Calculus II – Final Exam Review Fullerton College 1. Use the Trapezoidal Rule and Simpson’s Rule with n = 4, to approximate the value of the definite integral. Z 3 2 dx 1 + x2 2 10. Find the x-coordinate of the centroid of the region bound by the graphs of y = ax − x2 and y = 0. For exercises 11–16, evaluate each integral by hand. Z Z x2 11. dx 12. y 2 ln y dy x+3 Z ∞ Z 2 −2x 13. x e dx 14. cos3 (πθ) dθ 2. Evaluate the integral. Z x dx 4 + 9x4 3. find f 0 (x) for f (x) = x2 cosh 3x 0 Z 4. Solve the differential equation. 15. dy =y+2 dx Z 16. 5. Determine the area bounded by the graphs of the following two equations. x = 2y − y 2 , √ x2 dx 25 − x2 4 dt (t − 1)(t − 2)(t − 3) 17. Evaluate the limit using L’Hôpital’s Rule. x=y−6 lim xe−x 6. Write the integral for the disk method and shell method for finding the volume of the solid generated by revolving the region bounded by the graphs of the following equations about the line x = 3. Evaluate one of your integrals to find the volume. 18. Write an expression for the nth term of the sequence. − y = x2 , x = 2, y = 0 4 5/4 x , 5 1 3 3 27 , ,− , , ... 11 13 5 17 19. Express the repeating decimal 0.05 as a geometric series using sigma notation and use the sum of the series to rewrite the number as a fraction of integers. 7. Find the arc length of the graph of the function over the given interval. f (x) = 2 x→∞ [0, 9] For exercises 20–29, determine if each series converges or diverges and justify your answer. Use each test at least once. 8. Find the surface area of the solid generated by revolving the the region bounded by the graphs of the following equations about the x-axis. 20. ∞ n X π n=0 √ y = 4 x, x = 5, x = 12, y = 0 22. n ∞ X 3n + 1 n=0 9. A force of 4 pounds is needed to stretch a spring from its natural length of 8 inches to a length of 16 inches. Find the work done in stretching the spring from 1 foot in length to 2 feet. 3 ∞ X 4n − 5 21. ∞ X (−1)n ln (n) n n=2 23. ∞ X n=5 √ 1 n−4 ∞ X 1 1 (−1)n+1 5n − 25. 24. 2n − 1 2n + 1 n! n=1 n=1 1 Calculus II – Final Exam Review 26. ∞ X 1 √ 5 n6 27. 1 3 n − 2n2 n=3 29. n=1 28. ∞ X ne−n Fullerton College 36. Find dy/dx and d2 y/dx2 at the point t = 2 for parametric curve: 2 n=1 ∞ X n ∞ X 1 1+ n n=1 x = 2 − t3 , 37. Find two sets of polar coordinates with 0 ≤ θ < 2π, that represent the√same point as the rectangular coordinate, 2 3, −2 . 30. Find the interval and radius of convergence for the power series. 38. Convert the rectangular equation to polar. ∞ X (−1)n xn n n=1 y2 x2 − =1 4 9 31. Find the power series for the function centered at c = −2 f (x) = 39. Convert the polar equation to rectangular. 1 2x + 3 r = 6 sin(θ) 40. Find all points of vertical and horizontal tangency on the polar curve. 32. Find the Maclaurin series for the function, 2 f (x) = ex . r = 4 − 4 cos θ 33. Use the Maclaurin series to approximate the value of the integral with an error of less than 0.00001. Z 41. Find the area of the interior of the rose curve 1 r = 12 sin(3θ) sin x3 dx 0 34. Find a set of parametric equations that represent the straight line starting at the point (−2, 5) and ending at the point (4, 1). 35. Find a set of parametric equations that represent the ellipse shown below. 4 2 4 –4 y = 4t + ln(t) –2 –4 2 Calculus II – Final Exam Review Fullerton College 20. Diverges; geometric with |r| = 1. Trapezoidal: 0.2848; Simpson’s: 0.2838 2 1 3x 2. arctan 12 2 π 3 >1 21. Converges; alternating series test 22. Converges; root test with L = 3 4 <1 23. Diverges; directly compare to P √1 n 2 3. 2x cosh 3x + 3x sinh 3x x 4. y = Ce − 2 24. Converges; telescoping 125 un2 5. 6 Z 4 √ 6. disk: π ((3 − y)2 − 1) dy 25. Converges; ratio test with L = 0 < 1 26. Converges; p-series with p = 6 5 >1 0 Z shell: 2π 2 27. Converges; integral test (3 − x)x2 dx 0 28. Converges; limit compare to 3 volume: 8π un 7. n→∞ 30. R = 1, (−1, 1] 31. 9. 60 in-lbs or 5 ft-lbs a 10. x̄ = 2 12. y3 (3 ln(y) − 1) + C 9 13. 1 4 32. ∞ X x2n n! n=0 33. 449 1920 (− 25 , − 32 ) 34. x = 6t − 2, y = −4t + 5 35. x = 6 cos t, y = 3 sin t 38. r2 = 36 9 cos2 θ − 4 sin2 θ 39. x2 + (y − 3)2 = 9 17. 0 18. an = n=0 −2n (x + 2)n , 19 3 36. − ; − 8 576 11π 5π 37. 4, , −4, 6 6 1 (3 sin(πθ) − sin3 (πθ)) + C 3π √ x 1 25 arcsin − x 25 − x2 + C 15. 2 5 2 (t − 1) (t − 3)2 16. ln +C (t − 2)4 14. 19. ∞ X n=0 x2 − 3x + 9 ln(x + 3) + C 2 ∞ X 1 n3 29. Diverges; lim an = e 6= 0 232 un 15 592π un2 8. 3 11. P √ √ 40. horizontal: (−3, (−3, −3 3) √ 3 3),√ vertical: (1, 3), (1, − 3), (−8, 0) cusp: (0, 0) (−1)n 3n−1 2n + 9 0.05(0.1)n = 1 18 41. 36π un2 3
© Copyright 2025 Paperzz