCl(0R)s Phenyldichloroborane w i t h hydrogen i o d i d e and i o d i n e pop gives a phenyldiiodoborane hydrogen i o d i d e complex PhBI .2HI. 2 A l k y l - and aryl-dihaloboranes form s t a b l e 1:1 complexes w i t h amines, those w i t h p y r i d i n e ( p a r t i c u l a r l y a r y l s ) are u s e f u l for identification purposes. 2 2 3 ' 2 2 4 ' 2 2 5 Reduction of phenyldichloroborane w i t h l i t h i u m aluminium 22 hydride i n the presence of p y r i d i n e gives PhBH py. ^ 2 If 71 p y r i d i n e i s absent triphenylborane and diborane are obtained, probably by d i s p r o p o r t i o n a t i o n 3PhBH 2 Ph B B H . 3 2 Diphenyl diborane ( P h B H ) 2 2 g m.p. 85° has also been obtained from triphenylborane and diborane a t 80° and 2*2 atm., 228 pressure. 72 DIALKYL AND DIARYL HALOBORANES 1. PREPARATION The d i a l k y l - and d i a r y l - haloboranes have been prepared by methods s i m i l a r t o those used f o r the d i h a l i d e s . (a) ORGANOMETALLIC COMPOUNDS Diphenylbromoborane i s obtained from diphenyl mercury 229 and boron t r i b r o m i d e 2Ph Hg + BBr^ 2PhHgBr +- PhgBBr 2 Phenyldichloroborane reacts w i t h diphenyl merciairy t o give 2 30 diphenylchloroborane. PhBCl Ph Hg 2 PhKgCl -v PhgBCl 2 B i s ( 2 - c h l o r o v i n y l - ) m e r c u r y and boron t r i c h l o r i d e when heated 2 31 under r e f l u x i n benzene give the boron monochloride. (b) TRIALKYLBORANES AND AMINODIALKYLBORANES D i a l k y l c h l o r o b o r a n e s are now q u i t e accessible since they are prepared i n e x c e l l e n t y i e l d by bubbling boron t r i c h l o r i d e i n t o the appropriate t r i a l k y l b o r a n e a t 160? The e q u i l i b r i u m 2R BC1^ RBC1 + R^B l i e s f a r t o the l e f t , a t l e a s t a t temp2 2 2 eratures up t o 180°. ^ 2 73. The r e a c t i o n between t r i a l k y l b o r a n e s and hydrogen 233 h a l i d e s has been used t o prepare several d i a l k y l h a l o b o r a n e s , R B + HX R BC1 + RH 3 2 Tri-n-propylborane and i o d i n e at 140° 2 34. iodoborane 12 + Pr^B Pr^BI + give d i - n - p r o p y l n other products i n c l u d i n g P r B I 2 Antimony t r i c h l o r i d e and t r i b r o m i d e on the i o d o - compound give the d i - n - p r o p y l c h l o r o - and bromo- borane but antimony t r i f l u o r i d e and other f l u o r i n a t i n g agents f a i l e d t o produce the fluoroborane. 100°for n-Pr„BI + SbCl. * * 2 hours Pr^BCl J 100° Pr^BI 4- SbBr. > * 2 hours J d Pr*BBr d 2 35 T r i - n - b u t y l b o r a n e and bromine give di-n-butylbromoborane. Dimethylchloroborane was obtained from (dimethylamino) d i )orai and excess hydrogen c h l o r i d e reacted at 20°C f o r methylborane 236 2 hours (Me) BNHMe • HC1 2 (Me^BCl.NHgMe HC1 5* Me BCl 2 +MeNH .HCl 2 74 (c) BORONIC AND BORINIC ACIDS AND DERIVATIVES Diphenylchloro (and bromo) borane have r e c e n t l y been prepared by the r e a c t i o n a t -80°C between d i p h e n y l b o r i n i c 2 37 anhydride and t h e appropriate boron h a l i d e . ( P h B ) 0 •»• BX^ 2 2 Ph BX + BOX 2 2 The r e a c t i o n between diphenylboronitea and phosphorus pentahalides has been used t o prepare diphenyl-chloro (and broroo) b o r a n e . Ph B0R + PX 2 5 2 2 -v Ph BX + RX + POX^ 2 Y i e l d s from these r e a c t i o n s were r a t h e r low due t o appreciable d i s s o c i a t i o n of t h e pentahalides a t t h e n e c e s s a r i l y h i g h temperatures. II. (a) PROPERTIES PHYSICAL 240 241 242 Dimethyldiethyland d i p r o p y l chloroboranes were found t o be monomeric i n t h e vapour phase and t h e Trouton constant f o r the n - p r o p y l - compound was obtained. D e n s i t i e s , r e f r a c t i v e i n d i c e s and i n f r a - r e d spectra o f many 4 d i a l k y l h a l o b o r a n e s have been obtained? " (b) 3 CHEMICAL Dialkylhaloboranes are r e s i s t a n t t o d i s p r o p o r t i o n a t i o n 75. up t o 170 , however a t higher temperatures the e q u i l i b r i u m 2R BCl5* RBC1 •* R-jB, though f a r t o t h e l e f t does e x i s t , 2 2 and c a r e f u l take o f f o f the more v o l a t i l e alkyldichloroborane 24 at atmospheric pressure leads t o complete d i s p r o p o r t i o n a t i o n . I t appears t h a t t h e mechanism f o r the d i s p r o p o r t i o n a t i o n i s s i m i l a r t o t h a t o f t h e t r i a l k y l b o r a n e s , a dimeric intermediate i s formed by the overlapping o f halogen o r b i t a l s w i t h unoccupied boron p - o r b i t a l s , the a l k y l d i h a l o b o r a n e produced r a p i d l y reacts w i t h excess t r i a l k y l b o r a n e so t h a t the d i a l k y l haloborane i s produced e x c l u s i v e l y . Several d i a l k y l - and d i a r y l - haloboranes have been characterised by h y d r o l y s i s t o the corresponding acids or 245 anhydrides, Ph„BCl + H«0 -* [ p h B j 2 2HC1 2 n Bu«BCl f H„0 -» Bu-BOH f HCl The halides r e a d i l y undergo a l c o h o l y s i s . n Ph BBr + Bu 0H 2 1 -» PhgBOBu + HBr. Reduction o f dibutylchloroborane 24 i n ether ** w i t h sodium-potassium a l l o y , gives a coloured s o l u t i o n something equivalent 1 t o d i b u t y l b o r o n ' which containing disproportionates 76. on evaporation of the ether i n t o t r i b u t y l b o r a n e and a glassy residue ( B u B ) which evolves hydrogen on h y d r o l y s i s . n . BC1 •*• K IBU^B] 2 ~» Bu^B + BuB n Reduction w i t h 2 mols. of metal leads t o an a l k a l i metal d i b u t y l b o r i d e which forms dibutylmethylborane on treatment w i t h methyl iodide. _ B u p C l + 2K Mel f Bu^BMe -» BupK No r e a c t i o n was observed when diphenylbromoborane stood 0 '"^47 over sodium wire i n pentane f o r 50 hours a t 20 C. 248 Diphenylchloroborane and secondary amines react i n ether t o give s o l i d s of the type Ph,,B - NR 2 Ph BCl + Et NH 2 2 Ph BNEt 2 2 + HC1 Ph BNEt m.p. 36-37°, b.p. 159°-l62°/ll mm., and Ph BN(CH ) 2 2 2 2 5 m.p. 65-66° b.p. 200-203°/l9 mm., were obtained. Several d i a r y l h a l o b o r a n e s have been reacted w i t h p y r i d i n e 249 t o produce s t a b l e complexes. Compounds of the general type (PhpBX) are s t a b l e t o ethers f o r as long as 2 hours a t 20°C, but experiments a t 250 higher temperatures have not y e t been attempted. 77. Diphenylchloroborane undergoes an unusual r e a c t i o n w i t h aluminium c h l o r i d e i n e t h y l methyl ketone, whereby diphenylboronium PhgB", ions seem to be formed. of s i l v e r p e r c h l o r a t e Addition to a s o l u t i o n of diphenylchloroborane i n nitrobenzene causes immediate p r e c i p i t a t i o n of s i l v e r c h l o r i d e , and the s o l u t i o n contains diphenylboronium 251 perchlorate. P h B C l + AgClO^ -» AgCl Ph B C10^ + 2 2 I f the r e a c t i o n i s c a r r i e d out i n nitromethane, and b i p y r i d y l added a f t e r removal of s i l v e r c h l o r i d e , the c r y s t a l l i n e compound 2,2'-bipyridyldiphenylboronium p e r 252 chlorate c r y s t a l l i s e s : dipy P h B C l + AgC10 2 + 4 Ph B C10 2 - r » 4 Idipy BPhJ C10~. Although e s t e r s of b o r i n i c a c i d s are r e a d i l y hydrolysed the e s t e r ( a ) m.p. 74—75° ( q u a n t i t a t i v e l y from P h B C l and 2 e t h y l a c e t o - a c e t a t e ) , i s v e r y r e s i s t a n t to h y d r o l y s i s . 0 — 2 \ C OEt / 0 0 — OHj 0 2 \ C— OEt / 0 0 — CH, I t i a both conjugated and c o o r d i n a t i v e l y saturated? PART I I PREPARATION OP REAGENTS 78. The p r e p a r a t i o n of chlorodiphenylborane (GgH^) BC1 2 Trimethoxyboroxine (87g., 0*5 mole) i n d r y ether (900 c.c.) was s l o w l y added (2 hours) t o phenylmagnesium bromide (4-75 mole) i n t h e same solvent (3000 c.c.) while the temperature was maintained between 24° and 26°. A f t e r adding a l l the boroxine and s t i r r i n g f o r a f u r t h e r 2 hours the r e a c t i o n mixture was hydrolysed (465 c.c. i n 11. o f w a t e r ) . with hydrochloric acid The ether l a y e r was then sep- arated, washed three times w i t h water, and d i s t i l l e d t o low bulk. The remainder o f t h e ether was evaporated from t h e y e l l o w o i l y a c i d on a water bath. The a c i d was heated (20 mins) w i t h 250 c.c. o f water on a steam bath t o remove any boronic a c i d , and then separated, dissolved i n ether (400 c.c.) and t h e monoethanolamine ester of t h e a c i d (202g., 8856 m.p. 188°- 89°) was prec i p i t a t e d on t h e a d d i t i o n of monoethanolamine ( 9 1 c.o.) i n water (400 c.c. ) 2 ^ Hydrolysis o f t h e ester i n a ^^^50 s o l u t i o n o f acetone and methanol w i t h h y d r o c h l o r i c a c i d (95 c.c.) and s u f f i c i e n t water t o separate t h e l a y e r s (500 c.c.) a f f o r d e d t h e pure a c i d which was separated d i s s o l v e d i n ether (400 c.c.) and d r i e d (anhyd. MgSO^). A f t e r removal of t h e ether, t h e a c i d was pumped (0«006 mm.) f o r 3 hours on a water bath a t 100? 79. when i t s o l i d i f i e d forming the anhydride ( c r y s t a l l i s e d from pentane m.p. 116-116*5 , 110g.,) Chlorodiplienylborane (m.p. 21-5-22? b.p. 80°-82°/ 0»05 mms., 65g., 83*5^) was obtained by the r e a c t i o n between d i p h e n y l b o r i n i c anhydride and boron t r i c h l o r i d e i n methylene c h l o r i d e , a s p r e v i o u s l y d e s c r i b e d by Gerrard, Lappert, Dandgoanker and A b e l I ' B e t t e r y i e l d s than those d e s c r i b e d were obtained by vacuum d i s t i l l i n g d i r e c t l y from the s o l i d g e l of boron o x y c h l o r i d e . OMe B °| MeOB.^ ° 9 PhMgBr -9- Ph BOMgBr 2 > PhgBOH ^BOMe Ph B0H <e— Ph I o NH2 d CH HOCH CH NH 2 2 BCl, [ P h B ] ,0 2 Ph BCl 2 C h l o r o d i - p - t o l y l b o r a n e (CH^CgH^JgBCl (m.p. 64° b.p. 110113/o•! mm I8*2g., 76*4$) and Chlorodi-p-bromphenylborane ( B r C H ) B C l , (m.p. 79-80°, b.p. 1 8 4 ° - 7 % . I ^ 6 4 2 23-5g., y i e l d 64$) were s i m i l a r l y prepared from trimethoxyboroxine and the appropriate Grignard reagent. 2 2 80. The p r e p a r a t i o n of f l u o r o d i m e s i t y l b o r a n e (2,4,6,CH2CgH ) BF. 2 2 Boron t r i f l u o r i d e - e t h e r a t e (10'6g., 0*075 mole) was slowly added t o mesitylmagnesium bromide (0-24 mole) pre258 pared by the method described by Brown and Dodson. The r e a c t i o n mixture was r e f l u x e d (2 hours) and then l e f t t o s e t t l e overnight. The yellow-orange upper l a y e r was sep- arated ( N ) and a f t e r removal of solvent a f f o r d e d on vacuum 2 d i s t i l l a t i o n f l u o r o d i m e s i t y l b o r a n e (m.p. 76°-77° sealed tube b.p. 130-2°/ .5 mm 16-8g., y i e l d 84$) 0 The p r e p a r a t i o n o f dimethylamino boron d i c h l o r i d e Dimethylaminoboron d i c h l o r i d e (b.p. 50-54°/o,0 mm 94g., 76$) was I t was prepared by the method described by J. P. Brown?"^ found by vapour phase chromatography t h a t even a f t e r two c a r e f u l f r a c t i o n a t i o n s the f i n a l product contained a con s i d e r a b l e amount of benzene, The p r e p a r a t i o n of diphenylphosphine The p r e p a r a t i o n of diphenylphosphine from t r i p h e n y l p h o s phine and l i t h i u m shot i n t e t r a h y d r o f u r a n has already been 9 fin described. However increased y i e l d s of the diphenylphos- phine were obtained by using sodium wire i n s t e a d of l i t h i u m shot and deaerated a c i d f o r h y d r o l y s i s . Ph P + 2Na 3 PhNa 4- PhgPNa PluPH H0 Freshly cut sodium wire (10g.,) was pressed(N ) i n t o 2 2 81. a s o l u t i o n of triphenylphosphine (52»6g., 0*2 mole) i n dry t e t r a h y d r o f u r a n (250 c . c ) . The s o l u t i o n r a p i d l y "became deep red i n colour and i t slowly became q u i t e warm. s t i r r i n g the r e a c t i o n mixture (2 hours) i t was w i t h d i l u t e h y d r o c h l o r i c a c i d t o pH 7-7*5. After hydrolysed Tetrahydrofuran was removed by d i s t i l l a t i o n and vacuum d i s t i l l a t i o n a f f o r d e d diphenylphosphine (110-112°/2 mm. 26-4g., 71%) The p r e p a r a t i o n of di-m-tolylphosphine Pure di-m-tolylphosphine not described was hitherto prepared by the method described by 261 Gilman and D. Wittenberg phosphine. (b,p. 102°-4°/o.l mm.) H. f o r the p r e p a r a t i o n of d i p h e n y l - The t r i - m - t o l y l p h o s p h i n e was prepared as des- c r i b e d below. The i n f r a spectrum of the phosphine a colotirless a i r s e n s i t i v e l i q u i d showed the s t r o n g P-H absorption a t 4*33 u. O x i d a t i o n w i t h aqueous a l c o h o l i c hydrogen peroxide afforded d i - m - t o l y l p h o s p h i n i c a c i d (m.p. 169°)• The p r e p a r a t i o n of t r i - m - t o l y l p h o s p h i n e Phosphorus t r i c h l o r i d e (65 c.c. 0*73 mole) i n dry ether (200 c.c.) was slowly added (Ng) t o m - t o l y l magnesium bromide (2*9 mole) i n the same solvent ( 1 1 ) . f i n a l a d d i t i o n of h a l i d e the s o l u t i o n was and then c a r e f u l l y hydrolysed a f t e r the r e f l u x e d ( 1 hour) w i t h deaerated d i l u t e hydro- 82. c h l o r i c a c i d ( f i n a l pH 7-7*5). The ether l a y e r was separated, d r i e d (anhydrous magnesium sulphate) and d i s t i l l e d t o low b u l k before f i n a l l y pumping d r y . Crys t a l l i s a t i o n ( c h a r c o a l ) from ethanol a f f o r d e d t r i - m - t o l y l phosphine (m.p. 104°, 121g., 49*2$). The p r e p a r a t i o n o f t r i p h e n y l a r s i n e Anhydrous arsenic t r i c h l o r i d e (126 c.c., 1*5 mole) i n d r y ether (350 c.c.) was s l o w l y added ( N ) t o phenyl2 magnesium bromide (5 mole) i n t h e same solvent ( 3 1 . ) . A f t e r the f i n a l a d d i t i o n of h a l i d e t h e r e a c t i o n mixture was r e f l u x e d (£ hour) and c a r e f u l l y hydrolysed w i t h d i l u t e hydrochloric acid, The ether l a y e r was separated, d r i e d (anhydrous magnesium sulphate) and concentrated before being pumped d r y . C r y s t a l l i s a t i o n from ethanol ( c h a r c o a l ) a f f o r d e d l a r g e white c r y s t a l s of t r i p h e n y l a r s i n e (m.p. 5960°, 370g., y i e l d 8 l # ) . The p r e p a r a t i o n o f d i p h e n y l a r s i n e Diphenylarsine (b.p. 120°-22°/l.O mm, 55*2g., y i e l d 68»2$) was prepared by the method described by W. Kuchen and H. Buchwald from t r i p h e n y l a r s i n e and l i t h i u m shot i n t e t r a h y d r o f u r a n . Higher y i e l d s of a r s i n e were obtained by u s i n g deaerated d i l u t e h y d r o c h l o r i c acid f o r h y d r o l y s i s . 