Phosphinic derivative of DTPA conjugated to a G5 PAMAM dendrimer: an 17 O and 1H relaxation study of its Gd(III) complex Petra Lebdušková, ab Angélique Sour,b Lothar Helm,*b Éva Tóth, bc Jan Kotek, a Ivan Lukeš *a and André E. Merbachb a Department of Inorganic Chemistry, Charles University, Hlavova 2030, 12840 Prague, Czech Republic. Fax: +420 2 2195 1253; Tel: +420 2 2195 1259; E-mail: [email protected] b Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland. Fax: +41 21 693 98 75; Tel: +41 21 693 98 76; E-mail: [email protected] c Centre de biophysique moléculaire, CNRS, rue Charles-Sadron, 45071 Orléans, Cedex 2, France. Supplementary information Appendix. Equations used in the analysis of 17O NMR and 1H NMRD data. Table S1. Proton relaxivities (r1 / mM-1s-1) of G5-(Gd(DTTAP))63, c(GdIII)=5.3 mM, pH=6.25, at variable temperature. Table S2. Proton relaxivities (r1 / mM-1s-1) of [Gd(DTTAP-bz-NH2)(H2O)]2-, c(GdIII)=4.2 mM, pH=6.75, at variable temperature. Table S3. Proton relaxivities (r1 / mM-1s-1) of [Gd(DTTAP-bz-NO2)(H2O)]2-, c(GdIII)=3.8 mM, pH=6.59, at variable temperature. Table S4. Variable temperature reduced transverse and longitudinal 17O relaxation rates of G5(Gd(DTTAP))63, c(GdIII)=39 mM, pH=5.69, Pm=7.95·10-4 at 9.4 T. Reference was G5-(Y(DTTAP))63, c(YIII)=34 mM, pH=5.83. Table S5. Variable temperature reduced transverse and longitudinal 17O relaxation rates of G5(Gd(DTTAP))63, c(GdIII)=39 mM, pH=5.69, Pm=7.95·10-4 at 4.7 T. Reference was G5-(Y(DTTAP))63, c(YIII)=34 mM, pH=5.83. Table S6. Variable temperature reduced transverse and longitudinal 17O relaxation rates of [Gd(DTTAP-bz-NH2)(H2O)]2-, c(GdIII)=46 mM, pH=5.51, Pm=8.19·10-4 at 9.4 T. Reference was acidified H2O, pH=3.3. Table S7. Variable temperature reduced transverse and longitudinal 17O relaxation rates of [Gd(DTTAP-bz-NO2)(H2O)]2-, c(GdIII)=32 mM, pH=5.91, Pm=5.73·10-4 at 9.4 T. Reference was acidified H2O, pH=3.3. Table S8. Calculation of the number of chelating groups per dendrimer. Figure S1. Variable temperature reduced 17O chemical shifts of [Gd(DTTAP-bz-NO2)(H2O)]2-, c(GdIII)=32 mM, pH=5.91, Pm=5.73·10-4 at 9.4 T. Reference was acidified H2O, pH=3.3. Figure S2. Variable temperature reduced 17O chemical shifts of [Gd(DTTAP-bz-NH2)(H2O)]2-, c(GdIII)=46 mM, pH=5.51, Pm=8.19·10-4 at 9.4 T. Reference was acidified H2O, pH=3.3. Figure S3. Variable temperature reduced 17O chemical shifts of G5-(Gd(DTTAP))63, c(GdIII)=39 mM, pH=5.69, Pm=7.95·10-4 at 4.7 T and 9.4 T. Reference was G5-(Y(DTTAP))63, c(YIII)=34 mM, pH=5.83. Table S9. Fitted parameters of G5-(Gd(DTTAP))63. Table S10. Fitted parameters of [Gd(DTTAP-bz-NO2)(H2O)]2- and [Gd(DTTAP-bz-NH2)(H2O)]2-. The underlined parameters were fixed during the fitting. 