Introduction Kinematics Solutions Rolling and Friction in Discrete Element Simulations Matthew R. Kuhn Donald P. Shiley School of Engineering University of Portland EMI 2010 Conference Boston, Massachusetts June 2–4, 2011 National Science Foundation Grant No. NEESR-936408 Kuhn — June 4, 2011 http:// faculty.up.edu / kuhn / papers / EMI2011.pdf Introduction Kinematics Solutions Classification of rolling resistance Creep-friction definition Creep-friction vs. Cattaneo-Mindlin friction Classification of Rolling Resistance Rolling Resistance — Two Categories Velocity-preserving (with contact torque) M input > M output θ̇ input = θ̇ output Torque-preserving (with contact creep) M input = M output θ̇ input > θ̇ output Ẇ input = M input · θ̇ input Ẇ output = M output · θ̇ output Kuhn — June 4, 2011 http:// faculty.up.edu / kuhn / papers / EMI2011.pdf Introduction Kinematics Solutions Classification of rolling resistance Creep-friction definition Creep-friction vs. Cattaneo-Mindlin friction Classification of Rolling Resistance Rolling Resistance — Two Categories Velocity-preserving (with contact torque) M input > M output θ̇ input = θ̇ output Torque-preserving (with contact creep) M input = M output θ̇ input > θ̇ output Gears Adhesive surfaces Visco-elastic materials Elasto-plastic materials Kuhn — June 4, 2011 http:// faculty.up.edu / kuhn / papers / EMI2011.pdf Introduction Kinematics Solutions Classification of rolling resistance Creep-friction definition Creep-friction vs. Cattaneo-Mindlin friction Classification of Rolling Resistance Rolling Resistance — Two Categories Velocity-preserving (with contact torque) M input > M output θ̇ input = θ̇ output Torque-preserving (with contact creep) M input = M output θ̇ input > θ̇ output Gears Adhesive surfaces Visco-elastic materials Elasto-plastic materials Iwashita & Oda (1998) Kuhn — June 4, 2011 http:// faculty.up.edu / kuhn / papers / EMI2011.pdf Introduction Kinematics Solutions Classification of rolling resistance Creep-friction definition Creep-friction vs. Cattaneo-Mindlin friction Classification of Rolling Resistance Rolling Resistance — Two Categories Velocity-preserving (with contact torque) M input > M output θ̇ input = θ̇ output Gears Adhesive surfaces Visco-elastic materials Elasto-plastic materials Torque-preserving (with contact creep) M input = M output θ̇ input > θ̇ output “Creep-friction” Iwashita & Oda (1998) Kuhn — June 4, 2011 http:// faculty.up.edu / kuhn / papers / EMI2011.pdf Introduction Kinematics Solutions Classification of rolling resistance Creep-friction definition Creep-friction vs. Cattaneo-Mindlin friction Creep-Friction: Definition Creep-Friction Rolling resistance and dissipation in the absence of a contact moment Contact mechanics are different than for Cattaneo-Mindlin sliding Kuhn — June 4, 2011 http:// faculty.up.edu / kuhn / papers / EMI2011.pdf Introduction Kinematics Solutions Classification of rolling resistance Creep-friction definition Creep-friction vs. Cattaneo-Mindlin friction Creep-Friction: Definition Creep-Friction Rolling resistance and dissipation in the absence of a contact moment Contact mechanics are different than for Cattaneo-Mindlin sliding Kuhn — June 4, 2011 http:// faculty.up.edu / kuhn / papers / EMI2011.pdf Introduction Kinematics Solutions Classification of rolling resistance Creep-friction definition Creep-friction vs. Cattaneo-Mindlin friction Creep-Friction vs. Cattaneo-Mindlin Friction Cattaneo-Mindlin Zero-Rolling Contact Creep-Friction Rolling Contact Used in DEM? Genealogy Widespread Cattaneo (1938) Mindlin (1949) Deresiewicz (1953) Rare Carter(1926) Poritsky(1950) Kalker (1967) Original problem Machinery sliding (transient sliding) Rail-wheel interaction (steady-state rolling) Kuhn — June 4, 2011 http:// faculty.up.edu / kuhn / papers / EMI2011.pdf Introduction Kinematics Solutions Classification of rolling resistance Creep-friction definition Creep-friction vs. Cattaneo-Mindlin friction Creep-Friction vs. Cattaneo-Mindlin Friction Cattaneo-Mindlin Zero-Rolling Contact Creep-Friction Rolling Contact Hertz Yes Hertz Yes Slip & stick within contact area between spheres Symmetric Non-symmetric Reference frame Lagrangian Eulerian Normal stress Elastic-frictional? Particle motions Kuhn — June 4, 2011 http:// faculty.up.edu / kuhn / papers / EMI2011.pdf Introduction Kinematics Solutions Eulerian kinematics Transient & steady-state kinematics Eulerian kinematics of a moving contact Rigid displacement Particle deformation dudisp ≡ duq − dup dudef ≡ duq,def − dup,def Rolling duroll ≡ 12 (duq +dup ) Kuhn — June 4, 2011 http:// faculty.up.edu / kuhn / papers / EMI2011.pdf Introduction Kinematics Solutions Eulerian kinematics Transient & steady-state kinematics Eulerian kinematics of a moving contact Rigid displacement Particle deformation dudisp ≡ duq − dup dudef ≡ duq,def − dup,def Rolling duroll ≡ 12 (duq +dup ) Contact area Slip d s within the contact area: q ∂u ∂up d udef disp ds = du − − dt · d uroll − ∂x ∂x ∂t Stick zone: d s = 0 Kuhn — June 4, 2011 http:// faculty.up.edu / kuhn / papers / EMI2011.pdf Introduction Kinematics Solutions Eulerian kinematics Transient & steady-state kinematics Transient vs. Steady-State Conditions Cattaneo-Mindlin problem — pure sliding “Transient” conditions q ∂up ∂u d udef disp − dt · d uroll − 0 = du − ∂x ∂x ∂t Creep-friction problem — steady rolling “Steady-state” creep-friction q ∂u d udef ∂up disp 0 = du − − dt · d uroll − ∂x ∂x ∂t General problem for DEM — transient sliding & rolling q ∂u ∂up d udef disp 0 = du − − dt · d uroll − ∂x ∂x ∂t Kuhn — June 4, 2011 http:// faculty.up.edu / kuhn / papers / EMI2011.pdf Introduction Kinematics Solutions Eulerian kinematics Transient & steady-state kinematics Transient vs. Steady-State Conditions Cattaneo-Mindlin problem — pure sliding “Transient” conditions q ∂up ∂u d udef disp − dt · d uroll − 0 = du − ∂x ∂x ∂t Creep-friction problem — steady rolling “Steady-state” creep-friction q ∂u d udef ∂up disp 0 = du − − dt · d uroll − ∂x ∂x ∂t General problem for DEM — transient sliding & rolling q ∂u ∂up d udef disp 0 = du − − dt · d uroll − ∂x ∂x ∂t Kuhn — June 4, 2011 http:// faculty.up.edu / kuhn / papers / EMI2011.pdf Introduction Kinematics Solutions Current situation Dahlberg & Alfredsson New 3D model Current situation Cattaneo-Mindlin sliding: Solved! Creep-friction rolling: Steady-state rolling of two cylinders: solved, Carter (1926) Steady-state rolling of two spheres: no exact solution! Only analytical approximations of the form v disp |Q| ξss ≡ roll = Fss G, µ, a, µP v Transient rolling & sliding: no solutions. Only numerical approximations. Kuhn — June 4, 2011 http:// faculty.up.edu / kuhn / papers / EMI2011.pdf Introduction Kinematics Solutions Current situation Dahlberg & Alfredsson New 3D model Current situation Cattaneo-Mindlin sliding: Solved! Creep-friction rolling: Steady-state rolling of two cylinders: solved, Carter (1926) Steady-state rolling of two spheres: no exact solution! Only analytical approximations of the form v disp |Q| ξss ≡ roll = Fss G, µ, a, µP v Transient rolling & sliding: no solutions. Only numerical approximations. Kuhn — June 4, 2011 http:// faculty.up.edu / kuhn / papers / EMI2011.pdf Introduction Kinematics Solutions Current situation Dahlberg & Alfredsson New 3D model Current situation Cattaneo-Mindlin sliding: Solved! Creep-friction rolling: Steady-state rolling of two cylinders: solved, Carter (1926) Steady-state rolling of two spheres: no exact solution! Only analytical approximations of the form v disp |Q| ξss ≡ roll = Fss G, µ, a, µP v Transient rolling & sliding: no solutions. Only numerical approximations. Kuhn — June 4, 2011 http:// faculty.up.edu / kuhn / papers / EMI2011.pdf Introduction Kinematics Solutions Current situation Dahlberg & Alfredsson New 3D model Recent approximation of the transient problem Dahlberg & Alfredsson (2009) approximation: Non-steady state (transient) rolling of cylinders Start with the general 2-D problem q ∂u ∂up d udef disp 0 = du − − dt · d uroll − ∂x ∂x ∂t Express in an approximate 1-D scalar form |Q| du roll disp disp du = CC-M (dQ) + Fss du µP du disp Invert the Cattaneo-Mindlin contact compliance “CC-M ” to find force increment: |Q| du roll −1 disp dQ = CC-M du 1 − Fss µP du disp Kuhn — June 4, 2011 http:// faculty.up.edu / kuhn / papers / EMI2011.pdf Introduction Kinematics Solutions Current situation Dahlberg & Alfredsson New 3D model Recent approximation of the transient problem Dahlberg & Alfredsson (2009) approximation: Non-steady state (transient) rolling of cylinders Start with the general 2-D problem q ∂u ∂up d udef disp 0 = du − − dt · d uroll − ∂x ∂x ∂t Express in an approximate 1-D scalar form |Q| du roll disp disp du = CC-M (dQ) + Fss du µP du disp Invert the Cattaneo-Mindlin contact compliance “CC-M ” to find force increment: |Q| du roll −1 disp dQ = CC-M du 1 − Fss µP du disp Kuhn — June 4, 2011 http:// faculty.up.edu / kuhn / papers / EMI2011.pdf Introduction Kinematics Solutions Current situation Dahlberg & Alfredsson New 3D model Transient rolling of spheres 3-D Transient rolling of spheres. Reduce to a 2-D form: |Q| Q −1 −1 disp disp roll d Q = CC-M d u ⇒ CC-M d u − Fss |d u | µP |Q| (1) using Kalker’s (2000) approximation of the steady-state creepage: " # |Q| 1/3 3µP 1− 1− Fss = µP Ga2 C11 In a displacement-driven DEM code, compute the force increment d Q by using a standard Cattaneo-Mindlin algorithm −1 for CC-M . But use (1) instead of d udisp . Kuhn — June 4, 2011 http:// faculty.up.edu / kuhn / papers / EMI2011.pdf Introduction Kinematics Solutions Current situation Dahlberg & Alfredsson New 3D model Tangential force, Q/µP Effect of rolling upon tangential force 1 duroll =0 10 dudisp 100 200 0.5 500 0 0 1 3 4 2(1 − ν)R Sliding movement, dudisp × (2 − ν)f a2 Kuhn — June 4, 2011 2 http:// faculty.up.edu / kuhn / papers / EMI2011.pdf Introduction Kinematics Solutions Current situation Dahlberg & Alfredsson New 3D model Effect of rolling in DEM simulation Drained triaxial compression of 4096 spheres Stress ratio, q/p′ 1.5 1 0.5 0 0 0.05 0.1 0.15 Axial strain, Kuhn — June 4, 2011 0.2 0.25 ǫ http:// faculty.up.edu / kuhn / papers / EMI2011.pdf Introduction Kinematics Solutions Current situation Dahlberg & Alfredsson New 3D model Conclusions Conclusions . . . Creep-friction: a type of rolling resistance without rotational “springs”. A new approximate solution to the creep-friction problem for 3D transient rolling & sliding of spheres. Unless the rolling rate is large (relative to sliding rate), the effect of creep-friction is small. An example simulation with a dense packing of spheres reveals a minimal effect of creep-friction. Questions? Kuhn — June 4, 2011 http:// faculty.up.edu / kuhn / papers / EMI2011.pdf Introduction Kinematics Solutions Current situation Dahlberg & Alfredsson New 3D model J. J. Kalker 1990. Three-dimensional elastic bodies in rolling contact. Kluwer Academic Publishers. J. J. Kalker 2000. Rolling contact phenomena — linear elasticity. Rolling Contact Phenomena, Jacobsen, B. & Kalker, J.J. (eds.), 1–84. J. Dahlberg & B. Alfredsson 2009. Transient rolling of cylindrical contacts with constant and linearly increasing applied slip. Wear, 266(1-2):316–326. Kuhn — June 4, 2011 http:// faculty.up.edu / kuhn / papers / EMI2011.pdf
© Copyright 2026 Paperzz