83 The p r e p a r a t i o n o f phenylphosphine Phenylphosphine (b.p. 40°/9-10 mms 30*2g., y i e l d 61$) was obtained from phenyldichlorphosphine ( 8 0 g . ) and l i t h i u m f aluminium hydride (10g.,) as described by W. Kuchen and H. Buchwald. I t was found t h a t increased y i e l d s were obtained when t h e white p r e c i p i t a t e formed a f t e r h y d r o l y s i s was e x t r a c t e d again w i t h hot ether, a f t e r decanting o f f the original solution. PART III EXPERIMENTAL RESULTS 84. Microanalyses (C,H, and halogen) are by Mr. A. Wiper and Miss V. Conway, and i n f r a r e d spectra are measured by Mr. L. Chadwick and Miss D. A. Chapman of these l a b o r a t o r i e s . Combustion analyses o f t e n presented the d i f f i c u l t i e s , f a m i l i a r w i t h organo-boron compounds, due t o the r e t e n t i o n of carbon as boron carbide i n combustion residues, l e a d i n g t o e r r a t i c carbon r e s u l t s . More r e p r o d u c i b l e r e s u l t s were g e n e r a l l y obtained when smaller samples were b u r n t , and when t h e residue a f t e r combustion was heated w i t h an oxygen enriched flame. Compounds were i n several instances i d e n t i f i e d by q u a n t i t a t i v e h y d r o l y s i s ( f o r amino-) or o x i d a t i o n r e a c t i o n s ( f o r phosphino- and a r s i n o - d e r i v a t i v e s ) . Cryoscopic constants were determined u s i n g biphenyl f o r benzene and j 3 - n i t r o t o i u e n e f o r nitrobenzene. Except i n t h e case of one compound (PhgB N H ) » 2 2 f o r which r e f r a c t i v i t i e s were measured over a range o f wavel e n g t h s , r e f r a c t i v i t i e s were measured a t 6620A 0 (Jena i n t e r f e r e n c e f i l t e r ) and atom p o l a r i s a t i o n s were taken as IQfo of these r e f r a c t i v i t i e s . Dipole moments were measured i n benzene s o l u t i o n , t o t a l p o l a r i z a t i o n s being derived by H a l v e r s t a d t and Kumler's method. I n s p i t e o f the apparent a s s o c i a t i o n 85. of many o f the compounds s t u d i e d , as suggested by cryoscopic measurements, d i e l e c t r i c constant - weight f r a c t i o n p l o t s were always very n e a r l y l i n e a r . I n fra red spectra were measured w i t h a Grubb-Parsons GS2A g r a t i n g spectrometer. Aminodiphenylborane (Ph B NHg^ 2 Chlorodiphenylborane (10g., 0*05 mole) i n d r y ether (100 c.c.) was s a t u r a t e d w i t h ammonia a t room temperature and t r i e t h y l a m i n e (5*lg.» 0*05 mole) i n ether (50 c.c.) was s l o w l y added. The r e a c t i o n mixture was b o i l e d w i t h r e f l u x ( 1 h o u r ) , cooled, and f i l t e r e d under n i t r o g e n from triethylamine hydrochloride. The f i l t r a t e was pumped dry and the c o l o u r l e s s product c r y s t a l l i s e d from benzene, m.p. 129-130°(3-6g., 43%) (Pound: C, 79-4; H, 6-7 C H 1 2 i2 B N r e q u i r e s C, 79*9; H, 6-6%) Aminodimesitylborane (2,4,6,CH^CgH ) BNH 2 2 2 D i m e s i t y l f l u o r o b o r a n e (6g., 0*224 mole) i n ether was slowly added t o excess ammonia i n the same solvent (50 c.c.) cooled t o -60°C. An immediate p r e c i p i t a t e of d i m e s i t y l fluoroborane-ammonia complex (m.p. 144°-5°) a s observed. W The f i n a l r e a c t i o n mixture was r e f l u x e d (48 hours) and t h e p r e c i p i t a t e slowly r e d i s s o l v e d and ammonium f l u o r i d e (0»4g.,) 86. was p r e c i p i t a t e d . Pumping o f f solvent a f f o r d e d aminodimesitylborane ( c r y s t a l l i s e d from pet., ether, m.p. 118°20° 5'5g., y i e l d 92-6$) Pound Ms B, 93'4, 93*5$, NH 5*96, 2 2 5*92$ C H BN r e q u i r e s MsgB 94*1%, NH fcO# 18 24 2 Dimethylaminodiphenylborane, Ph B»NMe 2 2 To a s o l u t i o n o f monomeric dimethylamino dichloroborane (3*2g., 0*025 mole) i n benzene (50 c.c.) was slowly added phenylmagnesium bromide (0-05 mole) i n ether. The r e a c t i o n mixture was pumped dry, t o remove the ether since magnesium h a l i d e - ether complexes are s o l u b l e i n organic solvents, and the organic product was e x t r a c t e d w i t h hot benzene. Vacuum d i s t i l l a t i o n o f the e x t r a c t yielded^ a c l e a r c o l o u r l e s s , a i r s e n s i t i v e l i q u i d product, b.p. 102-104°/ 0*05 mm. ( 4 - l g . , 81$) (Pound: 0, 80-8; H, 8-0. C H 1 4 1 6 BN r e q u i r e s C, 80»4; H, 7'6%) Dimethylamino d i - p - t o l y l b o r a n e , (p-CH^CgH.^) B«NMe , b.p. 2 2 110-112°/0-04-0-05 mm. (4"5g., 76$) Pounds C, 80-0; H, 8«6. G H 16 20 B N r e < l u i r e s c » 81*1; H, 8*4$. By h y d r o l y s i s , found: (p_-CH C H ) B, 81-8; 80-5; Me N, 18*8, 18-3. C H BN r e q u i r e s 3 6 4 2 2 l6 2Q (p_-CH C H ) B, 81-5; Me N, 18-6%) and 3 6 4 2 2 Dimethylamino di-p-bromophenylborane, (p-BrCgH ) B"NMe , 4 2 2 m.p. 39-40° from benzene-hexane ( 4 - l g 44$) (Pound: C, 46*6; H, 3'7; Br 43-9- C H B B r N r e q u i r e s C, 45-8; H, 3-8; Br, u 1 4 2 87. 43*7$) were s i m i l a r l y prepared using £-tolyl- and p_-bromphenylmagnesium bromide r e s p e c t i v e l y . 88. Diphenylaminodiphenylborane Pb^B NPh (Method 2 1.) L i t h i u m diphenylamide («051 moles) i n dry ether was slowly added t o an e q u i v a l e n t q u a n t i t y of c h l o r o - d i p h e n y l borane i n the same solvent a t -60°C. The r e a c t i o n m i x t u r e was allowed t o warm t o room temperature, f i l t e r e d under n i t r o g e n , and the white product which r e s u l t e d from pumping solvent from the f i l t r a t e was crystal3.ised from benzene, l l * 9 g . , m.p. C H 24 20 B N r e c 148-150 (66%) (Pound: C, 85*8; H, 6-1; B, 3*14' l u i r e s c 6 » 8 *4; H, 6*0; B, 3*26%). 0*l86g. was warmed w i t h aqueous acetone f o r a few minutes, and a s l i g h t excess of ethanolamine was added. The r e a c t i o n mixture was poured i n t o water, the s o l i d c o l l e c t e d , pumped dry and sublimed i n vacuo. The sublimate, 0«093g.» m.p. 56°, was identified (infra-red spectrum) as diphenylamine, and the residue 0*132g., m.p. l88°-9°, was s i m i l a r l y i d e n t i f i e d a3 the ethanolamine ester of d i p h e n y l b o r i n i c a c i d . C^H^QBN r e q u i r e s 0*096g, and 0*128g, r e s p e c t i v e l y . (Method 2.) Freshly p u r i f i e d diphenylamine (8*5g, 0*05 moles i n benzene was added t o a s o l u t i o n c o n t a i n i n g e q u i v a l e n t amounts of t r i e t h y l a m i n e (9*1 mis.,) and chlorodiphenylborane (lOg.) i n the same s o l v e n t . The r e a c t i o n mixture was b o i l e d w i t h 89. r e f l u x (30 min.), f i l t e r e d under n i t r o g e n from t r i ethylamine h y d r o c h l o r i d e (6*2g.) m.p. 255-6? and the f i l t r a t e concentrated t o c r y s t a l l i s a t i o n ( l l ' l g . 61$). The i n f r a spectrum o f the product was i d e n t i c a l w i t h t h a t of the m a t e r i a l prepared by method ( 1 ) . Di-p-tolylaminodiphenylborane, [Ph B'N( CgH^jD-CH^g]» tn.p. 2 130-132° ( f r o m a benzene-hexane m i x t u r e ) H, 6*5. found: [Pound: C, 85•3; C H BN r e q u i r e s C, 86«3; H, 6»8%. 2g 24 Ph B, 45*9; (p_-CH C H ) N 54-9. 2 3 6 4 2 By h y d r o l y s i s , C^H^BN r e q u i r e s PhpB, 45*8? (pj-CH^CgH^^N 54*2%] was prepared by methods (1) 53% and (2) 57%. Diphenylaminodi-p-tolylborane [(^-CH^CgH^) B«NPh ]. p 2 This was prepared by method ( 2 ) and the white product was c r y s t a l l i s e d from benzene-hexane (5*9g.» 67%), m.p. 72-73° [Pound: C, 89'9; H, 7-0. C H BN r e q u i r e s C, 89'1; H, 7*0%. 26 24 By h y d r o l y s i s , found: (p_-CH CgH ) B , 53'8, 53-7; Ph N, 46*8, 3 46'4. 4 2 2 C H BN r e q u i r e s (jo-CH C H ) B, 53'4? Ph N, 46-6%]. 2g 24 3 6 4 2 2 Aminodi-o-tolylborane, (o-CH CgH ) B»NH - This was prepared 3 4 i n ether s o l u t i o n by method ( 2 ) . 2 2 A f t e r f i l t r a t i o n ( N ) from ? t r i e t h y l a m i n e h y d r o c h l o r i d e , the product was obtained by vacuum d i s t i l l a t i o n (67*2% b.p, 86°-88°/ 3o"mm. [By h y d r o l y s i s , found: 3 c H (o-CH CgH ) B, 91-9%? NH , 7«6%, 7»4%; i 4 i B N r e q u i r e s 3 4 2 2 ( o - 0 H c H ) B , 92-3%; NH , 7-7%.] 3 6 4 2 2 6 90. Diphenyl(diethylphosphine)borane, Ph B.PEt 2 2 n - B u t y l l i t h i u m (0»025 mole) i n d r y benzene (50 c.c.) was s l o w l y added t o a s o l u t i o n o f diethylphosphine (2*3g.. 0-025 mole) i n the same solvent a t room temperature. Suf- f i c i e n t t e t r a h y d r o f u r a n (30 c.c.) was added t o d i s s o l v e the pale y e l l o w p r e c i p i t a t e ( L i P E t ) , and t o the s o l u t i o n 2 was s l o w l y added chlorodiphenylborane (5g., 0*025 mole) i n benzene (50 c . c . ) , and the y e l l o w orange colour s l o w l y disappeared. mixture. Water (100 c.c.) was added t o the r e a c t i o n The benzene l a y e r when separated, d r i e d (MgSO^) and pumped d r y , gave a c o l o u r l e s s ppduct, m.p. 192° from benzene (5-3g., 84%) (Pound: C, 75«8; H, 7-9; B, 4-4; P, 12.0. C H BP r e q u i r e s G, 75-6; H= 7-9; B, 4 0 5 ; P, 11*8%). 16 20 M-p-bromphenyl(diethylphosphino)borane, (p-BrCgH^) B.PEt ) 2 2 This was s i m i l a r l y prepared from c h l o r o (di-p-bromphenyl)borane, and c r y s t a l l i s e d from benzene-hexane, m.p. 202? 4-8g., 49% (Pound: C, 45-9; H, 4-3: Br, 38-1. C 1 6 H l 8 BBr P r e q u i r e s C, 46-5; H, 4-4; B, 38*9%) 2 A d d i t i o n of methyl i o d i d e t o a s o l u t i o n of the phosphinoborane i n benzene gave an immediate white p r e c i p i t a t e of methiodide, m.p. 310-312° (decomp.) (Pound: I , 23*3. C H B B r l P requires I , 1 7 2 l 2 22*9%). 23*1, 91. Diphenyl(diphenylphosphino)borane, [Ph B*PPh 3 2 2 Chlorodiphenylborane (5g) i n dry benzene (50 c.c.) was added a t room temperature t o a mixture o f d i p h e n y l phosphine (4*2g 0*025 mole) and t r i e t h y l a m i n e (2*5g., 0*025 mole) i n benzene (50 c . c . ) . P a r t of the r e s u l t i n g t h i c k white p r e c i p i t a t e was d i s s o l v e d by the a d d i t i o n of water, and the r e s t was separated by f i l t r a t i o n , washed s e v e r a l times w i t h e t h e r , pumped d r y , and the phosphinoborane c o l l e c t e d i by 3 ; s u b l i m a t i o n (240°/l0~ mm., 5 4g., 61%) H, 5*6, [Pound: C, 78-9; C H BP r e q u i r e s C, 82*3; H, 5'7% 24 2Q 0•1906g.,] warmed w i t h aqueous a l c o h o l i c hydrogen peroxide, phenol separated; by steam d i s t i l l a t i o n and converted t o the tribromo d e r i v a t i v e , y i e l d e d tribromophenol, m.p. 95°=6°, 0*348g. C ^H BP r e q u i r e s 2 0»359g. 20 Diphenyl phosphinic a c i d (m.p. 195°-6°) was i s o l a t e d , but not q u a n t i t a t i v e l y from the steam d i s t i l l a t i o n r e s i d u e . This compound was also prepared by method ( 1 ) Ph Ph PNa Ph Ph + C1B Ph + B Ph Ph NaCl Ph A deep red s o l u t i o n of the sodium d e r i v a t i v e o f d i phenylphosphine (0*025 mole) i n d r y 2,5 dioxahexane (50 c.c.) 92. was s l o w l y added t o a s o l u t i o n of chlorodiphenylborane (5g., 0'025 mole) i n the same solvent (50 c.c.) a t -60°C. The s o l u t i o n was i n s t a n t l y decolourised and a white p r e c i p i t a t e was formed. A f t e r treatment w i t h de-aerated water (50 c.c.) and several washings w i t h ether, the i n f r a red spectrum o f the w a t e r - i n s o l u b l e s o l i d product showed the presence of P-H bonds. Vacuum s u b l i m a t i o n of the s o l i d product a f f o r d e d d i p h e n y l (diphenylphosphino) borane 3 (240°/lO~ mm., 4-5g., 51*) Chlorodiphenyl(diphenylphosphine)borane, BClPh PHPhp 2 Diphenyiphosphine (4«2g., 0«025 mole) i n d r y benzene (25 c.c.) was s l o w l y added t o chlorodiphenylborane (5g.» 0*025 mole) i n benzene (20 c.e.). The white crystalline and very hygroscopic adduct (7-3g., 75*), m.p. 83-85? was H c o l l e c t e d by f i l t r a t i o n . (Pound: CI, 9*04, 9-08, C 4 2 1 2 BC1 P r e q u i r e s CI, 9*18*) Triethylammonium chlorodiphenyl( diphenylpho:sphino)borate Et^NH"*" BClPh PPh~ 2 - Diphenylphosphine (42g., 0-025 mole) i n d r y benzene (25 c.c.) was added dropwise t o a mixture of chlorodiphenylborane (5g.,) and t r i e t h y l a m i n e (2»5g.) i n benzene (25 c . c . ) . The c o l o u r l e s s s a l t immediately p r e c i p i t a t e d was c o l l e c t e d by f i l t r a t i o n (9«3g., 77* m.p. 152-3°). (Pound: C, 72-4; H, 7-7, B, 3-71, C I , 6-9, Et.N, 93. 19'8. C H BC1NP r e q u i r e s C, 73*5; H, 7'4," B, 3*24; 30 36 CI, 7-1; Et-jN, 20-1%). Diphenyl(di-m-tolylphosphino)borane, Pb^B P( CgH^m-CH^Jr, A deep red s o l u t i o n o f t h e sodium d e r i v a t i v e of di-mt o l y l p h o s p h i n e (4'2g., 0*02 mole), prepared by adding f r e s h l y pressed sodium wire against a c u r r e n t o f n i t r o g e n i n t o a s o l u t i o n of t h e phosphine i n t e t r a h y d r o f u r a n (20 c . c ) , was added t o an equivalent amount of chlorodiphenylborane (4g.) i n d i e t h y l ether (20 c.c.) a t room temperature. was immediately cipitated. The s o l u t i o n decolourised and sodium c h l o r i d e was p r e - Most of the solvent was then removed by pumping the r e a c t i o n m i x t u r e , and the residue was e x t r a c t e d w i t h hot benzene. Evaporation of t h e benzene s o l u t i o n gave the c o l o u r l e s s phosphinoborane ( 5 ' l g . , 67%), m.p. 123-4°- (Pound; C, 81'9; H, 6'3; G H BP r e q u i r e s G, 82-4,- H, 6*4%,) 26 24 Di-m-tolylphosphinodi-p-tolylborane, m-CH ) 3 (jo-CH^CgH^ ),,B«P (CgH^# m.p. 257-8° (from benzene-hexane, 5 4g., 67%) (Found: 2 C, 80.9» H, 6*9, C gH BP r e q u i r e s C, 82.8? H, 6-9%)and 2 2g Di-p-bromophenyldi-m-tolylphosphinoborane, (p-BrCgH^) B'P 2 C H CH ( 6 4—~ 3^2 m , * P # 281° (from benzene-hexane 7«05, 66%) ("Pound: C, 60*2; H, 4*1; Br, 30.1. C gH BBr P r e q u i r e s C, 58-1 2 22 2 H, 4»lj Br,29-9%)were s i m i l a r l y prepared from the sodium 94. d e r i v a t i v e of di-m-tolylphosphine and the a p p r o p r i a t e chlorodiarylborane. Phenyl( bis-dlphenylphosphino.)borane, Dichlorophenylborane PhB(PPhr>) 2 ( 4 g . , ca. , 0»025 mole m.p. 5*1°2 5*5° p r e v i o u s l y described as a l i q u i d b.p. 62/11 m m s ) ^ i n dry benzene (30 c-c.) wa,s slowly added t o a mixture o f t r i ethylamine (5«lg-, 0.Q5 mole) and diphenylphosphine 0«05 mole) i n the same solvent (50 c.c.) a t room (9*3g»» temperature. The r e a t i o n mixture was r e f l u x e d (24 hours) t o ensure c complete dehydrohalogenation before removal of the amine hydrochloride (m.p. 255°-6°) by f i l t r a t i o n ( N ) . 