1 Equations. 17 O NMR relaxation: From the measured 17O NMR relaxation rates and angular frequencies of the paramagnetic solutions, 1/T1, 1/T2 and ω, and of the acidified water reference, 1/T1A, 1/T2A and ωA, one can calculate the reduced relaxation rates, 1/T1r, 1/T2r (Eq. [1] and [2]), where 1/T1m, 1/T2m are the relaxation rates of the bound water and Δωm is the chemical shift difference between bound and bulk water, τm is the mean residence time or the inverse of the water exchange rate kex and Pm is the mole fraction of the bound water. 1,2 1 1 ⎡1 1 ⎤ 1 1 [1] = − = + ⎢ ⎥ T1r Pm ⎣ T1 T1 A ⎦ T1m + τ m T1OS 1 1 ⎡1 1 ⎤ 1 T2−m2 + τ m−1T2−m1 + Δωm2 1 = − = + T2 r Pm ⎢⎣ T2 T2 A ⎥⎦ τ m (τ −1 + T −1 )2 + Δω 2 T2OS 2m m m [2] The terms 1/T1OS and 1/T2OS describe relaxation contributions from water molecules not directly bound to the paramagnetic centre. In previous studies it has been shown that 17O outer sphere relaxation terms due to water molecules freely diffusing on the surface of Gd-polyaminocarboxylate complexes are negligible. For complexes with phosphate groups relaxation terms due to 2nd sphere water molecules can however be important for longitudinal relaxation 1/T1r and have therefore to be included. 1 1 1 1 1 [3] = 1st + 2 nd = + T1r T1r T1r T1m + τ m T12r nd 1 1 1 T2−m2 + τ m−1T2−m1 + Δωm2 = 1st = T2 r T2 r τ m (τ −1 + T −1 )2 + Δω 2 m 2m [4] m First sphere contribution to 17O relaxation: The 17O longitudinal relaxation rates in Gd(III) solutions are the sum of the contributions of the dipole-dipole and quadrupolar (in the approximation developed by Halle for non-extreme narrowing conditions) mechanisms as expressed by Eq. [6]-[7], where γS is the electron and γI is the nuclear gyromagnetic ratio (γS = 1.76×1011 rad·s-1·T-1, γI =-3.626×107 rad·s-1·T-1), rGdO is the effective distance between the electron charge and the 17O nucleus, I is the nuclear spin (5/2 for 17O), χ is the quadrupolar coupling constant and η is an asymmetry parameter: 1 1 1 [5] = + T1m T1dd T1q 2 1 2 ⎛ μ ⎞ = 2γ I2γ S2 τ S ( S + 1) ⎣⎡3J (ωI ;τ d 1 ) + 7 J (ωS ;τ d 2 ) ⎦⎤ ; J (ω;τ ) = = ⎜ 0⎟ 2 6 T1dd 15 ⎝ 4π ⎠ rGdO 1 + (ωτ ) 1 τ d1 = 1 τm + [6] 1 1 + T1e τ RO 1 3π 2 2 I + 3 η2 ⎞ 2 ⎛ = + χ 1 ⎜ ⎟ ⎡0.2 J 1 (ωI ;τ RO ) + 0.8 J 2 (ωI ;τ RO ) ⎤⎦ ; T1q 10 I 2 ( 2 I − 1) ⎝ 3 ⎠⎣ J n (ω ;τ ) = τ 2 1 + ( nωτ ) [7] In the transverse relaxation the scalar contribution, 1/T2sc, is dominating, Eq. [8]. 