2 A white s o l i d and a small amount o f y e l l o w s o l i d p r e c i p i t a t e d when the s o l u t i o n was pumped t o low b u l k . The white s o l i d ( m.p. 143-49*2g., y i e l d 78%) was c r y s t a l l i s e d from benzene/hexane solution. (Pound by o x i d a t i o n PhB 17*5%, PhgP 79'8%, C^QH^ BP r e q u i r e s PhB 18»0%, Ph P 80«9%.) 2 Prolonged h e a t i n g of the c o l o u r l e s s monomer (see Table 2) i n benzene a f f o r d e d more of t h e y e l l o w i n v o l a t i l e polymeric s o l i d (m.p. 120°-32°) (Found by o x i d a t i o n PhB 16*0%, Ph P ? 79*9% C 3() H B P r e q u i r e s PhB 18-0% Ph B 80«9%} 25 ? The y e l l o w s o l i d contained no halogen and v/as i n s o l u b l e i n hydrocarbon, a l c o h o l i c , k e t o n i c and ether s o l v e n t s . 95. B o t h s o l i d s were u n a f f e c t e d by b o i l i n g d i l u t e a c i d s or a l k a l i . D i c h l o r o p h e n y l ( phenylphoaphino )bora.ne, BCl Ph«PH Ph ? 2 D i c h l o r o p h e n y l b o r a n e ( 4 ' 0 g , c a . , 0*025 mole) i n d r y hexane ( 2 0 c.c.) was s l o w l y added t o an e q u i m o l a r q u a n t i t y o f phenylphosphine crystalline ( 2 * 8 g . ) i n t h e same s o l v e n t . f The w h i t e and e x t r e m e l y h y g r o s c o p i c adduct was c o l l e c t e d by f i l t r a t i o n ( N ) i n a Schlenk t u b e , washed w i t h s o l v e n t 2 and pumped d r y ( 6 * 4 . s 74*8$ m*p* 62-64° s e a l e d t u b e ) (Found: CI 26-5, 26-8$, C H B C 1 P r e q u i r e s 0 1 2 6 * 4 % ) . 1? 1? 2 P h e n y l ( p h e n y l p h o s p h i n o ) b o r a n e , (PhB*PPh) Phenylphosphine 2 ( l l g . , 0*1 mole) was heated t o r e f l u x (6 h o u r s ) w i t h an e q u i m o l a r q u a n t i t y o f d i c h i o r o p h e n y l b o r a n e (15'9g.») u n t i l e v o l u t i o n o f hydrogen c h l o r i d e had ceased. Vacuum d i s t i l l a t i o n a f f o r d e d t h e c o l o u r l e s s f u m i n g l i q u i d 3 PhPH-BClPh ( 1 0 - l l g . , b.p. 98-100°/10" nun) (Pound: CI 15'7, 16-1$, PhB ( b y h y d r o l y s i s ) 38.2$ C^H-^BClP r e q u i r e s C I 15*4$ PhB,38'1#) and a y e l l o w - r e d g l a s s y s o l i d r e s i d u e w h i c h was e x t r a c t e d w i t h h o t benzene and f i l t e r e d . ) The benzene s o l u t i o n a f f o r d e d t h e w h i t e dimer ( s e e Table 2) (PhB-PPh) 2 (m.p. 89°-91°, 3'6g.,) (pound by o x i d a t i o n PhB, 44-7; PhP, 55 '6$ C H B P r e q u i r e s PhB, 44*8; PhP, 5 5 * 2 $ ) . 12 1Q 96. The i n v o l a t i l e y e l l o w i s h r e s i d u e ( l l - 1 2 g . , m.p. 168°-175°) was most p r o b a b l y a polymer c o n t a i n i n g "B-Cl end groups. (Potmd 01 1*3# Ph 9 Ph PhP 50*5$, PhB 42'8$) Ph Ph I CI B B Ph Gl n (The v a l u e o f n = 15s20) D i - m - t o l y l p h o s p h i n o ( d i - m e s i i t y l )borane (pCH^GgH^)r,» ( 2,4, 6, CFUCgB^^BP The sodium d e r i v a t i v e of" d i - m - t o l y l p h o s p h i n e (0*025 mole) i n t e t r a h y d r o g u r a n ( 5 0 c.c.) was s l o w l y added t o d i m e s i t y l f l u o r o b c r a n e ( 6 * 7 g . j 0*025 m o l e ) i n t h e same volume o f s o l v e n t a t -30°C. After allowing the reaction m i x t u r e t o s l o w l y come t o room t e m p e r a t u r e anri r e f l u x i n g ( 1 h o u r ) i t was f i l t e r e d (N^) f r o m t h e w h i t e i n s o l u b l e products. Sodium f l u o r i d e was removed by washing t h e p r e - c i p i t a t e s e v e r a l t i m e s w i t h w a t e r and t h e i n s o l u b l e compound was washed s e v e r a l t i m e s w i t h e t h e r a.nd pumped d r y . The t e t r a h y d r o f u r a n s o l u t i o n was pumped d r y and a f f o r d e d a f u r t h e r (l»2g.) o f t h e compound ( 5 * 4 g . , y i e l d 47$ m.p. (Found: 264-5°). C, 81«5; H, 8*2; C^H^BP r e q u i r e s C, 82*6; H, 7*9.) 97 (By o x i d a t i o n ( 2 , 4 , 6 , C H C H ) 3 45'2# C H B P r e q u i r e s 32 C H ) 6 5 36 6 2 2 B, 55-3%; ( m - C H C H ) 3 6 5 2 P, ( 2 , 4 , 6 , C H C H ) B, 55•3%; (m-GH 3 6 2 2 P, 45-7^.) 2 A f t e r o x i d a t i o n w i t h aqueous a l c o h o l i c hydrogen p e r o x i d e t h e m e s i t o l was s e p a r a t e d f r o m d i - m - t o l y l p h o s p h i n i c acid by t r e a t m e n t w i t h sodium c a r b o n a t e s o l u t i o n and e x t r a c t i o n w i t h ether. The compound was i n s o l u b l e i n e t h e r s , carbons, ketones, a l c o h o l s , hydro- and c h l o r o f o r m and c a r b o n t e t r a - chloride. A t t e m p t s t o p r e p a r e t h e compound by t h e t r i e t h y l a m i n e method f a i l e d b o t h i n b o i l i n g benzene and x y l e n e Di-m-»tolylphosphino-( b i s - b i p h e n y l ) b o r a n e , (m-GH,CgH ) 4 2 ( solutions. ) BP 2 ( 2 . 3 4 g . , 46$ y i e l d m.p. 7 7 ° - 7 8 ° ) was p r e p a r e d by t h e t r i e t h y l a m i n e method i n benzene s o l u t i o n . The i n s o l u b l e compound was s e p a r a t e d f r o m t r i e t h y l a m i n e h y d r o c h l o r i d e by s e v e r a l washings w i t h w a t e r , washed w i t h e t h e r and pumped dry. The compound was i n s o l u b l e t r i e d above. (Found: (Pound: C, 86-0; H, 6*0. G H 6 4 2 » ) solvents 0,85*8 ; H , 5 « g ; C g H B P requires 3 fi 38 32 ( m - C H C H J P , AO-lf). 6 2 32 By o x i d a t i o n (4-C H C H.) B, 58*6$; (m-CH 6"5 6 4'2 39-9$; C H B P r e q u i r e s P 3 i n the organic R fi 9 U-CgHgCgH^gB, 59-9$; 98. Bis-diphenyl(phenylphosphino)borane [(Ph B) PPh] 2 2 C h l o r o d i p h e n y l b o r a n e ( 1 0 g . , 0*05 mole) i n d r y x y l e n e (50 c . c . ) was s l o w l y added t o a m i x t u r e o f t r i e t h y l a m i n e (6*5 c.c. O 0 5 m o l e ) and p h e n y l p h o s p h i n e (2*6 c.c. 0*025 mole) i n t h e same s o l v e n t ( 5 0 c . c . ) . The r e a c t i o n m i x t u r e was r e f l u x e d (24- h o u r s ) t o ensure complete dehydrohalogenation. A f t e r f i l t r a t i o n (N,,), t h e s o l u t i o n was pumped t o low b u l k and a f f o r d e d a w h i t e s o l i d w h i c h c r y s t a l l i s e d f r o m benzene/hexane s o l u t i o n (m.p. 148-50°) [Found: C, 81*8; H, 5*6, C H B P r e q u i r e s C, 82«2; H, 5*7#, found by 3 Q 2 5 2 o x i d a t i o n PhP, 24*2$; PhgB, 75'1$ 24-7#; Ph B, 75'3%]. 2 H B °30 25 2 P re Te V*l * p hP» 99 Diphenylarsinodiphenylborane, [Ph As*BPh 3. 2 2 D i p h e n y l a r s i n e ( 5 * 8 g . , 0*025 mole) was c o n v e r t e d into i t s sodium d e r i v a t i v e by r e a c t i o n w i t h excess sodium w i r e i n t e t r a h y d r o f u r a n (50 c.c.) a t room t e m p e r a t u r e . The r u b y r e d s o l u t i o n was decanted ( N ) f r o m excess sodium 2 and was s l o w l y added t o c h l o r o d i p h e n y l b o r a n e ( 5 g . , 0*025 mole) i n t e t r a h y d r o f u r a n (50 c.c.) a t -60°, t h e r e d c o l o u r being immediately discharged. The r e a c t i o n m i x t u r e was a l l o w e d t o warm t o room t e m p e r a t u r e , f i l t e r e d (Ng) f r o m p r e c i p i t a t e d sodium c h l o r i d e , and t h e f i l t r a t e was pumped dry. The r e s i d u e c r y s t a l l i s e d f r o m benzene, gave t h e c o l o u r l e s s arsinoborane 0, 72*6; H, 5-1= ( 5 ' 8 g . , 5 7 % ) . m.p. 202-204° [ F o u n d : C H A s B r e q u i r e s 0, 7 3 l ; H, 5 * 1 % . e 2 4 2 0 0*0944g. were b o i l e d (10 m i n s ) w i t h aqueous hydrogen p e r o x i d e . alcoholic P h e n o l s e p a r a t e d by steam distillation was c o n v e r t e d t o t r i b r o m p h e n o l , 0*2966g.; C ^ H ^ A s B r e q u i r e s 0*3190g. The aqueous r e s i d u e was b o i l e d f o r a few m i n u t e s w i t h a t r a c e o f p l a t i n u m b l a c k t o remove excess p e r o x i d e , filtered, and b o r i c and a r s e n i c a c i d s e s t i m a t e d v o l u m e t r i c a l l i y [(Found: B, 3*61; As, 18*6. C H 24 2() A s B r e q u i r e s B, 3*68; As 1 9 * 0 % ) ] . The same compound ( i d e n t i c a l by mixed m.p. and by 100. i n f r a r e d s p e c t r u m ) was o b t a i n e d t r i e t h y l a m i n e method. i n 67% y i e l d by t h e A s m a l l amount o f r e d i n s o l u b l e m a t e r i a l c o n t a i n i n g boron, a r s e n i c and p h e n y l groups was also i s o l a t e d but not i d e n t i f i e d . G H C H D i p h e n y l a r s i n o ( d i - p - t o l y l ) b o r a n e , [ ( p . ~ 3 g 4 . ) 2 B'AsPhg)] (7'3g. f 69%), m.p. 2 2 4 - 2 2 5 ° ( f r o m benzene-hexane) [ F o u n d : C, 7 3 ' 6 ; H, 5*6. CggH^AsB r e q u i r e s C, 74-0; H, 5'7%) and d i p h e n y l a r s i n o ( d i - p - b r o m p h e n y l ) b o r a n e , [(p-BrCgH^) B»AsPh )] 2 # (7 5g., 2 67%), m.p. 2 4 4 - 2 4 5 ° ( f r o m benzene-hexane) [ F o u n d : C, 5 2 « 3 ; H, 3 ' 4 . C H As B Br 2 4 l 8 2 r e q u i r e s C, 52-2; H, 3'3%) were b o t h p r e p a r e d f r o m t h e sodium d e r i v a t i v e o f d i p h e n y l a r s i n e and t h e a p p r o p r i a t e chlorodiarylboranes. 101. Boron A n a l y s i s Boron was d e t e r m i n e d by t h e method d e s c r i b e d by 274. D. E. Powler and C. A. Kraus. A q u a n t i t y o f sample ( c o n t a i n i n g 0»02-0«03g., o f b o r o n ) was sulphuric c o m p l e t e l y degraded by warming w i t h c o n c e n t r a t e d a c i d ( 5 c.c.,) i n a two-necked f l a s k . After c o o l i n g , d r y ( d i s t i l l a t i o n f r o m magnesium) methanol (40 was s l o w l y added f r o m a d r o p p i n g f u n n e l . m i x t u r e was was The c.c. reaction r e f l u x e d (15 m i n s ) and t h e n t h e m e t h y l b o r a t e distilled t h r o u g h a s h o r t column and t h e f i r s t t h r e e 10 c.c., f r a c t i o n s were c o l l e c t e d and mixed w i t h an volume o f w a t e r . The b o r i c a c i d was titrated with r sodium h y d r o x i d e m t h e presence o f m a n n i t o l . equal N -j-^ N [ 1 c.c. ^ NaOH s 0-0011g B ] . Phosphorus A n a l y s i s A weighed amount o f sample ( c o n t a i n i n g ca., 0'02g., o f phosphorus) was heated a t 500° (3-4 h o u r s ) w i t h excess sodium p e r o x i d e i n a bomb. was A f t e r cooling the s o l i d residue e x t r a c t e d w i t h b o i l i n g w a t e r and f i l t e r e d from carbon. Ammonium n i t r a t e ( 1 0 g . , ) and c o n c e n t r a t e d n i t r i c a c i d (5 c.c were added t o t h e s o l u t i o n w h i c h was warmed t o 35° t h e ammonium molybdate r e a g e n t Phosphorus was (50 c.c.,) was t h e n d e t e r m i n e d by t h e t i t r i m e r i c 7 d e s c r i b e d by V o g e l . ^ ^ before added. procedure 102. DIPOLE MOMENT MEASUREMENTS 1. Theory o f D i p o l e Moment Measurements 266 I t was p o i n t e d out by Faraday t h a t the molecules o f a d i e l e c t r i c when p l a c e d i n an e l e c t r i c f i e l d become ' p o l a r i s e d ' i . e . a s e p a r a t i o n o f charge t a k e s p l a c e . end o f t h e m o l e c u l e One a c q u i r e s a s m a l l p o s i t i v e charge, t h e o t h e r a n e g a t i v e charge o f e q u a l magnitude. Mathematical treatment o f t h i s statement d e r i v a t i o n o f t h e C l a u s i u s and M o s o t t i law ii± i = £ - 2 d l e d t o the ' p (i) where p i s t h e s p e c i f i c p o l a r i s a t i o n , d i s t h e d e n s i t y and d t h e d i e l e c t r i c c o n s t a n t o f t h e substance. For a number o f m a t e r i a l s o f low d i e l e c t r i c p remains c o n s t a n t d e s p i t e changes i n t e m p e r a t u r e constant and p r e s - s u r e , and i s a l m o s t t h e same f o r t h e l i q u i d o r s o l i d states. 269 I t was shown by M a x w e l l t h a t f o r such m a t e r i a l s the d i e l e c t r i c constant i s r e l a t e d t o the r e f r a c t i v e index n f o r t h e same f r e q u e n c y o f r a d i a t i o n by » 2 -eer (2) 10'3. where # i s t h e magnetic permeability of the material. As 0 i s almost e q u a l t o u n i t y f o r a l l except f e r r o magnetic substances then i f t h e values of the r e f r a c t i v e i n d e x o b t a i n e d i n t h e v i s i b l e r e g i o n o f t h e spectrum a r e e x t r a p o l a t e d t o t h e wavelength a t which t h e d i e l e c t r i c c o n s t a n t i s measured ( v i r t u a l l y i n f i n i t e w a v e l e n g t h ) £= n 2 then (3) For substances o f h i g h d i e l e c t r i c c o n s t a n t £ i s almost 2 i n v a r i a b l y greater than n 270 ?71 n - 1 I t was shown by L o r e n z " and L o r e n t z that ^ ri - 2 2 1 = r where r i s a c o n s t a n t , independent as t h e s p e c i f i c r e f r a c t i o n . 1 — d o f t e m p e r a t u r e , known The p r o d u c t o f t h e m o l e c u l a r w e i g h t M and t h e s p e c i f i c r e f r a c t i o n i s known as t h e m o l e c u l a r refraction R. R - n n 2 2 - 1 - 2 M d (4) Molecular r e f r a c t i o n s are a d d i t i v e , w i t h i n c e r t a i n limits, and by a l l o c a t i o n o f c e r t a i n v a l u e s t o c e r t a i n atoms and bonds, m o l e c u l a r r e f r a c t i o n s may be c o m p i l e d . Molecular p o l a r i s a t i o n P o b t a i n e d by m u l t i p l y i n g t h e s p e c i f i c polar- i s a t i o n by t h e m o l e c u l a r w e i g h t would a l s o be expected t o mi. be a d d i t i v e . for I t i s f o u n d however t h a t P i s o n l y additive 2 compounds o f low d i e l e c t r i c c o n s t a n t where £ = n . 272 27 3 Debye ' indicated e x p l a i n e d by assuming t h a t t h i s b e h a v i o u r c o u l d be t h a t a l t h o u g h a m o l e c u l e as a whole i s n e u t r a l t h e c e n t r e s o f p o s i t i v e and n e g a t i v e charge do n o t u s u a l l y c o i n c i d e and t h e m o l e c u l e has a permanent d o u b l e t o r d i p o l e w h i c h tends t o o r i e n t a t e electric field frequency). itself i n an o f r e l a t i v e l y low i n t e n s i t y , ( i . e . r a d i o Thus t h e m o l e c u l e shows p o l a r i s a t i o n by orient a t i o n b e s i d e s charge d i s p l a c e m e n t . I n d e e d i t would be f o r t u i t o u s i f any m o l e c u l e o t h e r t h a n a s y m m e t r i c a l one d i d n o t have some n e t permanent d.ip o l e due t o t h e v a r i a t i o n i n e l e c t r o n e g a t i v i t y o f t h e atoms of the molecule. The magnitude o f t h e e l e c t r o n i c charge 4*8 x 10~^e.s.u —8 and d i s t a n c e s between s m a l l atoms 1 t o 2 x 10" cms. I tis found t h a t d i p o l e moments o f most m o l e c u l e s l i e between 0 and 9 x 1 0 " 1 8 e.s.u. o r 0-9 Debye. 1 8 ( 1 Debye = 1 x 1 0 ~ e . s A f u r t h e r c o n t r i b u t i o n t o t h e t o t a l p o l a r i s a t i o n o f a molec u l e i s t h a t due t o t h e r e l a t i v e d i s p l a c e m e n t o f t h e atoms o f t h e m o l e c u l e i n an e l e c t r i c field. I f a m o l e c u l e c o n t a i n s p o l a r bonds so t h a t t h e atoms 105 c a r r y d i f f e r e n t e f f e c t i v e charges t h e n t h e n u c l e i a r e displaced w i t h r e s p e c t t o one a n o t h e r and t h i s produces an i n d u c e d d i p o l e t h e e f f e c t o f w h i c h i s superimposed on t h e permanent d i p o l e i f p r e s e n t and t h e d i p o l e due t o t h e displacement of t h e electrons w i t h respect t o the nucleus. T h i s t y p e o f p o l a r i s a t i o n i s known as atom p o l a r i s a t i o n and t o g e t h e r w i t h o r i e n t a t i o n p o l a r i s a t i o n (due t o o r i e n t i n g o f permanent d i p o l e s ) and e l e c t r o n p o l a r i s a t i o n ( t h a t due t o displacement o f e l e c t r o n s ) goes t o make up t h e t o t a l polarisation. Thus T o t a l P o l a r i s a t i o n (TP) = Atom P o l a r i s a t i o n (AP) + O r i e n t a t i o n P o l a r i s a t i o n (OP) •f E l e c t r o n Polarisation (EP) (5) For m o l e c u l e s w i t h no permanent d i p o l e and no atom p o l a r i s a t i o n t h e t o t a l p o l a r i s a t i o n i s t h e same as t h e e l e c t r o n p o l a r i s a t i o n o r TP = EP, and i s i d e n t i c a l w i t h R i f t h e v a l u e o f n i s .obtained by e x t r a p o l a t i o n t o i n f i n i t e wavelength. As t h e v a l u e s o f R o b t a i n e d f o r i n f i n i t e wave- l e n g t h u s u a l l y o n l y d i f f e r by 1 o r 2 c.c. f r o m t h o s e o b t a i n e d a t v i s i b l e f r e q u e n c i e s , o f t e n no c o r r e c t i o n f o r t h e d i f f e r e n c e i s made i n d i p o l e moment c a l c u l a t i o n s . 106. The molecule C l a u s i u s and M o s o t t i t h e o r y c o n s i d e r s each as a sphere o f d i e l e c t r i c and assumes t h a t f o r small displacements the i n d u c e d moment m i s p r o p o r t i o n a l i.e. y i s o f e l e c t r o n s w i t h respect t o the nucleus m = t o t h e f i e l d F. (6) YF c a l l e d t h e p o l a r i s a b i l i t y o f t h e molecule t o t h e moment i n d u c e d by a f i e l d The of u n i t and i s e q u a l strength. t r e a t m e n t g i v e s an e q u a t i o n f o r t h e m o l e c u l a r p o l a r i s a t i o n known as d i s t o r t i o n p o l a r i s a t i o n , P = ^ TINY where N i s Avogadro's number. The Debye t r e a t m e n t w h i c h i s concerned w i t h a molecule w i t h a permanent d i p o l e 2i i n c l i n e d a t an a n g l e t o an e l e c t r i c f i e l d F g i v e s an e x p r e s s i o n f o r th« m o l e c u l a r orientation polarisation OP = 3 % N N, (7) 3kT where k i s Boltzraann's c o n s t a n t and T i s t h e a b s o l u t e temperature. Thus t h e t o t a l p o l a r i s a t i o n i s g i v e n by TP = i 3 n N ( v ) + 3kT (8) ^ it Ny r e p r e s e n t s t h e p o l a r i s a t i o n a m o l e c u l e would have i n t h e absence o f a permanent d i p o l e be d i v i d e d isation. ; i and t h i s up i n t o atom p o l a r i s a t i o n and e l e c t r o n may polar- Prom e q u a t i o n ( 7 ) : =/9kT As a l l d i p o l e O.P. = 0-012812 /oP.T moment measurements were c a r r i e d o u t a t 25°» t h i s can be f u r t h e r reduced t o p. = 0-2212 J OP. (9) 108. II EVALUATION OP RESULTS The e x p r e s s i o n f o r t h e p o l a r i s a t i o n o f a s o l u t i o n , due t o D e b y e 2 7 7 , 2 7 8 is:- P = P.f. + P f 9 1 1 2 0 2 where P-p P , f-p f » 2 M £ - 1 = £ i £ - 2 a r e 2 l f l + M f 2 2 ^ "the t o t a l p o l a r i s a t i o n s Ha.lverstadt and Kumler of densities fractions. U ; d mole f r a c t i o n s o f s o l v e n t and s o l u t e 279 instead (1) and respectively. ^ used s p e c i f i c volumes and w e i g h t f r a c t i o n s i n s t e a d o f mole By assuming t h a t t h e s p e c i f i c volume and d i - e l e c t r i c c o n s t a n t o f t h e s o l u t i o n are l i n e a r f u n c t i o n s the weight f r a c t i o n ( i * e * £ = a + aw 2 and of v = b + |3w where 2 a and b a r e t h e d i e l e c t r i c c o n s t a n t and s p e c i f i c volume of t h e s o l v e n t , w 2 i s the weight f r a c t i o n of the s o l u t e ) , t h e y d e r i v e d an e x p r e s s i o n f o r t h e t o t a l s p B c i f i c polar- i s a t i o n a t i n f i n i t e d i l u t i o n o f t h e s o l u t e p_2. 3CLV-. P ? 42 = ^—p (^+2)^ + £, - t + 2 — ± 1 (v By p l o t t i n g £ a g a i n s t w x + p) (2) X 2 and v a g a i n s t w , a and P 2 may be e v a l u a t e d . I n a s i m i l a r manner t h e e l e c t r o n polarisation Ep 2 109. c a n be e x p r e s s e d as 2 n.1 - 1 bvn., v + Ep (n* + 2) (v x + p) (3) 2 2 Ti + 2 where t h e a s s u m p t i o n i s made t h a t n = n-^ + yw^ where n ^ i s the r e f r a c t i v e i n d e x of t h e s o l v e n t . To o b t a i n d i p o l e moments by measurements on s o l u t i o n s the d i e l e c t r i c constant, refractive i n d e x and d e n s i t y o f a number o f s o l u t i o n s must be d e t e r m i n e d . £, v , and n a g a i n s t W2» o b t a i n i n g g r a p h s , and f i t t i n g By p l o t t i n g a,fi, and y f r o m t h e them i n t h e e q i i a t i o n s t h e n t h e t o t a l p o l a r i s a t i o n and e l e c t r o n p o l a r i s a t i o n o f t h e compound b e i n g s t u d i e d may be obtained* At low c o n c e n t r a t i o n s (w <£. 0*02) t h e p l o t s a r e u s u a l l y PRO close to l i n e a r be o b t a i n e d and l i n e a r p l o t s o f n a g a i n s t w^ may at s t i l l higher concentrations. 110. III. 1. PHYSICAL MEASUREMENTS D i e l e c t r i c Constant Measurements Benzene was used as s o l v e n t d i e l e c t r i c constants o f a i r i n a l l cases and t h e and benzene (fi-g) were assumed t o be 1*0006 and 2«2727 r e s p e c t i v e l y . The p r i n c i p l e used was t h e measurement o f t h e change i n c a p a c i t a n c e w h i c h o c c u r r e d when t h e d i e l e c t r i c of a condenser was charged. 2ft"L The condenser was a c e l l . the d i e l e c t r i c o f which c o u l d be changed e a s i l y by b l o w i n g o u t w i t h n i t r o g e n and replacing with the required liquids. I f £ ^ i s t h e d i e l e c t r i c c o n s t a n t o f t h e s o l u t i o n and C-^, Cg. and C-^ are t h e c a p a c i t a n c e s o f t h e c e l l f i l l e d with a i r , benzene and s o l u t i o n r e s p e c t i v e l y , t h e n p r o v i d e d t h e lead capacitances remain t3 3 constant 1 ) ( (1) 111. C - C-L 2 = 69*05 calibrated pfs, was measured by connecting an N.P.L. condenser i n p a r a l l e l with the c e l l and f i n d i n g the necessary change i n capacitance to restore balance when the d i e l e c t r i c was changed from a i r t o benzene. C = 2 - C was the change i n capacitance measured on M, and since 1 i s the reading on the condenser i n cms, and the capacitance change per cm was 3*38 pfs, then from equation (1) 3-38 1 + 1 1*2721 +1-0006 69*05 3-38&1 X 1-2721 69-05 a = de dw = 3-38 x 1-2721 d l 69*05 dw 0-6227 Q dw J3 - I — i s the slope of the graph obtained by p l o t t i n g the dw reading on the calibrated condenser against weight f r a c t i o n . A heterodyne beat capacitance meter similar to that pop designed by Sutton and H i l l was used t o measure the capacitance change i n the c e l l . units. This consisted of two The lower one was p r i n c i p a l l y a beat frequency generator made up of two similar radio frequency o s c i l l a t o r s 112. 5 one of fixed frequency f (approximately 10 c.p.s.) and Q one of variable frequency f ^ incorporating the measuring system. Also i n the lower u n i t were the requisite c i r c u i t s f o r mixing, demodulating, and beat frequency a m p l i f i c a t i o n . The two o s c i l l a t o r s were made as nearly i d e n t i c a l as possible so that any disturbances, e.g. fluctuations i n temperature or supply voltage, affected both equally. The upper u n i t contained a power pack, an audio f r e quency o s c i l l a t o r , and a cathode ray tube. l a t o r w i t h frequency f 2 The audio o s c i l - of about 1,000 c.p.s. could be varied by a coarse and a f i n e control t o allow accurate adjustment. The X plates of the cathode ray tube carried the output from the beat frequency o s c i l l a t o r and the Y plates that of the audio frequency o s c i l l a t o r . Several adjustments were necessary t o increase the s t a b i l i t y of the system. The c e l l was a modified form of the Sayce B r i s c o e * ^ type with plates of platinum burnt onto the glass instead of deposited s i l v e r . This made the c e l l much more robust and allowed washing out w i t h strong acid i f necessary. capacitance was approximately 50 p.f.s. The The 25°C thermostat i n which the c e l l was immersed was f i l l e d with transformer o i l t o reduce stray capacitances. 113 Procedure The cathode ray tube was used to obtain the nee essary relationship between the output frequency of the beat frequency generator and that of the audio frequency o s c i l lator. As i t was possible to obtain two i d e n t i c a l beat frequencies, one with f > and one w i t h f^> f Q taken always to work with f > f ^ . Q care was By varying P the output from the beat frequency generator was tuned to give a figure eight on the cathode ray tube corresponding to f Q - f ^ = 2fg t h i s r a t i o prevented any l i k e l i h o o d of the o s c i l l a t o r s p u l l i n g and was used as a balance point i n a l l measurements. The c e l l was washed out twice and then f i l l e d with dry benzene, the benaene used i n washing out being expelled by a stream of nitrogen. The c e l l and contents were allowed to come to thermal equilibrium (10 mins) and F (see f i g 1) was adjusted u n t i l the figure eight appeared on the cathode ray tube. D and M were then switched i n and by adjustment the f i g u r e eight was again obtained. These last two operations were repeated since s l i g h t variance i n the capacitance i n the c i r c u i t containing P and the c e l l appeared to cause changes i n the frequency of the c i r c u i t containing F, D and M, and vice-versa. When a steady figure eight was obtained on both sides of the switch the reading on M was noted. FIG. X 114. The benzene was then blown out with dry nitrogen and the c e l l washed out and f i l l e d with the solution under test. The process of adjustment was repeated but t h i s time only F and M were adjusted so that the change i n capacitance could be read o f f on M. The zero reading ( i . e . the reading w i t h the c e l l , f i l l e d with benzene) was checked a f t e r each solution, as i t occasi o n a l l y showed a tendency t o d r i f t during a set of measurements. (2) Specific Volume Measurements A Sprengel type pyknometer of approx., 4 c.c. capacity f i t t e d with ground glass caps to prevent evaporation was ^lsed. I t was calibrated by P. S, Dixon. were made at A l l measurements 25°0. Volume of pyknometer = 4*1521 c.c. Specific volume 4*1521 = Wg = v where Wg i s the weight of s o l u t i o n i n the pyknometer (3W v d 2 4 -1521 Wg dw 2 4-1521 Wg (2) 115 Thus i s the slope of the graph of specific volume against weight f r a c t i o n . Procedure The dry pyknometer was f i l l e d and placed i n a 25°C thermostat ( f o r 15 mins). The meniscus of the l i q u i d was adjusted t o the graduation mark by applying a piece of f i l t e r paper t o the t i p of the opposite limb and the pyknometer was removed from the thermostat, dried and the caps put i n place. I t was hung on the balance (20 mins) t o allow t o come t o hygrometric equilibrium w i t h the atmosphere and then weighed'. (3) Refractive Index Measurements A P u l f r i c h refractoiaeter w i t h a divided c e l l was used, and i t was enclosed i n a 25°C a i r thermostat, which consisted ! 1 of a large box (2'x 2 x 2 ) f i t t e d w i t h a glove and a terylene window through which one could take readings and see t o make adjustments without opening the box. The box was heated by an e l e c t r i c a l sheet heater placed d i r e c t l y i n f r o n t of a fan. The temperature was controlled by an a/c bridge thermoregulator w i t h a platinum resistance thermometer as the arm of the bridge inside the box, thus giving a quick response t o temperature f l u c t u a t i o n s . A 500 watt projector lamp especially set up w i t h a 116. convex lens system to give a strong p a r a l l e l beam together with six interference f i l t e r s (Jenear Glasswork Schott and Gen.) was used as a l i g h t source. The f i l t e r s were checked by determining the r e f r a c t i v i t i e s of benzene with the redi and blue lines of the hydrogen lamp and the sodium D l i n e s . The red f i l t e r ( A. max = 6620°A) was normally used f o r the measurements. For the centrosymmetric compound (PhgBNHg^ r e f r a c t i v e indices were measured at several wavelengths to allow an estimation of the electron polarisation at i n f i n i t e wavelength to be made. Procedure The solution was placed i n one side of the divided c e l l and a sample of pure dry benzene i n the other. A polythene cap was placed on the c e l l t o prevent evaporation, and the l i q u i d s allowed to come to thermal equilibrium (20 mins). The e x t i n c t i o n angles were read o f f from the refractometer and the difference obtained. As differences rather than absolute r e f r a c t i v i t i e s were of primary importance, t h i s technique minimised any errors which might be caused by temperature f l u c t u a t i o n s . The relationship between the e x t i n c t i o n angle and the r e f r a c t i v e index of the solution was given by r n = Sin A /N - Sin"B Sin B + Cos A Sin B 117. where A wag the r e f r a c t i v e angle of the prism B the angle of emergence and N the r e f r a c t i v e index of the prism. The graph of extinction angle against r e f r a c t i v e index showed a l i n e a r relationship making computation of n values r e l a t i v e l y simple. I t was found t h a t : - 1 min., of arc = 1087 x 10" A plot ofA n against w gave ^ 7 from 7090 to 5893 which corresponds to y i n equation 11(3). (4) Total Polarisation = Prom equation 11(2) i . e . Pg 3aV-, £-,-1 -—+ — = — (v-^+B) (c 2) 2 1 + v x = 1*1447 £ x = 2-2727 Then P - 0-1881 a + 0-2979 (1-1447+B) (3) ? (5) Electron Polarisation p Prom equation 11(3) i . e . Ep = 2 + —= (v-^+B) (n-^+2) (n +2) 2 2 x v-j^ = 1-1447 n-|_ = 1-4979 ( f o r sodium D l i n e ) Then: Ep = 0-5712 + 0-2932 (1-1447 + P) 2 Y [ f o r = 5985°A] (4) 118. For A = 7 0 9 0 , E.p. = 6-5744Y + 0 - 2 8 9 4 ( 1 - 1 4 4 7 + P ) 2 K = 6 6 2 0 , E.p. = 0-5734Y + 0-2906 ( 1 - 1 4 4 7 + P ) A = 5910, E . p . = 0-5712Y + 0-2931 (1-1447 + P ) 2 2 A. = 5 4 4 0 , E.p. + 0-2952 ( 1 - 1 4 4 7 + P ) = 0-5694Y 2 * = 4 7 8 0 , E.p. = 0-5656Y + 0-2997 ( 1 - 1 4 4 7 + P ) *• = 4 3 4 0 , E.p. = 0-5618Y + 0-3041 (1-1447 + P ) 2 2 Values of E.p. at i n f i n i t e wavelength were obtained by 2 assuming that the values obtained f o r various values o f ^ f i t t e d a simple equation of the form E.p. = A + r, ? K The E.p» values were plotted against 2 was extrapolated t o ^ and the curve obtained = 0. This gave a value f o r A which was taken as E.p» at i n f i n i t e wavelength. 