1/τs1 is the sum of the exchange rate constant and the electron spin relaxation rate. 2 S ( S + 1) ⎛ A ⎞ 1 1 [8] ≅ = ⎜ ⎟ τ S1 T2 m T2 SC 3 ⎝=⎠ 1 1 1 [9] = + τ S1 τ m T1e 2 For slowly rotating species with internal degrees of freedom, the spectral density functions J are described the Lipari-Szabo approach. 3,4 In this model we distinguish two statistically independent motions; a rapid local motion with a correlation time τl and a slower global motion with a correlation time τg. Supposing the global molecular reorientation is isotropic, the relevant spectral density functions are expressed as in Eq. [10]-[13], where the general order parameter S2 describes the degree of spatial restriction of the local motion. If the local motion is isotropic, S2=0; if the rotational dynamics is only governed by the global motion, S2=1. ⎛ S 2τ dig (1 − S 2 )τ di ⎞⎟ [10] J (ω;τ di ) = ⎜ + 2 ⎜ 1 + ω 2τ dig 1 + ω 2τ di2 ⎟ ⎝ ⎠ 1 1 1 1 1 1 1 1 ; ; i = 1,2 [11] = + O+ = + + τ di τ m τ Tie τ dig τ m τ g Tie 1 τ O = 1 τg + 1 [12] τ lO ⎛ 1 − S 2 )τ O ⎞ S 2τ g ( ⎜ ⎟ J n (ω ) = + ⎜ 1 + ( nωτ )2 1 + ( nωτ O )2 ⎟ g ⎝ ⎠ [13] Second sphere contribution to 17O relaxation: 1 q 2nd 1 q 2nd ≅ 1st 2nd = 1st 2nd T1 q T1m q ⎛ 1 1 ⎜⎜ 2nd + 2nd T T 1q ⎝ 1dd [14] ⎞ ⎟⎟ ⎠ ⎛ 2nd,O 2nd,O 3τ d1 7τ d2 1 2nd,O ⎜ = C + dd 2 2nd 2nd,O ⎜ 1 + ω τ 2nd,O T1dd 1 + ωS τ d2 I d1 ⎝ 2 2 2 2 2 ⎛ μ ⎞ h γ 17 O γ S 2nd,O Cdd = ⎜ 0⎟ S ( S + 1) 2nd 6 15 ⎝ 4π ⎠ rGdO ( ) ( ( ) ) ⎛ 1 3π 2 2I + 3 0.2τ 2nd,O = χ 2 1+ η2 3 ⎜ 2nd 2 ⎜ 1 + ω τ 2nd,O 10 I ( 2I − 1) T1q I ⎝ ( 1 τ O,2nd 1 τ di2nd,O = [15] ⎞ ⎟ 2 ⎟ ⎠ ) ( ) 2 + 0.8τ 2nd,O ( 1 + 2ω I τ 2nd,O 1 τ O,2nd + [16] [17] 1 1 1 + ≅ O τ g τ Ol τl 2nd = k ex + ) ⎞ ⎟ 2 ⎟ ⎠ [18] 1 Tie 1 H NMRD: The measured longitudinal proton relaxation rate, R1obs is the sum of a paramagnetic and a diamagnetic contribution as expressed in Eq. [19], where r1 is the proton relaxivity: [19] R1obs = R1d + R1p = R1d + r1 ⎡⎣Gd 3+ ⎤⎦ The relaxivity is here given by the sum of inner sphere, second sphere and outer sphere contributions: [20] r1 = r1is + r1,2 nd + r1os Inner sphere 1H relaxation: The inner sphere term is given in Eq. [21], where q1st is the number of inner sphere water molecules. 5 3 1 q1st 1 [21] × × H 1000 55.55 T1m + τ m The longitudinal relaxation rate of inner sphere protons, 1/T1mH is expressed by Eq. [22], where rGdH is the effective distance between the electron charge and the 1H nucleus, ωI is the proton resonance frequency and ωS is the Larmor frequency of the Gd(III) electron spin. 2 1 2 ⎛ μ0 ⎞ =2γ I2γ S2 [22] S ( S + 1) ⎡⎣3J (ωI ;τ d 1 ) + 7 J (ωS ;τ d 2 ) ⎤⎦ = ⎜ ⎟ 6 T1Hm 15 ⎝ 4π ⎠ rGdH r1is = ⎛ S 2τ dig (1 − S 2 )τ di ⎞⎟ ; i = 1,2 J (ω;τ di ) = ⎜ + 2 ⎜ 1 + ω 2τ dig 1 + ω 2τ di2 ⎟ ⎝ ⎠ 1 1 1 1 ; 1 1 1 1 ; i = 1,2 = + + = + H + τ dig τ m τ g Tie τ dig τ m τ Tie [23] [24] [25] 1 1 1 = + H H τ τg τl The spectral density functions are given by Eq. [23]. Second sphere 1H relaxation: r12nd = 1 2nd,H T1dd C 2nd,H dd 1 τ 2nd,H di [26] 1 q 2nd 1 1 q 2nd 1 × × 2nd,H ≅ × × 2nd,H 2nd 1000 55.55 T1dd + τ m 1000 55.55 T1dd =C 2nd,O dd ⎛ 2nd,H 3τ d1 ⎜ ⎜ 1 + ω τ 2nd,H I d1 ⎝ ( ) 2 + 2nd,H 7τ d2 ( 2nd,H 1 + ωS τ d2 ) [27] ⎞ ⎟ 2 ⎟ ⎠ [28] 2 2 2 2 2 ⎛ μ ⎞ h γ 1 H γS = ⎜ 0⎟ S ( S + 1) 2nd 6 15 ⎝ 4π ⎠ rGdO ( 2nd = k ex + ) [29] 1 1 + τ H Tie [30] 1 1 1 = + τ H τ g τ lH Outer sphere 1H relaxation: The outer-sphere contribution can be described by Eq. [31] where NA is the Avogadro constant, and Jos is its associated spectral density function. 6,7 32 N Aπ 405 2 2 2 2 ⎛ μ0 ⎞ = γ S γ I S ( S + 1) ⎡⎣3J os (ωI ; T1e ) + 7 J os (ωS ; T2 e ) ⎤⎦ ⎜ ⎟ ⎝ 4π ⎠ aGdH DGdH 1/ 2 ⎡ 1⎛ τ GdH ⎞ ⎢ 1 + ⎜ iωτ GdH + ⎢ Tje ⎟⎠ 4⎝ J os (ω , T je ) = Re ⎢ 1/ 2 τ τ GdH ⎞ 4⎛ τ GdH ⎞ 1 ⎛ ⎢ ⎛ i i 1 ωτ ωτ + + + + ⎜ ⎟ ⎜ ⎟⎟ + ⎜⎜ iωτ GdH + GdH GdH GdH ⎢ ⎜ ⎟ ⎜ T je T je ⎠ T je ⎠ 9 ⎝ 9⎝ ⎣ ⎝ r1os = [31] ⎤ ⎥ ⎥ ; j = 1,2 3/ 2 ⎥ ⎞ ⎥ ⎟⎟ ⎥ ⎠ ⎦ [32] 2 aGdH [33] DGdH aGdH is the distance of closes approach and DGdH is the diffusion coefficient for the diffusion of a water proton relative to the Gd(III) complex. τ GdH = 4 Electron spin relaxation: The longitudinal and transverse electronic relaxation rates, 1/T1e and 1/T2e are described by SolomonBloembergen-Morgan theory modified by Powell (Eqs. [34]-[35]), where τV is the correlation time for the modulation of the zero-field-splitting interaction. ⎛ 1 ⎞ ⎜ ⎟ ⎝ T1e ⎠ ZFS ⎛ 1 ⎞ ⎜ ⎟ ⎝ T2 e ⎠ = ZFS ⎛ ⎞ 1 2 1 4 Δ τ v {4 S ( S + 1) − 3}⎜ + 2 2 2 2 ⎟ 25 ⎝ 1 + ωSτ v 1 + 4ωSτ v ⎠ ⎛ ⎞ 5.26 7.18 = Δ 2τ v ⎜ + ⎟ 2 2 ⎝ 1 + 0.372ωSτ v 1 + 1.24ωSτ v ⎠ [34] [35] Temperature dependences of water exchange rates and correlation times: The exchange rates are supposed to follow the Eyring equation. In Eq. [36] ΔS‡ and ΔH‡ are the entropy and enthalpy of activation for the water exchange process, and kex298 is the exchange rate at 298.15 K. In Eq. [37] ΔH‡2nd is the enthalpy of activation for the second sphere water exchange process and kex2nd,298 is the corresponding exchange rate at 298 K. ⎧ ΔS ‡ ΔH ‡ ⎫ kex298T ⎧ ΔH ‡ ⎛ 1 1 k BT 1 ⎞⎫ [36] = − − ⎟⎬ exp ⎨ exp ⎨ kex = ⎬= ⎜ R 298.15 298.15 T τm h RT R ⎝ ⎠ ⎭ ⎩ ⎭ ⎩ 2 nd ,298 ‡2 nd [37] ⎧ ΔH k 1 ⎞⎫ ⎛ 1 kex2 nd = ex 298.14 exp ⎨ ⎩ T − ⎟⎬ ⎜ ⎝ 298.15 T ⎠ ⎭ All correlation times and the diffusion constant are supposed to obey an Arrhenius law: ⎧E 1 1 ⎞⎫ τ = τ 298 exp ⎨ a ⎜⎛ − ⎟⎬ ⎩ R ⎝ T 298.15 ⎠ ⎭ 1 ⎞⎫ ⎧E ⎛ 1 298 DGdH = DGdH exp ⎨ GdH ⎜ − ⎟⎬ ⎩ R ⎝ 298.15 T ⎠ ⎭ 5 [38] [39] Table S1: Proton relaxivities (r1 / mM-1s-1) of G5-(Gd(DTTAP))63, c(GdIII)=5.3 mM, pH=6.25, at variable temperature. ν (1H)/MHz 0.010 0.014 0.021 0.030 0.043 0.062 0.089 0.127 0.183 0.264 0.379 0.546 0.784 1.13 1.62 2.34 3.36 4.83 6.95 10.0 11.5 12.0 13.2 13.6 15.2 15.5 17.4 17.6 20 30 40 60 100 200 5°C 22.6 22.7 22.4 22.4 22. 5 22.5 22.5 22.5 22.4 22.3 22.0 21.8 21.1 20.6 19.9 19.1 18.5 17.9 17.5 21.4 22.8 23.8 25.1 26.0 27.6 26.0 24.7 20.6 14.8 9.10 15°C 23.2 23.4 23.4 23.4 23.4 23.3 23.3 23.3 23.2 23.2 22.8 22.4 21.8 21.3 20.5 19.9 19.0 18.8 19.0 22.2 23.9 24.9 26.4 27.6 28.8 29.4 27.9 22.4 14.8 8.74 25°C 22.5 22.3 22.5 22.4 22.4 22.5 22.5 22.3 22.3 22.2 21.9 21.6 21.0 20.4 19.6 18.8 18.0 17.3 17.2 21.5 23.0 24.7 26.5 28.3 30.4 30.6 28.9 23.0 14.7 8.34 6 37°C 20.2 20.3 20.1 20.2 20.3 20.3 20.1 20.1 20.1 20.1 19.8 19.4 18.8 18.2 17.7 16.7 16.2 15.6 15.5 18.8 20.0 21.6 23.5 25.2 26.8 28.5 27.3 22. 0 14.1 7.83 50°C 18.1 18.1 18.0 18.1 18.1 18.0 18.0 17.9 17.9 17.8 17.5 17.2 16.7 16.2 15.6 15.0 14.4 13.7 13.4 16.4 17.7 18.9 20.3 22.2 23.5 24.1 23.5 19.8 13.2 7.55 Table S2: Proton relaxivities (r1 / mM-1s-1) of [Gd(DTTAP-bz-NH2)(H2O)]2-, c(GdIII)=4.2 mM, pH=6.75, at variable temperature. ν (1H)/MHz 0.010 0.014 0.021 0.030 0.043 0.062 0.089 0.127 0.183 0.264 0.379 0.546 0.784 1.13 1.62 2.34 3.36 4.83 6.95 10.0 10.0 11.6 13.4 15.5 18 20 30 40 60 100 200 400 5°C 14.0 14.0 14.0 13.8 13.9 13.9 14.0 14.0 13.9 14.0 13.9 13.5 13.7 13.5 13.2 12.7 12.3 11.6 10.9 11.1 11.0 10.9 10.8 10.8 10.8 10.7 10.6 10.6 10.6 10.3 9.48 7.92 25°C 9.58 9.56 9.63 9.61 9.64 9.61 9.56 9.59 9.59 9.58 9.53 9.56 9.48 9.37 9.27 9.11 8.76 8.27 7.81 7.27 7.08 6.87 6.62 6.44 6.34 6.34 6.22 6.23 6.08 5.88 5.49 7 37°C 8.02 8.07 7.99 7.93 8.15 8.06 8.04 8.05 8.04 8.07 8.11 7.98 7.99 7.85 7.86 7.68 7.49 7.20 6.72 5.97 5.68 5.39 5.20 4.97 5.02 4.75 4.60 4.51 4.43 4.26 4.19 50°C 6.26 6.26 6.30 6.26 6.25 6.22 6.22 6.25 6.22 6.25 6.25 6.18 6.17 6.15 6.07 6.00 5.87 5.64 5.36 4.80 4.55 4.34 4.09 3.93 4.08 3.76 3.61 3.46 3.42 3.32 3.24 Table S3: Proton relaxivities (r1 / mM-1s-1) of [Gd(DTTAP-bz-NO2)(H2O)]2-, c(GdIII)=3.8 mM, pH=6.59, at variable temperature. ν (1H)/MHz 0.010 0.014 0.021 0.030 0.043 0.062 0.089 0.127 0.183 0.264 0.379 0.546 0.784 1.13 1.623 2.34 3.36 4.83 6.95 10.0 11.5 13.2 15.2 17.4 20 30 40 60 100 200 400 5°C 14.2 14.2 14.3 14.3 14.2 14.2 14.2 14.2 14.2 14.1 14.1 14.0 13.8 13.6 13.3 12.8 12.4 11.6 11.0 10.9 10.7 10.8 10.6 10.6 10.7 10.2 10.2 10.3 9.90 9.36 8.23 25°C 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 9.99 9.81 9.67 9.43 9.07 8.58 7.77 7.58 7.27 7.04 6.87 6.72 6.76 6.34 6.27 