2 EXPERIMENTAL Dipole Moment Measurement f o r Ph BNPh 5 0 A Typical Series of Results weight of f l a s k 45*4805 48-7943 34*1301 22-7729 weight of f l a s k + compd 45-5597 48-9070 34-3009 23-0099 Weight of f l a s k + compd + benzene 63-4216 71-1250 57-5594 43-0825 weight of compd weight of compd + benzene weight f r a c t i o n 0-0792 0-1077 0-1708 0-2370 17-8619 22-2180 23-2585 20-0726 0-04434 0-04847 0-07343 0-1178 119. Density weight of pyknometer + solution 23*2983 23*2992 23-3008 23*3068 weight of pyknometer 19*6648 19*6648 19*6648 19*6648 3*6335 3*6344 3*6360 3*6420 1*1427 1*1425 1*1420 1*1401 zero cms 2*459 2*459 2*459 2*459 solution reading 2*406 2*387 2*366 2*083 Ac. (cms) 0*053 0*072 0-093 0*476 weight of solution 4 < 1 5 2 1 Specific volume ( ) (wt of soln) Dielectric Refractivity K 6620 12*20 change i n angle An x 1 0 6 13*00 2•00 2 * 30 14*20 4•00 = fw Y=^ 7•20 0*2166 0-2924 0*4332 0*7798 a = 0*06227 x |£ (from Graph 1) = 0*06227 x 10*7 p 17*50 = " °'3100 (from Graph 2) =0*0816 (from Graph 3) Tp = 332-8 [ 0 * l 8 8 l a + 0*2979(1*1447 + P ) ] 2 = 332*8 [0*1251 + 0*2979(0*6827)] = 108*3 c.c. 120 Ep = 332*8 (0-5734 x 0*0816 + -2906 x -6827) 2 = 84*9 c.c. Ap = 8-49 c.c. 0p = 108*3 - 93*4 = 14*9 c.c. 2 2 u = 0*2212 y i 4 * 9 (2,4,6,CH C H ) BNH 3 6 2 2 = 0-9 D 2 g AC (cms) weight fractions specific v o l . an x 10 0*218 0-06764 1-1421 0*3790 0*11771 1*1417 0*6678 0*16980 1*1401 0*8664 0*27334 1*1395 0*9747 0-342 0-383 0*421 a = 0-9771, Tp = 119-1 c.c. 2 0 = - 0-1264, Y = 0*0799 Ep = 90-5 c.c. 2 Ap = 9*1 c.c. 2 Ph BNMe 2 2 0-06962 1*1479 0*1408 0-101 0-08814 1*1468 0*1507 0*119 0-17861 1*1461 0-6678 0*190 0-27374 1-1457 1-7508 0*260 Y= 0*07810 p= - 0-1225, a = 4-331, Tp = 233*9 c.c. Ep = 155-7 c.c. Ap = 15*6 c.c. 2 2 ? 121. (p-BrCgH ) BNMe 4 2 2 0*05181 1*1419 0-4512 0-452 0*07484 1*1410 0-6859 0-495 0-09573 1-1402 0-8844 0*985 0*10731 1*1393 0*9025 1*153 a = 6-119 Tp = 548*3 c.c. ? (p-CH C H ) BNMe 3 6 4 2 p= - 0-3 3 Y= 0-08031 Ep = 323*3 c.c. Ap = 32*3 c.c. 2 2 2 0-05211 1-1476 0-1444 0-083 0-08586 1-1464 0«3791 0-124 0-14311 1-1454 0-5957 0-192 0-23910 1-1442 0-7942 0-282 a = 0*9762 |3 = - 0-2901 Tp = 103-9 c.c. Ep = 71-9 c.c. 2 2 Ph BN(C H p-CH ) 2 6 4 3 v= 0*0785 Ap =7-2 c.c. 2 2 0-03171 1-1431 0-2166 0-033 0-07026 1-1426 0-6661 0-071 0-09552 1-1417 1-0462 0-106 0-13774 1-1411 1-3711 0-140 a = 0-9504 Tp = 234*4 c.c. 5 p= - 0-5170 Y= 0-04740 Ep = 165*8 c.c. Ap =16-6 c.c. 5 9 122. Ph BNH 2 2 0-05010 1-1433 0-3533 0-0310 0-07575 1-1417 0-5448 0-0417 0-11487 1-1405 0-8664 0-0594 0-13667 1-1401 1-1047 0-0602 p = - 0- 2298 a = 2-047 Y = 0-0552 (a 4340 _1_ *2 5308 0-0596 108 • 3 4780 4376 0-0588 106-7 5440 3380 0-0574 105 -3 5910 2863 0-0594 104-6 6620 2282 0-0557 103-9 7090 1989 0*0527 103*1 k Ep (c. Y 2 Absolute Ep (when ~- = Q \= oO) = 100-3 c . C . 0 y A c. 2 ,°. Absolute Ap = 0 p - Ep = 119 *9 c.c. - 100-3 c.c. 2 Ph BPEt 2 2 2 2 specific v o l An x 10 0-05254 0-07158 1-1427 0-030 1-1424 0-9379 1-1187 0-11536 1-1422 1-2744 0-107 0-18076 1-1418 1-4536 0-131 weight f r a c t i o n 6 AC( cms) 0-084 a = 0-4905, 3 = - 0-3109 Tp = 92*8 c.c. Ep = 68*0 c.c. 2 (p-BrC H ) B PEt 6 4 2 2 Y= 0.0402 Ap = 6-8 c.c ? 2 0-03178 1*1433 0-2171 0-041 0»07139 1-1429 0-6709 0-081 0-09566 1-1420 1-0512 0-126 0-14704 1-1416 1*3822 0-158 a = 0-7447, 0 = - 0-2911 Tp = 162-5 c.c. 2 Ph B P(C H m-CH ) 2 6 4 3 Ep = 132-4 c.c. 2 y = 0-0895 Ap = 13*2 c.c 2 2 0*03689 1*1424 0*2888 0*277 0-06143 1-1420 0-5415 0-307 0-06930 1-1411 0-7761 0-424 0-11759 1*1399 1*3176 0-528 a = 2*7103, p = - 0*3244, TP = 472*6 c.c. 2 Ep = 321*7 c.c. 2 (p_-CH C H ) B P(C H m-CH ) 3 6 4 2 6 4 3 7= 0*06221 Ap = 32*2 c. ? 2 0*03386 1-1458 0*4657 0-460 0*06214 1-1425 0-5632 0-558 0« 07148 1- 1407 0*6981 0*609 0*09936 1*1398 0*8113 0-872 a = 29*42 p Tp = 313*8 c.c. Ep 2 (p-BrC H ) ,B P(C H m-CH ) 2 2 6 4 2 6 4 3 - 0*4080 125*6 c.c. Y= 0*1663 Ap =12*6 c 2 0*08095 1*1427 0*2274 0*106 0*09894 1*1401 0-5848 0*111 0 *11742 1*1396 0*6422 0*147 0*13411 1*1382 0-79H 0-199 a = 4*531, Tp = 174*1 c.c. 9 0 Ep 2 - 0-3721 144-9 c.c. Y= 0*0665 Ap = 14-5 c 2 Ph B*AsPh, 0 0*02687 1*1432 0*1354 0*091 0*04-685 1 -1425 0*4115 0-111 0*05724 1-1420 0*5307 0-119 0*09996 1-1401 0*8881 0*174 a = 0*9431 p= - 0-3076 Tp = 168*2, Ep = 117*2 c.c. 2 2 y= 0-0503 Ap = 11*7 c. 2 (p-0H^C H ) B AsPhg 6 4 2 0*05855 1-1424 0*2383 0-280 0*08084 1*1401 0-4440 0-405 0*12035 1-1396 0-6498 0-508 0-14371 1*1378 0*6972 0*638 a = 2»097 p = - 0-4201 Tp = 257*5 c.c. 2 (p-BrCgH^) BAsPh 2 Ep = 129*7 c.c. 2 = Y 0-0865 Ap = 13*0 c. 2 2 0*03195 1*1448 0*0433 0*084 0*05145 1*1424 0*1625 0*097 0*07429 1*1409 0*2709 0*124 0*11322 1*1391 0*3046 0*137 a = 4*327 Tp = 173*1 c.c. 2 p = - 0-3649 Ep = 148*7 c.c. 5 Y = 0*04907 Ap = 14*9 c. P DISCUSSION 126. Compounds i n which an atom o f acceptor character i s c o v a l e n t l y bound t o one o f donor character can achieve c o - o r d i n a t i o n s a t u r a t i o n e i t h e r by the f o r m a t i o n o f a double bond or by a s s o c i a t i o n . The f i r s t s i t u a t i o n i s e x e m p l i f i e d by dimethylamino ( d i m e t h y l ) borane, Me B - NMe , 2 ? since the f o r c e constant o f the B-N bond i s appropriate f o r 285 a double bond. S i m i l a r l y the f o r c e constant of the B-N bonds i n trisdimethylaminoborane, (Me N) B ± 2 3 3 5.5 IQ-> X dyne cm""'*' which i s appropriate f o r bonds o f order Valency expansion by the f o r m a t i o n o f a f o u r t h sigraa b o n d ^ ^ occurs i n the dimeric forms o f the c h l o r i d e s , e.g. (MeNBClp) , 2 a.nd i n the much s t u d i e d phosphinoboranes i n which c y c l i c t r i m f i r s (Me PBMe )^ 2 are found. 2 tetramers (MegPBH^ and polymers No monomeric phosphino- or arsinoboranes app.ear t o have been described, w i t h the possible exception o f 289 2Q0 PH *BMe and Pl^P-BH-j. y j 2 2 The absence o f any general r u l e which might be used t o p r e d i c t whether a compound o f t h i s type would be monomeric ( and presumably c o n t a i n a p a r t i a l double bond ) or associated suggested the need t o o b t a i n f u r t h e r data concerning ( a ) circumstances i n which aminoboranes are associated and ( b ) the p o s s i b l e existence of monomeric phosphino- and a r s i n o boranes. 127 Aminoboranes - Unsubstituted aminoborane 291 appears t o be polymeric, ( H B « N H ) , and unstable. 2 2 The extent o f n a s s o c i a t i o n decreases as hydrogen i s s u b s t i t u t e d by a l k y l groups: thus N-methylaminoborane i s t r i r a e r i c (HgB'NHMe)^ 92 and r e v e r s i b l e monomer-dimer e q u i l i b r i a may be r e a l i s e d w i t h H B-NMe ? 2 2 93 MeHB»NMe ? 2 94 Me B«NHMe 295 2 96 and Me B-NH ? A l l 2 2 9 known t e t r a s u b s t i t u t e d aminoboranes appear t o be monomeric? ^ R e l a t i v e l y few B-arylaminoboranes have been s t u d i e d , but raethylaminodiphenylborane, Ph B«NHMe, slowly changes pqft 2 from monomer t o dimer a t room temperature; ^ a l l others described are monomeric. Aminodiphenylborane was prepared from ammonia and chlorodiphenylborane i n the presence of t r i e t h y l a m i n e , Ph BCl + NH^ + NEt^ = £ (Ph B-NH ) + E t ^ H C l 2 2 2 2 and i s dimeric ( c r y o s c o p i c a l l y i n benzene and n i t r o b e n z e n e ) . The most l i k e l y s t r u c t u r e ( I ) i s eentrosymmetric, and t h e observed e l e c t r i c p o l a r i s a t i o n i s i n agreement w i t h t h i s . The t o t a l p o l a r i s a t i o n , measured i n benzene s o l u t i o n a t 25? was 119*9 c.c. The e l e c t r o n p o l a r i s a t i o n , measured a t s i x wavelengths and e x t r a p o l a t e d t o i n f i n i t e wavelength, was 100*3 c.c. and t h e d i f f e r e n c e , 19-6 c.c., i s about the expected value o f the atom p o l a r i s a t i o n i n c o - o r d i n a t i o n 128 compounds c o n t a i n i n g balanced d i p o l e s (e.g. the atom p o l a r i s a t i o n s o f t r a n s (R^P) PdAr 2 2 complexes are u s u a l l y 2 about 20 c . c . ) . ^ The d i p o l e moment of ( I ) i s t h e r e f o r e zero. NH Ph„ B BPh NH 2 (I) Thus the only dimeric aminodiarylboranes are those c o n t a i n i n g NH or NHCH^ groups. 2 Experiments w i t h molecular models i n d i c a t e t h a t any l a r g e r groups attached t o the n i t r o g e n would cause s u b s t a n t i a l s t e r i c i n t e r f e r e n c e even w i t h the hydrogen atoms i n ortho p o s i t i o n s on the a r y l groups. A l l the other aminodiarylboranes prepared i n t h i s i n v e s t i g a t i o n were monomeric i n nitrobenzene s o l u t i o n , though o f t e n s l i g h t l y associated i n benzene p a r t i c u l a r l y i n the more concentrated s o l u t i o n s . The aminodiarylboranes, Ar^BNR^, were prepared by t h r e e methods: Ar BCl + L1NR = Ar^B^NRg + L i C l (l) 2 Ar BCl + R NH + Et^N = Ar^B'NRj + Et^NHCl 2 (2) 2 2ArMgBr + ClgB'NRg = Ar B-NR + MgGl 2 2 2 + MgBr 2 (3) 129. Method ( 3 ) was p a r t i c u l a r l y of dimethylaminoboranes^ s u i t a b l e f o r the p r e p a r a t i o n 00 The u l t r a - v i o l e t spectrum of diphenylaminodiphenylborane i s s i m i l a r i n general appearance t o t h a t of t e t r a phenylethylene^^" ( b o t h measured i n cyclohexane), a b s o r p t i o n maxima and e x t i n c t i o n c o e f f i c i e n t s being at 282 mu (18,200) and 312 mu (14,000) r e s p e c t i v e l y . The i n f r a red spectra of these two compounds are n e a r l y i d e n t i c a l , the main d i f f e r e n c e s being the s p l i t t i n g of the 31'* C sir - H out-of-plane deformation bands ( a l r e a d y r e p o r t e d , J and observed i n a l l the diarylboranes used i n t h i s i n v e s t i g a t i o n ) and the very strong band at 1372 cm~^ i n the r e g i o n 314i n which B-N t o B-N absorptions are commonly found. The band due absorption was always s t r o n g and e a s i l y recognised i n aminoboranes, and i t s frequency i n the v a r i o u s compounds examined i s given i n Table 1, which also summarizes d i p o l e moments and degrees of a s s o c i a t i o n i n benzene and i n n i t r o benzene. The aminoboranes l i s t e d i n Table 1 are a l l . r e a d i l y hydrolysed by c o l d water; t h i s i s a general p r o p e r t y of aminoboranes and was the basis of a method sometimes used f o r t h e i r analysis. The B-N frequencies of a l l but the f i r s t compound i n Table 1 f a l l w i t h i n the range 1.330-1530^ eleven other aminoboranes. 02 reported f o r A v a r i a t i o n i n these frequencies 130, has g e n e r a l l y been i n t e r p r e t e d as mainly due t o a change i n the m u l t i p l i c i t y o f the B-N bond, so the h i g h frequency (1552) observed i n the case of the diraeric compound ( I ) , i n which the B-N bonds must s u r e l y be s i n g l e , may a t f i r s t s i g h t appear remarkably high. However, v i b r a t i o n a l modes due t o the s t r e t c h i n g o f B-N bonds i n a r i n g can scarcely be expected t o be c l o s e l y comparable t o those due t o an i s o l a t e d B-N bond i n a monomeric compound. Although the t e t r a m e t h y l compound Me B NMe contains 2 2 a double bond, the l a r g e dipolie moment expected from the + formula Me^B = NMe i s e v i d e n t l y very considerably reduced 2 by unsymmetrical e l e c t r o n sharing i n the sense B-s^N owing t o the e l e c t r o n e g a t i v i t y d i f f e r e n c e between boron and n i t r o gen. The observed d i p o l e moment^^ i s only 1*40 + 0«03D (1*47 + 0»06D i n Me B«NH ). 2 2 Both Ph BNMe and Ph B-NPh 2 2 2 2 have such small d i p o l e moments (1*6 and 1»0D) t h a t i t i s not obvious which end o f the molecule i s p o s i t i v e . Examination of p - t o l y l d e r i v a t i v e s shows t h a t the N-methyl compounds have p o l a r i t i e s of d i f f e r e n t s i g n from those o f the N - a r y l compounds: Ph B^NMe 2 2 and Ph B^NPh 2 2 This r e v e r s a l o f p o l a r i t y could be due t o the e l e c t r o n r e p e l l i n g e f f e c t o f a methyl group, whereas a phenyl group 131. can a c t as an e l e c t r o n a t t r a c t o r i n such a system. The change i n moment, however, i s r a t h e r l a r g e ( jx = 2»6D f o r the two compounds j u s t mentioned). A l l the observed moments are c o n s i s t e n t w i t h the B-N bond having a small or zero net p o l a r i t y . Phosphinoboranes. v i o u s l y mentioned The only monomeric phosphinoboranes preare the not very w e l l c h a r a c t e r i s e d com- pound Me,,B PH^, which was described as being s e n s i t i v e t o h y d r o l y s i s , methanolysis and s l o w l y forming a polymer i n ether s o l u t i o n 304 and more r e c e n t l y triphenylphosphinoborane 3 0 5 which was found t o be i n s e n s i t i v e t o water d i l u t e acids or alkalies. I n c o n t r a s t t o the t r i - t e t r a - and polymeric i . t phosphinoboranes of the type R B«PR (R = H or a l k y l , R 2 2 = a l k y l or a r y l ) , a l l the phosphinodiarylboranes prepared i n t h i s i n v e s t i g a t i o n are monomeric. Unlike the aminoboranes, the monomeric phosphinodiarylboranes are r e l a t i v e l y r e s i s t a n t to hydrolysis. The diarylphosphino compounds are also un- a f f e c t e d by a i r . Diphenyl(diphenylphosphino)borane (Ph^B'PPh,^) was prepared by method ( 2 ) , chlorodiphenylborane being added t o an equimolar mixture of diphenylphosphine and t r i e t h y l a m i n e . A d d i t i o n of diphenylphosphine t o the other r e a c t a n t s gives the s a l t ( E t N H ) 3 + (Ph BCl 2 PPh )7 2 and diphenylphosphine and 132 chlorodiphenylborane alone give a t h i r d compound Ph BCl p PHPh . S i m i l a r products were obtained from 2 and dichlorophenylborane. phenylphosphine Diphenyl(diphenylphosphino)borane i s not only i n s o l u b l e i n and undecomposed by water but i s so s p a r i n g l y s o l u b l e i n organic solvents t h a t n e i t h e r i t s molecular weight nor i t s dipolemoment was measured. I t is presumed t o be monomeric or capable o f r e v e r s i b l e d i s s o c i a t i o n i n t o monomer since i t could be sublimed (240°) i n vacuum (dimer or t r i m e r would c o n t a i n 8 or 12 phenyl groups). To a l t e r symmetry and o b t a i n more s o l u b l e compounds d e r i v a t i v e s o f di-m-tolylphosphine were prepared by a modif i c a t i o n of r e a c t i o n ( l ) i n which the sodium d e r i v a t i v e o f di-m-tolylphosphine i n t e t r a h y d r o f u r a n was added t o c h l o r o diphenylborane i n the same solvent T H P (m-CH C H ) PH + Na 3 6 4 2 * + Na (m-CH C H ) P~ + £ H 3 6 4 2 2 PhgBCl Ph B.P(C H m-CH ) ^ A l l the m - t o l y l d e r i v a t i v e s but two had adequate s o l u b i l i t y 2 6 4 3 2 both f o r molecular weight measurement i n nitrobenzene and d i p o l e moment measurement i n benzene ( i n which they are sparingly soluble.) 