6.23 6.01 5.84 5.46 8 37°C 8.22 8.24 8.24 8.21 8.22 8.24 8.22 8.21 8.19 8.18 8.20 8.15 8.13 8.04 7.96 7.72 7.48 7.08 6.54 6.07 5.84 5.61 5.34 5.16 5.24 4.74 4.60 4.51 4.45 4.32 4.23 50°C 6.82 6.84 6.81 6.84 6.80 6.81 6.80 6.81 6.79 6.79 6.78 6.74 6.75 6.68 6.59 6.48 6.26 5.94 5.49 5.16 4.93 4.68 4.45 4.31 4.34 3.76 3.61 3.47 3.39 3.32 3.23 Table S4: Variable temperature reduced transverse and longitudinal 17O relaxation rates of G5-(Gd(DTTAP))63, c(GdIII)=39 mM, pH=5.69, Pm=7.95·10-4 at 9.4 T. Reference was G5-(Y(DTTAP))63, c(YIII)=34 mM, pH=5.83. t / °C 5.4 10.7 18.3 23.6 30.3 40.2 49.2 59.7 70.5 81.3 T/K 278.6 283.9 291.5 296.8 303.5 313.4 322.4 332.9 343.7 354.5 1000/T / K-1 3.59 3.52 3.43 3.37 3.30 3.19 3.10 3.00 2.91 2.82 T1 (Gd)/s 2.41E-03 2.91E-03 3.47E-03 3.93E-03 4.59E-03 5.60E-03 6.73E-03 7.99E-03 9.62E-03 1.17E-02 T1 (Y)/s 2.80E-03 3.39E-03 4.31E-03 5.02E-03 6.11E-03 7.83E-03 9.62E-03 1.19E-02 1.47E-02 1.78E-02 T2(Gd)/s 9.15E-04 8.38E-04 6.80E-04 6.87E-04 7.02E-04 9.25E-04 1.16E-03 1.66E-03 2.49E-03 3.76E-03 T2(Y)/s 2.00E-03 2.47E-03 3.24E-03 3.92E-03 5.00E-03 6.77E-03 8.62E-03 1.10E-02 1.40E-02 1.71E-02 ln(1/T1r) 11.19 11.02 11.16 11.15 11.13 11.07 10.93 10.86 10.72 10.51 ln(1/T2r) 13.52 13.81 14.20 14.23 14.25 13.98 13.75 13.38 12.94 12.47 Table S5: Variable temperature reduced transverse and longitudinal 17O relaxation rates of G5-(Gd(DTTAP))63, c(GdIII)=39 mM, pH=5.69, Pm=7.95·10-4 at 4.7 T. Reference was G5-(Y(DTTAP))63, c(YIII)=34 mM, pH=5.83. t / °C 6.0 10.3 14.3 18.8 24.1 29.6 37.2 47.9 58.7 71.1 81.8 T/K 279.2 283.5 287.5 292.0 297.3 302.8 310.4 321.1 331.9 344.3 355.0 1000/T / K-1 3.58 3.53 3.48 3.43 3.36 3.30 3.22 3.11 3.01 2.90 2.82 T1 (Gd)/s 2.05E-03 2.31E-03 2.48E-03 2.74E-03 3.15E-03 3.57E-03 4.23E-03 5.27E-03 6.52E-03 8.58E-03 1.09E-02 T1 (Y)/s 2.68E-03 3.14E-03 3.52E-03 4.11E-03 4.88E-03 5.64E-03 6.94E-03 8.86E-03 1.14E-02 1.45E-02 1.74E-02 9 T2(Gd)/s 8.98E-04 9.12E-04 7.81E-04 8.41E-04 8.52E-04 8.47E-04 1.06E-03 1.27E-03 1.81E-03 2.72E-03 3.86E-03 T2(Y)/s 1.93E-03 2.30E-03 2.67E-03 3.13E-03 3.83E-03 4.58E-03 5.90E-03 7.90E-03 1.05E-02 1.35E-02 1.68E-02 ln(1/T1r) 11.89 11.88 11.92 11.94 11.86 11.77 11.66 11.48 11.32 10.99 10.66 ln(1/T2r) 13.53 13.63 13.95 13.91 13.95 14.01 13.78 13.63 13.26 12.82 12.43 Table S6: Variable temperature reduced transverse and longitudinal 17O relaxation rates of [Gd(DTTAP-bz-NH2)(H2O)]2-, c(GdIII)=46 mM, pH=5.51, Pm=8.19·10-4 at 9.4 T. Reference was acidified H2O, pH=3.3. t / °C 5.8 12.5 19.6 29.1 39.2 45.9 55.4 59.9 64.5 75.4 85.7 T/K 279.0 285.7 292.8 302.3 312.4 319.1 328.6 333.1 337.7 348.6 358.9 1000/T / K-1 3.58 3.50 3.42 3.31 3.20 3.13 3.04 3.00 2.96 2.87 2.79 T1 (Gd)/s 3.28E-03 4.16E-03 5.15E-03 6.63E-03 8.60E-03 9.95E-03 1.20E-02 1.30E-02 1.40E-02 1.70E-02 1.96E-02 T1 (H2O)/s 3.99E-03 5.02E-03 6.17E-03 7.95E-03 1.02E-02 1.16E-02 1.39E-02 1.51E-02 1.64E-02 1.95E-02 2.25E-02 T2(Gd)/s 7.85E-04 6.68E-04 6.47E-04 7.12E-04 9.70E-04 1.29E-03 1.77E-03 2.14E-03 2.56E-03 4.10E-03 5.92E-03 T2(H2O)/s 4.02E-03 5.00E-03 6.26E-03 7.95E-03 1.03E-02 1.16E-02 1.39E-02 1.50E-02 1.63E-02 1.94E-02 2.25E-02 ln(1/T1r) 11.09 10.82 10.58 10.33 9.99 9.76 9.58 9.49 9.47 9.12 8.99 ln(1/T2r) 14.04 14.27 14.34 14.26 13.95 13.65 13.31 13.10 12.90 12.37 11.93 Table S7: Variable temperature reduced transverse and longitudinal 17O relaxation rates of [Gd(DTTAP-bz-NO2)(H2O)]2-, c(GdIII)=32 mM, pH=5.91, Pm=5.73·10-4 at 9.4 T. Reference was acidified H2O, pH=3.3. t / °C 5.8 12.5 19.6 29.1 39.2 45.9 55.4 59.9 64.5 75.4 85.7 T/K 279.0 285.7 292.8 302.3 312.4 319.1 328.6 333.1 337.7 348.6 358.9 1000/T / K-1 3.58 3.50 3.42 3.31 3.20 3.13 3.04 3.00 2.96 2.87 2.79 T1 (Gd)/s 3.43E-03 4.39E-03 5.39E-03 6.93E-03 8.95E-03 1.02E-02 1.24E-02 1.35E-02 1.46E-02 1.75E-02 2.04E-02 T1 (H2O)/s 3.99E-03 5.02E-03 6.17E-03 7.95E-03 1.02E-02 1.16E-02 1.39E-02 1.51E-02 1.64E-02 1.95E-02 2.25E-02 10 T2(Gd)/s 1.07E-03 9.24E-04 8.37E-04 9.13E-04 1.20E-03 1.50E-03 2.09E-03 2.45E-03 3.02E-03 4.63E-03 6.66E-03 T2(H2O)/s 4.02E-03 5.00E-03 6.26E-03 7.95E-03 1.03E-02 1.16E-02 1.39E-02 1.50E-02 1.63E-02 1.94E-02 2.25E-02 ln(1/T1r) 11.16 10.81 10.63 10.38 10.05 9.93 9.63 9.53 9.47 9.20 9.01 ln(1/T2r) 13.99 14.25 14.41 14.34 14.07 13.83 13.47 13.30 13.06 12.57 12.13 Table S8. Calculation of the number of chelating groups per dendrimer. G5-(Gd(DTTAP))63 n = number of mols of chelate per gram of product 9.89×10-4 obtained from complexometric titration Total percentage of C obtained from 48.9 elemental analysis Percentage of carbon in the chelate 24.9 (DTTAP-bz-NCS = C21H29N4O10S) calculated from n Percentage of carbon in PAMAM skeleton 48.9-24.9 = 24.0 G5-(NH2)128 Formula of PAMAM skeleton C1262H2528N506O252 x = number of chelate bound on the dendrimer 63 Percentage of substituted amino groups 49% Total percentage of N calculated by using x 16.6 Total percentage of N obtained by 17.3 elemental analysis Total percentage of S calculated by using x 3.1 Total percentage of S obtained by 2.8 elemental analysis Total percentage of P calculated by using x 3.0 Total percentage of P obtained by 2.7 elemental analysis Figure S1. Variable temperature reduced 17O chemical shifts of [Gd(DTTAP-bz-NO2)(H2O)]2-, c(GdIII)=32 mM, pH=5.91, Pm=5.73·10-4 at 9.4 T. Reference was acidified H2O, pH=3.3. 