133. The diarylphosphinoboranes prepared are l i s t e d i n Table 2. The i n f r a red spectra of the phosphorus compounds were very s i m i l a r t o those of t h e i r n i t r o g e n analogues, and i n a l l but [ t h e compounds PhP(BPh ) , PhBPPh, and PhB(PPh ) 2 2 2 i n which several s t r o n g bands appeared i n t h e r e g i o n (1450 1550 cm ^ ) ] i t was easy t o d i s t i n g u i s h the s t r o n g band almost c e r t a i n l y associated w i t h s t r e t c h i n g o f the B-P bond. 1 Since these bands (1400 - 1500 cm"'') are a t higher frequencies than those of the B-N bands i n most of the aminoboranes s t u d i e d , i n s p i t e of t h e mass o f a phosphorus being g r e a t e r than t h a t o f a n i t r o g e n atom, the boron-phosphorus bonds i n the monomeric phosphinoboranes would appear t o have pronounced double bond character* The monomeric phosphinoboranes might t h e r e f o r e be expected t o have pronounced p o l a r character, as i n d i c a t e d by t h e c o o r d i n a t i o n formula ( 1 1 ) —a 1- Ar B=PR 2 2 (11) Moreover, since boron and phosphorus ( and arsenic ) have much t h e same e l e c t r o n e g a t i v i t i e s ( i n the range 1*9 - 2*1, however computed), t h e moment i n d i c a t e d i n ( l l ) should n o t be reduced by bond p o l a r i s a t i o n as i n the aminoboranes ( t h e e l e c t r o n e g a t i v i t y o f n i t r o g e n being about 3 ) . 134. I n f a c t , i n s p e c t i o n of Table 2, bearing i n mind the e f f e c t of methyl and bromo s u b s t i t u e n t s on d i p o l e moments, shows t h a t the moments of the phosphinoboranes are l a r g e r than those of the corresponding aminoboranes, and t h a t the phosphino group i s at the negative end of the d i p o l e (111) -i—r»- A r B - PR ? 2 (111) Prom Table 2 the d i p o l e moment of ( H I , Ar = R « Ph.) must be about 2.5D, t h a t of (111, Ar = Ph, R = E t ) being about 1.ID and i n the same d i r e c t i o n . This s u r p r i s i n g r e s u l t suggests t h a t phosphorus i s a c t i n g as a weak % donor ( t o boron) i n these compounds, p o s s i b l y due t o an unfavourable r e l a t i o n between the 'sizes' of B2p_ and. P3p_ o r b i t a l s . I n a l l the d i a r y Ibora/nes some e l e c t r o n f l o w i s t o be expected from the a r y l group t o the vacant boron 2p_ o r b i t a l , and i n Ph B«PEt t h i s could account 2 2 f o r the greater p a r t of the observed d i p o l e . Good evidence f o r such e f f e c t s can be seen by considering the d i f f e r e n c e (0.64D) between the moments of n-amyl dichloroborane phenyldichloroborane (see f i g . , I V ) . and The increased moment n-amyldifluoroborane 1.64 of the l a t t e r must be n-amyldichloro- 1«55 t o considerable p o l a r i s a t i o n n-hexyldifluoro- 1*61 of the Ph-B + due - bond (Ph.-r-. B). 135. n-hexyldichloro- 1'55 The l a r g e moment (1«97D) f o r phenyldifluoro- 1'90 chlorodiphenylborane phenyldichloro- 2*19 two such "bonds seems t o con- p-tolyldifluoro- 2*48 f i r m these e f f e c t s , and the p-tolyldichloro- 2*68 relatively [Fig. IV] with low moment (l'66D) f o r dimesitylfluoroborane where the a r y l groups are almost c e r t a i n l y makes t h e i r presence almost d e f i n i t e . i n d i f f e r e n t planes Though t h e boron atom i n a d i a r y l ( d i e t h y l p h o s p h i n o ) b o r a n e could thus be regarded as c o o r d i n a t i v e l y s a t u r a t e d , or p a r t l y so, the phosphorus i s n o t , and i n f a c t the d i e t h y l phosphino compounds add methyl i o d i d e + B'PEt Mej I . t o form phosphonium s a l t s [Ar Ar^B'PEtJWe 2 2 I n Ph^B'PPhp and r e l a t e d compounds the s t i l l l a r g e r moments would be due i n e f f e c t , t o conjugation both between boron and a r y l and phosphorus and a r y l as shown i n the r e s onance formula ( I V ) + + x B-P (IV) Thus f o r m u l a t i o n accounts i n a q u a l i t a t i v e way n o t only f o r the observed d i p o l e moments, but also f o r the l a c k o f chemical r e a c t i v i t y since both boron and phosphorus are co- 136. o r d i n a t i v e l y saturated ( o r p a r t l y so). Further, the charge separation between boron and phosphorus i n d i c a t e d i n ( I V ) should r e s u l t i n B-P f o r c e constants g r e a t e r than would be expected f o r B-P s i n g l e bonds, since the B-P bond would amount t o a o* bond p o s s i b l y w i t h a small n component but w i t h some e l e c t r o s t a t i c a t t r a c t i o n i n a d d i t i o n . The r e l a t i v e importance of s t r u c t u r e s analogous t o ( I V ) i n t h e aminoboranes i s almost c e r t a i n l y much less since boron and n i t r o g e n achieve c o - o r d i n a t i v e s a t u r a t i o n by f o r m a t i o n of a B = N double bond. The reason f o r the phosphinodiarylboranes being mono- meric, when the s e r i e s RgB-PRj (R = H, a l k y l ) form t r i m e r s , tetramers or polymers, thus l i e s i n the boron atom i n t h e d i a r y l b o r a n e s e r i e s being already c o - o r d i n a t i v e l y saturated ( o r n e a r l y so) n o t by Ti-bonding w i t h phosphorus but by nbonding w i t h the a r y l groups. Arsinoboranes - These were prepared from the c h l o r o d i a r y l borane and the sodium s a l t of t h e d i a r y l a r s i n e i n t e t r a hydrofuran; they are l i s t e d i n Table ( 3 ) . I n f r a r e d spectra again resembled those of t h e n i t r o g e n and phosphorus compounds, but the t e t r a p h e n y l compound PhgB*AsP.h2 was cons i d e r a b l y more soluble i n organic solvents than i t s phosphorus analogue. The d i a r y l a r s i n o b o r a n e s resembled t h e 137. phosphino analogues i n t h e i r r e s i s t a n c e t o water and d i l u t e acids o r a l k a l i e s a t 100°, but d i f f e r e d i n t h e i r q u a n t i a t i v e and a n a l y t i c a l l y u s e f u l r e a c t i o n w i t h aqueous a l c o h o l i c hydrogen peroxide a t room temperature: Ph B PAr 2 Ph B AsAr 2 + H 0 2 2 2 + H 0 2 — 2 2 — 2PhOH + H B0^ + Ar P0 H 3 2 2 2PhOH + 2ArOH + H^BO.^ + H^AsO^ The B-As a b s o r p t i o n bands are a t r a t h e r lower frequencies than those o f B-P bands i n analogues compounds, and i n the same r e g i o n as B-N bands. The a r s i n o group i s , as i n the phosphinoboranes, t h e negative end o f the d i p o l e , the moments being r a t h e r l e s s . I t i s concluded t h a t the e l e c t r o n i c s i t u a t i o n i n the a r s i n o boranes resembles t h a t i n the phosphinoboranes, the smaller moments o f the former being due t o a smaller degree of e l e c t r o n t r a n s f e r from arsenic t o the a r y l groups bound t o i t . Though the o~-donor character o f n i t r o g e n , phosphorus and arsenic towards boron diminishes i n the order N P As, i t seems t h a t the itr-donor character diminishes even more r a p i d l y . .APPENDIX 138. INTRODUCTION I U n t i l r e c e n t l y moat b o r i n i c acids were prepared by 307 a h n the a c t i o n of a Grignard reagent on an a l k y l borate » i«-» Letsinger who has r e c e n t l y r e v i v e d i n t e r e s t i n these com£ X u 308 pounds i n a d d i t i o n t o preparing s o l i d d e r i v a t i v e s has p r e 309 pared the f i r s t mixed b o r i n i c acids, and t h e f i r s t borinic acid. tricyclic 3 1 0 Good y i e l d s o f d i - b u t y l b o r i n i c acids have r e c e n t l y been 311 reported by Lappert and co-workers from the r e a c t i o n ( B u B ) 0 + BF -9 Bu B0H 2 2 3 2 312 T. P. Povlock and W. T. L i p p i n c o t t have prepared several b o r i n i c acids as t h e i r amino-ethyl esters (21-63$ y i e l d s ) by r e a c t i o n o f trimethoxyboroxine and an aromatic Grignard reagent. The q u a n t i t a t i v e h y d r o l y s i s o f aminodiarylboranes t o produce the amine and the a r y l b o r i n i c acid (described earlier i n t h i s t h e s i s ) has l e d t o the i n v e s t i g a t i o n o f t h i s r e a c t i o n as a p r e p a r a t i v e method f o r d i a r y l b o r i n i c a c i d s . Several acids have been prepared and i s o l a t e d as t h e i r araino-ethyl esters i n goad y i e l d s (51-93$). 139. EXPERIMENTAL General Procedure Phenylmagnesium bromide (0.25 mole) i n d r y ether was 306 slowly added t o dichlorodiphenylaminoborane i n benzene (100 c.c.) and a f t e r r e f l u x i n g r e a c t i o n mixture was hydrolysed w i t h d i l u t e (0*1 mole) hour) t h e hydrochloric acid t o pH 6-7, f i l t e r e d and the l a y e r s separated. The organic l a y e r was pumped dry and then e x t r a c t e d w i t h h o t water (50 c.c.) on a steam bath t o remove any boronic acid. The b o r i n i c a c i d , a yellow o i l , was separated dissolved i n ether (50 c.c.) and monoethanolamine (22 c.c.) i n an equal volume o f water was added w i t h vigorous s t i r r i n g . The p r e c i p i t a t e d ester was c r y s t a l l i s e d f r e e of d i p h e n y l amine from ethanol (m.p. 188°-9°). The ester was dissolved i n a s o l u t i o n (100 c.c.) o f equal volumes o f acetone and methanol and hydrolysed w i t h h y d r o c h l o r i c acid (12-5 c.c. cone, acid i n 100 c.c. w a t e r ) . A f t e r shaking w i t h ether (100 c . c . ) , the organic l a y e r was separated, d r i e d (Anhydrous MgSO^) and pumped d r y and a f f o r d e d d i p h e n y l b o r i n i c a c i d ( 1 6 * l g . , y i e l d 88$), see Table 4 CVJ VO o II o o CM ON 1^- H o • vo f-l • CvJ • r- ON • OO r- ON • ON ON • CO VO to to in VO 00 H • m 00 IfN VO • VO to o • to • m o • m • CO • to CO VO • in • CM in H • CM to oo • <D •P O CM • H • <il • o, • CO CO r-- • H S- o vq o cn o in H Q) Q) CO CM O O o a Si 14 9 vo CO 9 °4 CO °co ON CM • X) i-l • o ON in ON in to • VO m ON • o • o • VO • ON • « f-. • r- 3 U3 it 1 &4 U H • r-l f • VO • • in vo IV. • to ON a. O ON m % e ,-1 M o CO H M M in EC vo o to in K ffi vo o 4 £ CM * CO m O vo CO H o in °4 VO H > M M H m VO u to in w„ vo u to * CO • VO m vo • X • VO ffe VO • VO rH • VO H • co ON • ON CO H t-i 8 CO r*s VO in a 0 rH in °* K vo u m H2o o 4. H a CO in o a 4 o • CM r«- °vO °4 rH o w CO e M H > 4. VO • oo 1-1 H vo • CM * H CO V> CM CM CM vb CO * CM CO O o —o pi VO * ON r~ GE VO 00 • • to to • vo CO t to r-l * in vo CM • vo to to • to in r- • VO in o v> to CM CM o H Ol R H X H X g to ^VO II1 o in vo o to • to 1 140. NOTES (1) Only when r e q u i r e d f o r f u r t h e r work, or b e t t e r charac- t e r i s a t i o n were the pure acids i s o l a t e d . (2) A f t e r d i f f i c u l t y i n p r e c i p i t a t i n g the monoethanolamine ester o f d i - p - t o l y l b o r i n i c a c i d , i t was found t h a t the e s t e r s were best p r e c i p i t a t e d from hear n e u t r a l (3) solutions. The esters I I , V I I I , X and X I were more soluble normal i n ether and pumping the ether s o l u t i o n dry than followed by c r y s t a l l i s a t i o n from ethanol gave increased y i e l d s o f these esters. DISCUSSION The h i g h y i e l d s (51-93$>) of e s t e r s a.n.d the use o f only a s l i g h t excess (5=10$) of Grignard reagent i n d i c a t e t h a t the hydrolysis of aminodiarylboranes i s the most convenient method of preparing pure d i a r y l b o r i n i c a c i d s . The v a r i a t i o n i n y i e l d s shows no r e l a t i o n s h i p between the e l e c t r o n e g a t i v i t y of the a r y l groups and the y i e l d o f acid obtained, though the lower y i e l d s o f compounds IV, V I , V I I and V I I I suggest the importance o f s t e r i c f a c t o r s . r e f l u x i n g i n these l a t t e r reactions y i e l d s of these acids. Longer would probably give b e t t e r 141. INTRODUCTION I f white phosphorus "P^" has an a v a i l a b l e lone p a i r of e l e c t r o n s a t each corner o f the t e t r a h e d r a l molecule, i t would be expected t o behave as a strong donor. This substance i s c e r t a i n l y a powerful reducing agent, and i t i s adequately soluble i n dry benzene. These f a c t s suggest t h a t i t s r e a c t i o n s w i t h boron t r i c h l o r i d e and s i m i l a r acceptors, and w i t h organo l i t h i u m compounds, would be of i n t e r e s t . The only work so f a r 313 described i n the l i t e r a t u r e i s by H. Moissan who r e p o r t s a vigorous r e a c t i o n between boron t r i i o d i d e and yellow phosphorus . 142. REACTION OF WHITE PHOSPHORUS WITH PHENYLLITHIUM 4PhLi + P 4 ~ 2Ph - P - PPh Li Li P h e n y l l i t h i u m (0*32 moles) i n ether was addled t o a s o l u t i o n o f f r e s h l y d i s t i l l e d white phosphorus (9*9g. 0»32 moles P^) i n benzene (200 c.c.) a t a r a t e s u f f i c i e n t t o g e n t l y the r e a c t i o n mixture. two reflux The deep red s o l u t i o n was separated i n t o parts. Part I A f t e r c a r e f u l h y d r o l y s i s w i t h deaerated d i l u t e hydrochloric acid t o pH 6-7, the organic l a y e r was separated ( N ) pumped dry ? and a f t e r b o i l i n g w i t h aqueous hydrogen peroxide (3 c.c. of 100 volumes i n 50 c.c. of water) a f f o r d e d on coo^ij.ng phenyl phosphorite acid m.p. 158°-59° (2'8g. y i e l d 55*1%), a f t e r f i l t r a t i o n of the hot s o l u t i o n from an i n s o l u b l e white s o l i d ( c . a . , 4g.). The white s o l i d was n o t i d e n t i f i e d although i t was shown, t o c o n t a i n phosphorus and phenyl groups. I n f r a spectroscopy i n d i c a t e d the presence o f Ph-P, P = 0 and P - 0 - P bonds. The s o l i d was i n s o l u b l e i n organic water and d i l u t e a l k a l i and soluble i n d i l u t e h y d r o c h l o r i c solvents, acid. H„0 Ph P P Ph 2PhP0yL + unknown s o l i d t H„0 Li Li 143. Part I I Methyl c h l o r i d e (c.a., 0*32 moles) was slowly via bubbled a flow-meter i n t o the deep red s o l u t i o n (N^) cooled t o c.a., - 10°, u n t i l i t became c o l o u r l e s s . After filtration ( N ) from p r e c i p i t a t e d l i t h i u m c h l o r i d e the f i l t r a t e was 2 pumped d r y and then b o i l e d (30 mins.) w i t h aqueous a l k a l i n e a l c o h o l i c hydrogen peroxide (4 c.c. of 100 volumes i n 50 c.c. of 2N NaOH and 50 c.c. of a l c o h o l ) . Dilute hydrochloric acid was added t o adjust the pH 6-7, and the s o l u t i o n was extracted w i t h ether. A f t e r pumping dry the ether e x t r a c t and c r y s t a l l i a t i o n from aqueous a l c o h o l phenylmethylphosphinic acid in.p. 134°-5° was i s o l a t e d and i d e n t i f i e d by i n f r a red spectroscopy and mixed m e l t i n g p o i n t , (?