5 2x10 5 1x10 0 5 -1x10 5 ωr / rad s -1 -2x10 5 -3x10 5 -4x10 5 -5x10 5 -6x10 5 -7x10 -8x10 5 2.8 3.0 3.2 3.4 -1 1000/T / K 11 3.6 Figure S2. Variable temperature reduced 17O chemical shifts of [Gd(DTTAP-bz-NH2)(H2O)]2-, c(GdIII)=46 mM, pH=5.51, Pm=8.19·10-4 at 9.4 T. Reference was acidified H2O, pH=3.3. 5 2x10 5 1x10 0 5 -1x10 5 ωr / rad s -1 -2x10 5 -3x10 5 -4x10 5 -5x10 5 -6x10 5 -7x10 5 -8x10 2.8 3.0 3.2 3.4 3.6 -1 1000/T / K Figure S3. Variable temperature reduced 17O chemical shifts of G5-(Gd(DTTAP))63, c(GdIII)=39 mM, pH=5.69, Pm=7.95·10-4 at 4.7 T (○) and 9.4 T (▲). Reference was G5-(Y(DTTAP))63, c(YIII)=34 mM, pH=5.83. 5 2x10 5 1x10 0 ωr / rad s -1 5 -1x10 5 -2x10 5 -3x10 5 -4x10 5 -5x10 5 -6x10 2.8 2.9 3.0 3.1 3.2 3.3 -1 1000/T / K 12 3.4 3.5 3.6 3.7 Table S9. Fitted parameters of G5-(Gd(DTTAP))63. The underlined parameters were fixed during the fitting. Parameter G5-(Gd(DTTAP))63 298 6 -1 kex [10 s ] 5.0±0.2 ‡ -1 56.2±1.0 ΔH [kJ mol ] +71.9±3 ΔS‡ [J mol-1K-1] 6 -1 -3.8 A/ħ [10 rad s ] 298 4417±340 τgO [ps] 21±2 ΕgO [kJ mol-1] 298 71±3 τlO [ps] 21±2 ΕlO [kJ mol-1] 2 0.28±0.01 S 298 21±2 τV [ps] 5.5±5.4 ΕV [kJ mol-1] 0.62±0.11 Δ2[1020 s-2] 1.7±0.1 δgL2 [10-2] rGdO [Å] 2.5 rGdHouter [Å] 3.5 7.58 χ(1+η2/3)1/2 [MHz] q 1 q2nd 2 298 50 τM 2nd [ps] ‡ -1 35.0 ΔH 2nd [kJ mol ] r2ndGdH [Å] 3.5 2nd r GdO [Å] 4.1 13 Table S10. Fitted parameters of [Gd(DTTAP-bz-NO2)(H2O)]2- and [Gd(DTTAP-bz-NH2)(H2O)]2-. The underlined parameters were fixed during the fitting. Parameter kex298 [106 s-1] ΔH‡ [kJ mol-1] ΔS‡ [J mol-1K-1] A/ħ [106 rad s-1] τRO298 [ps] ΕR [kJ mol-1] τV298 [ps] ΕV [kJ mol-1] Δ2[1020 s-2] 298 D GdH [10-10m2s-1] ΕDGdH [kJ mol-1] δgL2 [10-2] τRH298/ τRO298 rGdO [Å] rGdH [Å] rGdHouter [Å] χ(1+η2/3)1/2 [MHz] q q2nd τM2982nd [ps] ΔH‡2nd [kJ mol-1] r2ndGdH [Å] r2ndGdO [Å] [Gd(DTTAP-bz-NH2)(H2O)]28.9±1.3 48.1±3 +49.8±10 -3.8 116±2 20.5±0.8 28.2±0.5 1 0.403±0.003 25±2 30±1 3.3±0.6 0.81±0.04 2.5 3.1 3.5 7.58 1 2 50 35.0 3.5 4.1 [Gd(DTTAP-bz-NO2)(H2O)]28.3±0.6 48.5±2 +50.3±8 -3.8 117±10 18±1 26.3±0.4 1 0.40±0.01 25±2 30±1 2.8±0.5 0.85±0.08 2.5 3.1 3.5 7.58 1 2 50 35.0 3.5 4.1 References for equations. 1 T. J. Swift, R. E. Connick, J. Chem. Phys., 1962, 37, 307. J. R. Zimmermann, W. E. Brittin, J. Phys. Chem., 1957, 61, 1328. 3 G. Lipari, S. Szabó, J. Am. Chem. Soc., 1982, 104, 4546. 4 G. Lipari, S. Szabó, J. Am. Chem. Soc., 1982, 104, 4559. 5 Z. Luz, S. Meiboom, J. Chem. Phys., 1964, 40, 2686. 6 J. H. Freed, J. Chem. Phys., 1978, 68, 4034. 7 S. H. Koenig, R. D. Brown III, Prog. Nucl. Magn. Reson. Spectrosc., 1991, 22, 487. 2 14
© Copyright 2026 Paperzz