*6g, y i e l d 53*1$), MeCl Ph—P — P — ? h I Li 5 Ph—?—F—?h I I Li H 0 * i. 2Ph Me +2Li" 9 u P — OH I Me cf Me 144. REACTION OF WHITE PHOSPHORUS WITH METHYLLITHIUM M e t h y l l i t h i u m (0»2 moles) i n dry ether (300 c.c.) was slowly added (room temperature) t o a s o l u t i o n o f white phosphorus (6»3g.» 0*2 moles P^) i n "benzene (300 c.c.) and the r e a c t i o n mixture was s t i r r e d ( 3 nours). Methyl c h l o r i d e was then slowly bubbled i n t o the r e d brown s o l u t i o n u n t i l i t i u s t tu.rned white (c.a.. 0^2 moles were added). A f t e r f i l t r a t i o n (N^), the s o l u t i o n was con- centrated and a s u r p r i s i n g l y v o l a t i l e product (b.p. 25°-28°) d i s t i l l e d w i t h the s o l v e n t . A d d i t i o n of methyl i o d i d e t o t h e d i s t i l l a t e a f f o r d e d an immediate white c r y s t a l l i n e s o l i d (m.p. 310° decomp,) which was n o t i d e n t i f i e d . The i n f r a - r e d spectrum of t h i s compound showed t h e presence of CH^-P and weak P-H absorptions. REACTION OF WHITE PHOSPHORUS WITH BORON TRICHLORIDE Boron t r i c h l o r i d e (12g.) i n benzene (100 c.c.) a t 6° was slowly added (N^) t o a s o l u t i o n of white phosphorus (3«lg.> 0*1 mole) i n the same volume o f solvent a t 4°. A f t e r s t i r r i n g the r e a c t i o n mixture ( 3 h o u r s ) , d i s t i l l a t i o n a f f o r d e d unreacted; boron t r i c h l o r i d e and white phosphorus (3*0g.). 145. DISCISSION Sinofi white phosphorus did n o t rea-ot w i t h boron tri- c h l o r i d e which i s q u i t e a. strong acceptor, f u r t h e r reaction? s were n o t attempted. I t seems possible t h a t h y b r i d i s a t i o n i n phosphorus i s such t h a t there are no a v a i l a b l e lone p a i r s , a p o s s i b i l i t y being s t r a i n e d p-bonding w i t h some d e l o c a l i s e d bonding. The r e a c t i o n w i t h p h e n y l l i t h i u m may be a most convenien method o f preparing aromatic biphosphines, RG1 4PhLi + P„ — 4 Ph - P - P- Ph Ph - P - P - Ph I I I I (R=We) ' ' Li L i R R 1 1 w l A . „, O T + tflilUl lVtc; The o x i d a t i o n product phenylmethylphosphinic acid was i s o l a t e d i n reasonable y i e l d (53*1%)• The r e a c t i o n w i t h m e t h y l l i t h i u m was not f u l l y i n v e s t i g a t e d , but f u r t h e r i n v e s t i g a t i o n o f these and r e l a t e d r e a c t i o n s i s now i n progress. + r>£- ^ © til g 50 j£\ir\vo ON CO ON ON CX) ON O H rirlrlrl O O H H cp CM CM vo H o\H ON ON O O O O H H O O H H rl rl H H r^- ^ ^ O ON ON ON rH O O O r H «# ON LTN OS^ ITNO O O r i N ONO O H H H r H H QiHrHiH 8 § •P «J •H K X! W> -H o © O N j ; ^ VO r j V p CM P-NONO to p | C 3 «* H tO CM $ H N Q 8^3 VO ON tO ^ CM O ^ f ^ - I T N O ITNVO lT\ f Q ^ v O r * . ON "tf CO CM 9 CvlCNlTl Inn VO O • • • • • • • • • • • • • > • • • • • • , , . . H M ^ IA to mr*- c v i t o ^ m o o o o O H H W O H H W OHHCM 01 at , (3| 4) © bO ONON iH • • • H H CM O CM CM r l O N O H C M ON ON ON ON O "3 1^• • « • « • • • • • • • • • • • H H r i H OH H rl O O O O H rl rl H Q OrH H , . « • H H H H vo 00 •>* ^< ^ CM ON ^ co ON to t^mcvim LfNON v O o ^ f S to moo o t^- H ON cv • • > • • ! • • • • • • • • • • t O ^ I N - O N O H H H O O O r l O H r l C M •<# to r^^f ™<3J ONCO ^r^Kj to . , . . O O r l H © © Q C © N s -p „ J3 00 to co & o W5jt\o •H • • • © O O O ON to ON m to ON CM H 1* (0 0) © e o a o © © H !» O J3 ! •H H to o H ON o a a a) CM o VO to in £3 3 o0) >» u •3 § • & PQ © ,nCM a ITNO ITNCM H tO GO 00 to H 3 m to H at CM to H vo to H LfN CO to rl > 8 CM CM '~CM CM © w CM CM © 2° I td vo o VO o to **M o to m o to ON to o o ON o • a • • to to CO o O O ONH • • • • H H O H riHOH OQ H VO CVJ vfiOsH • • • « • O O H H o • lO to MD ^ rH tO rH C\J V O P ~ C O CM • • . • O O O oo vo 0 to O 5 H C\J CM o to a o VO CM So m 3 H Cl tO CM 00 OS o H CM to O H ON o oco • • • • H H H H •P •rl 6 5 -P •& bo •H <D HJ •H 13 o o 10 01 id riri • • • H H I2 •&£!. 8 rH to ON I^-NO CMftCMNO CM O O rH CM O rH rH fit 3 NO 8 to to • • • o tO I^NO m ON O rH O H H O C O rH &N . o r- o "tf ON CM • • O O CM CO ON ON H • rH 4 • O O • H -p a) IT\CM CM O H CM i n H CM NO r>O H H W • • • • a> H r-\ r-{ r-\ to <n o e co o P-0O ONOO H • • • • H CM CM CM 0> 8 N <D pq +> X! W) •H <D D5 tO Q CM NO O O H H •3 5 o co o to o 01 rH S -p a a> •rl O •rH O •H CM to i r » H i^-co co >» rH CM CO m r H -P O O O H t>> •H U •rl <H ; H ITN«* ^ to H 8 O O H H • <tH SJ 10 -P o CM CO 50 -P O to CM o O to co o c m -P o a ai H o's H 5! ° h •» 0 O 01 o S O 9 CM H cd IfN CM Hi 9 H CD to H C\J PQ «H o CM '"to W o •P W LfN 3 p.. 0> CM 0) a) ai « CM to C ^M to w o 3° • NO CO a< N EC NO o to "So 3- 3" 2. I PH w NO CM NS to f J. 2* ""CM 3M 4 ^ cd 3° NO U w •To o ITN To o to w o NO ^ 0 3 w r«-VO ON -P m o o H IfN CM a a, • » • CM rH to ON O O • • • O H H tO H tO O CM r^H H • •• O H H ON ON H "d* O N O O H • • • • O H H H lT>H ON r CM LPi <tf rH H H CM to • • • • oo o o 3 g + 3 8 •rl +3 o H O CM 0) H (Q a) a a> s d a» •3 o CQ 3 M CM ^—. a, *•—^ B 0) a . 0) (S\ N (3 0) g <tf I T N O N V O O O ON O • • • • H H O rH •8 •H -H - P «J •H -H -p a ,c liD O O 01 Q) & r^-*« CMCO ^ ^ tO Q f^-CO ON IfN • • • • O O rH C M W «J o © 0 . c3| <U U ON N O V O ITN O CM 1^- ON • • • • ^ O S ^ f^ONONrHtO • • • • "tfCMHCO O r H tO t O • • • • rl rl H H O O r i r l H H rlrl o) a>a) Q H G "6* +> tO ITNH H rH ON tO r H lO vo CM to O5 ON "tf CO • « • A 00 •ri <D tO H ON ON to N-oo oo 12: O O H O J o • • • • o r - CM to a> rH •8 o & 3) O r H t>> ,0 ft •rl O Q O o ON to H rH o hto 0 U to •a 10 1CQ •» a & u * o >=«! 3Pn • CM CM CO CO ON O H CM CM <C O • O rH <M to m § • to w to REFERENCES 1. Lappert, M.P.: Chem Rev. 1956 pp. 2. Ebelmen and Bouquet: Ann. Chim. Phys. 3, 17, .54.. (184-6); Ann. 60, 4316, (1954) 3. M i c h a e l i s , A., and H i l l r i n g h a u s , P.: Ann 315, 41, (1901). 4. Colclough, T., Gerrard, W., and Lappert M.P.: J.Chem.Soc 1955,907 " " » J.Chem.Soc 1956,3006 5. Wiberg, E., and S u t t e r l i n , W.: Z. Anorg. u. Allgem. Chem 202. 1 (1931). 6. Schechter, W.K.: Chem Abstracts 49, 2483, ( 1 9 5 5 ) . 7. P i c t e t , A., and Geleznoff, A.: Ber. 36, 2219, ( 1 9 0 3 ) . 8. Conn, G.: Pharm. Zentr., 52, 479, (1911) 9. Thomas, L.H.: J. Chem. S o c , 1946, 820. 10. Brown, H.C., Mead, E.J., and Shoaf, C.J.: J.A.C.S. 1956,78, 3613 11. S c h i f f , H.: Ann Suppl. 5, 158, ( 1 8 6 7 ) . 12. Dimroth, 0 . : Ann, 446, 97, (1926) 13. Goubeau. J. and K e l l e r H. s Z = Anorg. u. Allegem. Chem 267, 1, 1951. 14. Grummitt, 0 . : J.A.C.S. 64, 1811. ( 1 9 4 2 ) . 15. Lappert, M.P.: J. 1958, 2790. 16. O'Connor, G.L. and Nace H.R.: J.A.C.S. 77, 1578, 1955. 17. Lappert, M.F.: J. 1958, 2790. 18. see r e f . 17 p 2778. 19. C h e r b u l i e r , E., Leber, J.P. and U l r i c h A.M.: Helv. Chim. Acta 36, 910 ( 1 9 5 3 ) . 20. Long, L.H. and D o l l i m o r e , D.: J. 1953, 3902. 21. Prankland, E.: J. 15, 263, (1862). Prankland, E. and Duppa B.P.: Ann 115, 319 1860. ~" 22. Wiberg, E. and Ruschmann, W.: Ber., 1937, 70, 1583. 23. McCusker, P.A. Ashby. E.C. and Makowski.: J.A.C.S. 79, 5192, (1957) ~~ 24. R. Koster,: Annalen, 1958, 618, 31. 25. E.C. Ashby,: J. Amer. Chem. S o c , 1959, 81, 4791. 26. D.T. Hurd,: i b i d . , 1948, 70, 2053; A.T. Whatley and R.N.Pease i b i d . , 1954 76, 835. 27* H.C. Brown and P.A. Tierney; i b i d . , 1958, 80, 1552, J. Org. Chem., 1957, 22, 1135. H.C. Brown and B.C. Subba Rao; 27? Idem; J. Amer. Chem. S o c , 1956, 78, 5694; 1959, 81, 6423, 6428, 6434. 28 a ~ H.C. Brown, K.J. Murray, L.J. Murray and G. Z w e i f e l ; i b i d . , 1960, 82, 4233. 28? H.C. Brown and B.C. Subba Rao; J. Org. Chem., 1957, 22, p 1137 2930. G.P. Hennion, P.A. McCusker, E.C. Ashby and A.J. Rutkowski: J. Amer. Chem. Soc., 1957, 97, 5190. M.P. Hawthorne: i b i d , 1960, 82, 748. 31. H.C. Brown and G. Z w e i f e l ; J. Amer. Chem. Soc., 1959, 81, 247. 32. G. Wilke and M. M t i l l e r ; Chem. Ber., 33. H.C. Brown and G. Z w e i f e l ; J. Amer. Chem. Soc., 1959, 81, 247 34. R. Koster, K. Reinert and K.H. M t t l l e r ; Angew. Chem., 1Q60, 72, 1956, 89, 444. 78 35. E. Krause and P . D i t t m a r ; Ber., 63, 2347, 1930. 36. A. Stock and P. Z e i d l e r ; Ber., j6_3, 2347, 1930. 37. CH. Bamford, D.L. L e v i , and D.M. Newitt; J. Chem. Soc. 38. J. Goubeau a,nd H.J. Becher, Z. Anorg. U. Allgem. Chem 268, 1, 1946,468. 1952. 39. J. Goubeau and D. Ulmschneider; Chem. Ber., 1957, 90, 2733. 40. B.M. M i k h a i l o v and F.B. Tutorskaya; Doklady Akad. Navk. S . S . S . H . , 1958, 123, 479; Chem Abs., 1959 6990, 41. E. Prankland; J. Chem. S o c , 1862, 15, 363; J.R. Johnson and M.G. Van Campen; J. Amer. Chem Soc. 1938, 60, 121; C.H. Bamford and D.M. Newitt; J. Chem. Soc., 1946, 695. 42. R.C. P e t r y and F.H. Verhoek; J. Araer. Chem. Soc,, 1956, 78, 6416. 43. L.H. Long and D. Dollimore; J. Chem. S o c , 1953, 3902, 3906. 44. R.B. Booth and C.A. Kraus; J. Amer. Chem. Soc., 1952, 74, 1415. 45. J.E. Smith and C.A. Kraus; i b i d . , 1951, 13, 2751. 46. A.K." H o l l i d a y and N.R. Thompson; J. Chem. Soc., 1960, 2695E. Krause and A. Von Grosse; Die Chemie der Metallorganischen Verbindungen, Borntraeger, B e r l i n , 1937, pp. 47. 207-11. T. L i . Chu; J. Amer. Chem. Soc., 1953, 75, 1730. 48. H.E. Bent and M. Dorfman; i b i d . . 1932. 54. 213?; 1935, 57, 1259, 1924. 49. C.W. Moeller and W.K. Wilmarth; i b i d . , 1959 50. G. W i t t i g , K.G. Keicher, A. Rtlckert and P. Raff; Annalen, 1949, 51. 563, s 81, 2638 110. T. Wartik and H.I. Schlesinger; J. Amer. Chem. Soc., 1953, 75, 835. 52. C.J. Wiley; Chemical and Engineering News p. 619, 1958. 53. G. W i t t i g and A. Rtlckert; Annalen 1950, 566, 101. 54. G. W i t t i g , G. Keicher, A. Rttckert and P. R a f f ; Annalen 563, 110, 1949. 55. H. Meerwein, G. Hinz, H. Majert and H. Sonke; J. P r a k t , Chem. 1936, 56. 147, 226. D.L. Fowler and C.A. Kraus; J. Amer. Chem. Soc., 1940, 62, 1143. — 57. G. W i t t i g and P. R a f f ; A n n a l e n 1951, 573, 195. 58. C.A. K r a u s and W.W. Hawes; J . Amer. Chem. S o c . , 55, 1933. 59. 2776, ~~ 1948, H.G. Brown and S. S u j i s h i ; J . Amer. Chem. S o c , 1953, 75, 60. H.C. Brown and R.B. J o h a n n e s e n ; i b i d . , 61. H . I . S c h l e s i n g e r and H.C. Brown; i b i d . , 1940, 2793. 19. 62, 3429. 62. D.T. H\ird; J . O r g . Chem., 1948, 13, 7 1 1 . 63. G. W i t t i g , G. K e i c h e r , A. R t t c k e r t and P. R a f f ; A n n a l e n 1949, 563, 110. 64. G. W i t t i g , and P. R a f f ; A n n a l e n 573, 195, 1951. 65. G. W i t t i g and W. H e r w i g ; Chem. B e r . , 88, 9 6 2 , 1955. 66. V. R a z u v a e v , G.A. and I . G . B r i l k i n a ; Zhur. Obshchec Khim. 24, 1415, 1954. 67. J . Goubeau and H. L i n k ; Z. Anorg. 68. 267, 69. Idem i b i d 1951, Chem., 1951, 267, 27. 28. G.E. C o a t e s ; J . Chem. Soc., 1950, 3481. 70. H.J. B e c h e r and J . Goubeau; Z. Anorg. 71. E . Wiberg and K. S c h u s t e r ; i b i d . , Chem., 1952, 268, 1933, 213, 133. 77. 7 2 . A.B. B u r g and R . I . Wagner; J . Amer. Chem., S o c , 1953, 75, 3872. 73. O.C. Musgrave; J . Chem. Soc., 1956, 4305. 74. J . C . S h e l d o n and B.C. S m i t h ; Q u a r t e r l y R e v i e w s , 1960, 14, 75. A. S t o c k and E . P o h l a n d ; B e r . , 1926, 76. J.R. P i a t t , 2215. H.B. K l e v e n s and G.W. S c h a e f f e r ; - J . Chem. P h y s , , 1947, 77. 59, 200 15, 598. G.W. S c h a e f f e r , R. S c h a e f f e r and H . I . S c h l e s i n g e r ; J . Amer. Chem S o c , 1951, 7 3 , 1 6 1 2 . See a l s o D.T. Haworth and L . P . H o h n s t e d t ; Chem and I n d . , 1960, 559. 78. L.F. Hohnstedt and D.T. Haworth; J , Amer. Chem. S o c , 1959. 8 1 , 842; G.H. Dahl and R. S c h a e f f e r ; J . I n o r g and N u c l e a r Chem„ 1960, 12, 380. 79. H.J. Emeleus and G.J. V i d e l a ; J . Chem. S o c , 1959, 1306. 80. M.P. Hawthorne; J . Amer. Chem. Soc., 1959, 81, 5836. 81. J.H. Smalley and S.F. S t a f i e j ; i b i d . , p. 582. 82. S.J. Groszos and S.P. S t a f i e j ; i b i d . , 1958, 80, 1357. 83. K. Niedenzu and J.W. Dawson; Angew Chem., 1959, 71, 651. 84. A.B. Burg and R . I . Wagner; J . Amer. Chem. S o c , 1953, 75, 3872. ~" 85«. R . I . Wagner, Paper p r e s e n t e d t o W r i g h t A i r Development Centre Conference, June 1959; Chemical & E n g i n e e r i n g News 15 June 1959 p.40. 86. P.G.A. Stone and A.B, Burg; J . Amer. Chem. Soc., 1954, 76, 386. ~~ 87. A.B. Burg and R . I . Wagner; i b i d . , p. 3307. 88. C P . Haber and C O . W i l s o n : U.S.Z. 892, 873 ('Ampot); • C.A., 1960, 3203. 89. A.B. Burg and P.J. S l o t a , U.S.Z* 877, 272 10 Maroh 1959, 53, 16062. 90. G.P. Hennion, P.A. McCusker and A.J. R u t k o w s k i ; J . Amer. Chem. S o c , 1958, 80, 617. 91. G.P. Hennion, P.A. McCusker and J.V. M a r r a ; i b i d , 195Q, 81, 1768. 92. Idem, i b i d . , "~ 1958, 80, 3481 93* B.M. M i k h a i l o v and T.A. Shchegoleva; Doklady Akad. Nauk. S.S.S.R., 1956, 108, 481. 94. M.P. Hawthorne; J . Amer. Chem. S o c , 1960, 82, 748. 95. R. K t t s t e r and G. Bruno; Annalen, 1960, 629, 89. 96. T.D. Parsons and D.M. R i t t e r ; J . Amer. Chem. S o c , 1954, 76, 1710. 97. B.M. M i k h a i l o v and V.A. Vaver; I z v e s t . Akad., Nauk., S.S.S.R. 1957,-812; C.A., 1958, 3667, C P . , i b i d . , 1957, 15440; 1956, 11964. 98. K. T o r s e l l ; A c t a , Chem., Scand., 1954, 8, 1779. 99. See r e f . 98. 100. A.L. C l a r k , r e p o r t e d i n Chemical and E n g i n e e r i n g A p r i l 1958, News, 28 p.56. 101. A.K. H o l l i d a y and A.G. Massey; J . Chem. S o c , 1960, 4 3 . 102. E.B. Moore and W.N. Lipsomb; A c t a C r y s t . , 1956, 668. 103. G. U r r y , J . K e r r i g a n , . T.D. Parsons and H . I . S c h l e s i n g e r ; J. Amer. Chem. S o c , 1954, 76, 5299. 104. E. Krause and R. N i t s c h e ; Ber., 54, 2784, 1921. 105. E. F r a n k l a n d and B.F. Duppa; Annalen 115, 319, and M. Melamed; Ber., 4_2, 3090, 106. E. K h o t i n s k y 107. D.L. Y a b r o f f 5 1860. 1909. G.E. Branch and H.J. A l m q u i s t ; J . Amer. Chem. Soc., £ 5 , 2935, 1933. 108. H.R. Snyder, J.A. Kuck and J.R. Johnson; i b i d , 109. P.B. B r i n d l e y , W. G e r r a r d 1955, 60, 105, 1938 and M.P. L a p p e r t ; J . Chem. Soc., 2956. 110. A. M i c h a e l i s and P= Becker; Ber., 1880, 13, 111. A. M i c h a e l i s and M. Behrens; Ber., 1894, 58. 27, 244. 112. A. M i c h a e l i s and E. R i c h t e r ; Annalen, 1901, £ 6 , 315. * 113. E. Krause and R. N i t s c h e ; B e r . , 55, 1 2 6 1 , 1922. 114. E. Krause; Chem, Z e n t r . , 1923 I I 1089. 115. H . I . S c h l e s i n g e r , N.W. P l o d i n and A.B. Burg; J . Amer. Chem. S o c , 1939, 6 1 , 1078. 116. H . I . S c h l e s i n g e r , L. H o r v i t z and A.B. Burg; i b i d . , 1936, 58, 407. 117. P.R. Bean and J.R. Johnson; i b i d . , 1932, 54, 4415. 118. W. Seaman and J.R. Johnson; i b i d . , 1931, 5JI, 7 1 1 . 119. C.H. Long and D. D o l l i m o r e ; J . Chem. S o c , 1953, 3902. 120. N.N. M e l n i k o v ; J . Gen. Chem., (U.S.S.R.) 6, 636, 1938. 1 2 1 . D.R. N i e l s e n and W.E. McEwen; J . Amer. Chem. S o c , 1957, 79, 3081: D.C. Musgrave; Chem and I n d . , 1957, 1152. 122. K. T o r s e l l ; A c t a Chem. Scand. 1954, 8, 1779. 123. P.B. B r i n d l e y , W. G e r r a r d , and M.F. L a p p e r t ; J . Chem. Soc. 1955, 124. Idem, i b i d . , 2956. p.2957. 125. H.G. K u i v i l a , A.H. Keough, and E.J. S o b o c z e n s k i ; J . Org. Chem., 1954, 19, 780. 126. P.B. B r i n d l e y , W. G e r r a r d and M.F. L a p p e r t ; J . Chem. Soc., 1956, 1540. 127. E. Wiberg and U. K r u e r k e , ; Z. N a t u r f o r s c h , 1953, 86, 608. 128. H.E. French and S.D. F i n e ; J . Amer. Chem. S o c , 1938, 60, 352. "~ 129. Idem, i b i d . , p.355. 130. D.L. Y a b r o f f , G.E.K. Branch, H.J. A l m q u i s t ; i b i d . , 1933, 55 2935. 131. A. M i c h a e l i s and P. Becker; Ber., 1882, 15, 180. 132. H,R Snyder, J.A. Kuck and J.R. Johnson; J . Amer. Chem. So 4 1938, 60, 105. 133. A.D. A i n l e y and F. C h a l l e n g e r ; 134. J . Chem. S o c , 1930, 2 1 7 1 . See r e f . 132. 135. J.R. Johnson, M.G. Van Campen and 0. Grummitt; J . Amer. Chem. Soc., 1938, 60, 1 1 1 . 136. See r e f . 133. 137. A. M i c h a e l i s and P. Becker; Ber., 1882, 15, 180. 138. O.C. Musgrave and J.O. P a r k ; Chem; and I n d . , 1955, 1552; R . I . L e t s i n g e r and I . Skoog; J . Amer. Chem. S o c , 1955, 12 2491. 139. H.R. Snyder, M.S. Konecky and W.J. L e n n a r z ; i b i d . , 1958, 80, 3611. 140. A. M i c h a e l i s and M. Behrens; Ber., 1894, 27, 244. 141. A. M i c b a e l i s and E. R i c h t e r ; A n n a l e r 315, 26, 244. 142. N*N. M e l n i k o v ; J . Gen. Chem., U.S.S.R. 6, 636, 1838. 143. R.L. L e t s i n g e r and N. Reraes; J . Amer. Chem. S o c , 1955, 77, 2489. 144. B.M. M i k h a i l o v and V.A. Vaver; I z v e s t . Akad.. Nauk. S.S.S.R. O t d e l Khim. Nauk, 1957, 9 8 1 . 145. R.L. L e t s i n g e r and I . H . Skoog; J . Amer. Chem. Soc., 1955, T7» ^ 9 1 . 2 146. H. Meerwein, H.G. H i n z , and H. M a j e r t and H. Sflnke; J . P r a k t . Chem., 1937, 147, 226. 147. K. T o r s e l l ; Acta. Chem. Scand., 1955, 9, 242. 148. H . I . S c h l e s i n g e r 149. and A.O. Walker; J . Amer. Chem. Soc., 1935, 56, 6 2 1 . H . I . S c h l e s i n g e r , L. H o r v i t e and A.B. Burg; i b i d . , 1936, 58, 407. 150. T.P. P o v l o c k and W.T. L i p p i n c o t t ; ibid., 1958, 80, 5409 151. H. Meerwein, G. H i n z , H. M a j e r t and H. SOnke; J . P r a k t . Chem. 1937, 147, 226. 152. C.S. R o n d e s t v e d t , R.M. S c r i b n e r and C.E. Wulfman; J . Org. Chem. 1955, 9, 20. 153. H. Meerwein and H. SOnke; J . P r a k t . Chem., 147, 2 5 1 , 1937 154« J.R. Johnson and M.G. Van Campen; J . Amer. Chem, Soc., 1938, 155. 60\ 1 2 1 . E. R o t h s t e i n and R.W. S a v i l l e ; J . Chem. Soc., 1952, 2897. 156. P.B. B r i n d l e y , W. G e r r a r d and M.F. L a p p e r t ; 2956. 157. See r e f s . , 143 and 147. 158. See r e f . 156. 159. 160. i b i d . , 1955, B.M. M i k h a i l o v and P.M. A r o n o v i o h ; D o k l a d y l Akad. Nauk-. S.S.S.R., O t d e l . Khira. Nauk 1955, 946. See r e f . 154 p.115 161. H . I . L e t s i n g e r and H . I . Skoog; J . Amer. Chem. Soc., 1955, 77, 162. 5176. See r e f . 143. 163. H . I . L e t s i n g e r , H . I . Skoog and N. Reraes; i b i d . , 1954, 76, 4047. 164. K. T o r s e l l ; A c t a . Chem. Scand., 1955, £ , 165. See r e f . 164, 239 p.242. 166. A.B. Burg and R . I . Wagner; J . Amer. Chem. Soc., 1953, 75, 3872. 167. See r e f . 145. 168. A. M i c h a e l i s and M. Behrens; Ber., 1894, 27, 244. 169. N.N. M e l n i k o v ; J . Gen. Chem., U.S.S.R. 1938, 6_, 636. 170. R.L. L e t s i n g e r and N. Hemes; J . Amer. Chem. Soc,, 1955, 77, 2489. 171. See r e f . 170. 172. R.L. L e t s i n g e r and H . I . Skoog; i b i d . , 1955, 77_, 2491 173. See r e f . 152. 174* R.L. L e t s i n g e r and N. Remes: J . Amer. Chem, Soc., 1955, 77» 2^89 175. C R o n d e s t v e d t , R.M. S c r i b n e r and CM. Wulfman; J . Org., Chem., 1955, 9, 20. 176. R.L. L e t s i n g e r , H . I . Skoog and N. Remes; J . Amer. Chem. Soc. 1954, 76, 4047. 177. A. M i c h a e l i s and P. Becker; B e r . , 1882, 15, 180 178. P.A. McCusker, E.C. Ashby and H.S. Makowski; J . Amer. Chem, S o c , 1957, 79, 5179. 179. A. M i c h a e l i s and P. Becker; B e r . , 1882, 180. 15, 180. See r e f . 178. 181. G.P. Hennion, P.A. McCusker, E.C. Ashby and A.J. R u t k o w s k i ; J. Amer. Chem. Soc., 1957, 7J3, 5194. 182. G.R. K i n n e y and D.F. P o n t z ; i b i d . , 1936, 58, 197. 183. S.M. Baver and J.Y. Beach; i b i d . , 1941, 63., 1394 184. E. Wiberg, K. H e r t w i g and A. B o l z ; Z. Anorg. Chem., 1948, 256. 177, 185. K. T o r s e l l ; A c t a . Chem. Scand., 1954, 8, 1779. 186. H.R. Snyder, M.S. Konecky and W.J. L e n n a r z ; J . Amer. Chem. Soc., 1958, 80, 3611. 187. P.A. McCusker and J . I . Glunz; i b i d . , 1955, 77, 4253. 188. J.C. P e r r i n e and R.N. K e l l e r ; i b i d . , 1958, 80, 1823. 189. E. Wiberg and W. Ruschmann; Ber., 1937, 706, 1583. 190. H.J. Becher: Z. P h y s i k . Chera., ( F r a n k f u r t ) 1954, 2, 276. 191. E. Wiberg, A. B o l z . P. B u c h h e i t ( C i t e d by J . Goubeau) F.I.A.T. Review o f German Science: I n o r g a n i c C h e m i s t r y V o l . p.218. 192. Idem; i b i d . , p.211 193. A. M i c h a e l i s and P. Becker; Ber., 1880, 13, 58. 194. E. Krause and R. N i t s c h e : Chem, Z e n t r . , 1923, 195. 11, 1098 See r e f . 181. 196. A. E. B o r i s o v : O t d e l Khim. Nauk 1951, 402. £ 197. J ffutxh., ^-'jerro.Y^ f i Mo^eJft-* *~3> &Meo^e-i* 198. ^nVicfenw*, >vxp ^t&v\jC cfv* oi^xP CT tl6o. < ^Y\^. J f AS«-j. . 199. E.L. M u e t t e r t i e s ; J . Amer. Chem. Soc., 1959, 81, p.2597 200. H.C. Brown and A. Tsukamoto; J . Amer. Chem. Soc., 1960, 82, 746. 201. R.B. Booth and C.A. Kraus: J . Amer. Chem. Soc., 1952, 74, 1415. 202. See r e f s 189 and 190. 203. P.A. McCusker. E.C. Ashby and H.S. Makowski, J , .Amer. Chem. Soc., 1957, 79, 5182. 204. P. A* McCuaker, G.F. Hennion and E.C. Ashby; i b i d . , p.53-92 205. See r e f . 188 206. P.A. McCusker, and H.S. Makowski; i b i d . , 1957, p.5182 207. M*P. Lappert;' Chem. Revs., 1956, 56, 1050 208. P.B. B r i n d l e y , W. G e r r a r d , and M.F. L a p n e r t ; J . Chem. Soc., 1956, 824. 209. Idem, i b i d . , p,826. 210. S.H. Dandegoanker, E.W. A b e l , W. G e r r a r d and M.F. L a p p e r t ; J. Chem. Soc., 1956 4697. 211. P.A. McCusker and H..S. Makowski; J . Amer. Chem. Soc., 1957, 22, 5185. 212. A.B. Burg; J . Amer. Chem. S o c , 1940, 62, 2228 213. See r e f . 1 9 1 . 214. E. Wiberg and U. K r u e r k e ; Z. N a t u r f o r s c h . , 86, 608-63.0, 215. E. Page; A t t i . Akad. L i n c e i , .1929, 10, 193 216. See r e f . 212 . 217. E. Wiberg and W. Ruschmann; Ber., 1937, 7013, 1583. 218. P.A. McCusker, E.C. Ashby and H.S. Makowski; J . Amer. Chem. Soc., 1957,. 72, 5182. 219. Idem, i b i d . , p.5178. 220. H.C. Brown and R,B. Holmes; i b i d . , 1956, 78, 2177. 221. S.H. Dandegoanker, E.W. A b e l , W. G e r r a r d and M.F. Lap-pert; J. Chem. Soc., 1957, 2893. 222.. E. Krause and H. P o l a c k ; Ber., 1928, 6 1 , 2 7 1 . 223. E. Wiberg and K. H e r t w i g ; Z. Anorg u A l l g e n Chem. 255, 1 4 1 , 1947. 224. P.B. B r i n d l e y , W. G e r r a r d and M.F. L a p p e r t ; J . Chera. S o c , 1956, 1540. 225. F.G.A. Stone and W.A.G. Graham; Chem. and I n d . , 1955, 1181. 226. M.P. Hawthorne; J . Amer. Chem. Soc., 1958, 80, 4291. 227. D.R. N e i l s e n , W.E. McEwen and C.A. V a n d e r w e r f ; Chem and I n d . , 1957, 1069. 228. E. Wib'erg, J.E.P. Evans and H. NotR; Z. N a l u r f o r s c h , 1958, 136, 263. 229. A. M i c h a e l i s and E. R i c h t e r ; Annalen 1901, 316, 26. 230. A, M i c h a e l i s ; A n n a l e n , 1901, 19, 315. 231. A.E. B o r i s o v ; O t d e l Khim. Nauk 1951, 402. 232. P.A. McCusker, E.C. Ashby and. H.S. Makowski; J . Amer. Chem. S o c , 1957, 79, 5182. 233. See r e f . 191. 234. L.H. Long and D. D o l l i m o r e ; J . Chem. Soc., 1953, 3906. 235. J.R. Johnson, M.G. Van Campen and H.R. Snyder; J . Amer. Chem. Soc., 1938, 60, 115. 236. See r e f . 223. 237. E.W. A b e l , S.H. Dandegoanker, W. G e r r a r d and M.P. L a p p e r t ; J. Chem. S o c , 1956, 4697238. Idem i b i d 4698. 239. B.M. M i k h a i l o v and N.S. Pedotov,; I z v e s t . Akad. Nauk. S.S.S.R. O t d e l Khim. Nauk. 1956, 371, 151. 240. ) ) See r e f . 191 241. ) 242. L.H. Long and D. D o l l i m o r e ; J . Chem, Soc., 1953, 3906, 243. P.A. McCusker, E.C. Ashby, and H.S. Makowski; J . Amer. Chem. Soc., 1957, 244. Idem i b i d . , p.5179 245. See r e f . 237 246. R.W. 247. 7 i , 5182 Auten, C.A. K r a u s ; i b i d , 1952, 74, 1415. See r e f . 237 248. B.M. M i k h a i l o v and N.S. Pedotov; I z v e s t Akad Nauk S.S.S.R. O t d e l Khim Nauk- 1956, 1 5 1 1 ; C.A. 19^7, 51, 8675. 249. See r e f . 248; C.f. C.A., 1956 50, 11964b; 5 1 , 1874e, 4985h. 250. E.W. A b e l , W. G e r r a r d and M.F. L a p p e r t ; J . Chem. Soc., 1956 4697; 1957, 2893. 251. J.M. Davidson and CM. French; J . Chem. Soc., 1958, 114. 252. 1959, 750. Idem, i b i d , 253. W. G e r r a r d , M.F. L a p p e r t and R. Shafferman; J . Chem, Soc. 1957 3828; K.W. A b e l , W. G e r r a r d and M.F. L a p p e r t i b i d . , p.3833. 254. W. G e r r a r d , M.F. L a p p e r t and R. Shafferman i b i d . , 1958 3648. 255. T.P. P o v l o c k and W.T. L i p p i n c o t t ; J . Amer. Chem. S o c , 1958 80, 5409. 256. E.W. A b e l , S.H. Dandegoanker, W. G e r r a r d and M.F. L a p p e r t , J . , 1956, 4697. 257. Idem, i b i d . , p.4696. 258. H-.C Brown and V.H, Dodson; J . Amer. Chem., Soc., 2305, 79, 1957 * 259. J.P. Brown; i b i d . , 1952, 74, 1219. 260. H. Gilman and D. W i t t e n b e r g ; J . Org. Chem., 1958, 261. 23, 1063 See r e f . 260. 262. W. Kucken and H. Buchwald; Ber., 1958, 9 1 , 2 8 7 1 . 263. W. Kuchen and. H. Buchwald; Ber., 1958, 9 1 , 2296. 264. I . F . H a l v e r s t a d t and W.L. Kumler; J . Amer. Chem. Soc., 1942, 64, 2988. 265. P.A. McCusker and H.S. Makowski; i b i d . , 1957, 7£, 5185 266. M. Faraday; E x p e r i m e n t a l r e s e a r c h e s , 1838, 1699. 267. R. C l a u s i u s ; M e Mechanische Warmetheorie 1 1 Braunschweig, 1879, 62. 268. O.F. M o s o t t i ; Mem. Math. F i s . Modena, 2411, 1850 49. 269. J.C. M a x w e l l ; T r e a t i s e on e l e c t r i c i t y and Magnetism 1 1 , 1881, 396. 270. L. L o r e n z ; Ann. Phys. L p z . 1 1 , 1880, 70. 271. H.A. L o r e n t z ; i b i d . , 1880, 641 272. P. Debye; Phys. Z. , 13, 1912, 97 273. P. Debye; Handbuch d e r R a d i o l o g i e 6, 1925, 597. 274. D.E. Fowler and C.A. Kraus; J.A.C.S. 1143, 1940. 275. A . I . V o g e l ; Q u a n t i t a t i v e I n o r g a n i c A n a l y s i s ; 276. A . I . V o g e l ; i b i d . , p.380 p.381. 277. P. Debye; Phys. Z. 13, 1912, 97. 278. P. Debye; Handbuch d e r R a d i o l o g i e 6, 1925, 597. 279. I . F . H a l v e r s t a d t and W.D. Kuraler; J.A.C.S. 1942, 64, 2988 280. See r e f . 282. 281. P.S. D i x o n ; Ph.D., T h e s i s Durham C o l l e g e s L i b r a r y 1960. 282. R.A.W. H i l l and L.E. S u t t o n ; J.C.S. 1953, 283. 1482. See r e f . 2 8 1 . 284. L.A. Sayce and H.V.A. B r i s c o e ; J.C.S. 1925, 315. 285. Becher and Goubeau; Z. Anorg. Chem., 1952, 268, 133. 286. Becher; Z. Anorg. Chem., 1956, 287, 285. 287. Wiberg and S c h u s t e r ; Z. a n o r g . Chem., 1933, 213, 77. 288. Wagner and C a s e r i o ; J . i n o r g . N u c l e a r Chem. 1959, 1 1 , 259. 289. Burg and Wagner; J . Araer. Chem. S o c , 1953, 75, 3872. 290. H.G. H e a l ; J . i n o r g and N u c l e a r Chem. 1961, 16, 208. 291. S c h a e f f e r , Adams and Koenig; J . Amer. Chem. Soc., 1956, 1956, 78, 725. 292. B i s s o t and P a r r y ; J . Amer. Chem. Soc., 1955, 77, 3481 293. Wiberg Bolz and B u c h h e i t ; Z. Anorg. Chem., 1948, 256, 285. 294. Burg and Boone; J . Amer. Chem. S o c , 1956, 78, 1521 295. Wiberg and H e r t w i g ; Z. Anorg. Chem., 1947, 255, 141. 296. Wiberg and B u c h h e i t ; P.I.A.T. Review o f German S c i e n c e , 1948, I n o r g a n i c C h e m i s t r y , V o l . 1, p.218. 297. Niedenzu and Dawson; J . Amer. Chem. Soc., 1959, 81, 5553. 298. M i k h a i l o v and Pedotov; I z v e s t . Akad. Nauk. S.S.S.R., O t d e l . k h i m . Nauk, 1959, 1482. 299. Coates and D i x o n ; u n p u b l i s h e d o b s e r v a t i o n s . 300. See r e f . 297. 301. Kortttm and Dreesen; 302. Chem. Ber., 1951, 84, 182. See r e f . 297. 303. Becher; Z. a n o r g . Chem., 1952, 270, 273. 304. Burg and Wagner; J . Amer. Chem. Soc., 1953, 75, 3873. 305. H.G. H e a l ; J . I n o r g . and N u c l e a r Chem., 1961, 16, 208. 306. H.J. Becher; Z. Anorg. Chem., 1957, 289, 277. 307a N.N. M e l n i k k o v : J . Gen., Chem., (U.S.S.R.) 6, 636, 1936 b N.N. M e l n i k k o v and M.S. R o k i t s k a y a ; i b i d . , 8, 1768, 1938. c W. K o n i g and W. Scharrnbeck; J . P r a k t . Chem., 128, 153, 1930. 308. R.L. L e t s i n g e r , I . S . Skoog; J . Amer. Chem. Soc., 77, 2491, 1955. 309. R.L. L e t s i n g e r , N. Reraes; i b i d . , 77, 2489, 1955. 310. R.L. L e t s i n g e r , I . S . Skoog; i b i d . , 77, 5176, 1955. 311. W. G e r r a r d , M.P. LaiDpert, and R. Schafferman; J . 3828, "1957. 312. T.P. P o v l o c k and W.T. L i p p i n c o t t ; J . Amer. Chem. Soc., 1958, 80, 5409. 313. H. Moissan; Le f l u o r e t ses composes P a r i s , 125, 1900.
© Copyright 2025 Paperzz