1 Sa Assignment #10— Derivatives of Logarithmic and Exponential Functions sk DEO PAT- ET RIÆ atc h sis iversitas Un e w ane n 2003 Doug MacLean Find f (x) and f (x) if: x2 + 1 (1) f (x) = ln x3 − 1 Solution: f (x) = ln x 2 + 1 − ln x 3 − 1 , 2 3 3x 2 2x x 3 − 1 − 3x 2 x 2 + 1 2x 4 − 2x − 3x 4 − 3x 2 1 1 2x x +1 − 3 x −1 = 2 − 3 = = = so f (x) = 2 x +1 x −1 x +1 x −1 (x 2 + 1) (x 3 − 1) (x 2 + 1) (x 3 − 1) x 3 + 3x + 2 −x 2 (x + 1) (x 3 − 1) 3x 2 2x − : x2 + 1 x3 − 1 (2x) x 2 + 1 − 2x x 2 + 1 To find f (x), we differentiate f (x) = 2x 3x 2 f (x) = − = 2 3 3 x + 1 2 x2 − 1 (6x) x − 1 − 3x (3x ) = 2 (x 3 − 1) 2x 2 + 2 − 4x 2 6x 4 − 6x − 9x 4 − = 2 2 (x 2 + 1) (x 3 − 1) 6x + 3x 4 2 − 2x 2 + 2 2 = (x 2 + 1) (x 3 − 1) 2 1 − x2 (x 2 + 1) 2 + 3x 2 + x3 (x 3 − 1) 2 (x 2 + 1) 2 − 3x 2 x 3 − 1 − 3x 2 x 3 − 1 (x 3 − 1) 2 = 2 x 2 + 1 − 2x(2x) (x 2 + 1) 2 − 2 Solution: Sa sin x (2) f (x) = ln sin x + cos x sk DEO PAT- ET RIÆ atc h sis iversitas Un e w ane n 2003 Doug MacLean f (x) = ln (sin x) − ln (sin x + cos x), so cos x(sin x + cos x) − (cos x − sin x) sin x 1 1 cos x cos x − sin x − = = (sin x) − (sin x + cos x) = sin x sin x + cos x sin x sin x + cos x sin x(sin x + cos x) sin x cos x + cos2 x − sin x cos x + sin2 x = sin x(sin x + cos x) f (x) = 1 sin x(sin x + cos x) −2 f (x) = (−1) (sin x(sin x + cos x)) (sin x(sin x + cos x)) = 1 2 ((sin x) (sin x + cos x) + sin x(sin x + cos x) ) = (sin x(sin x + cos x)) 1 ((cos x)(sin x + cos x) + sin x(cos x − sin x)) = 2 sin x(sin x + cos x)2 1 2 2 sin x cos x + cos x + sin x cos x − sin x = sin2 x(sin x + cos x)2 1 2 sin x cos x + cos2 x − sin2 x = 2 2 sin x(sin x + cos x) π sin 2x + sin 2x + cos 2x 4 = 2 2 2 2 sin x(sin x + cos x) sin x sin x + π4 3 sk DEO PAT- ET RIÆ atc h sis Sa (3) f (x) = ln(sec x + tan x) iversitas Un e w ane n 2003 Doug MacLean Solution: f (x) = 1 1 (sec x + tan x) = (sec x tan x + sec2 x) = sec x + tan x sec x + tan x f (x) = sec x tan x (4) f (x) = x a − ax , where a is a constant. Solution: f (x) = ax a−1 − (ln a)ax , f (x) = a(a − 1)x a−2 − (ln a)2 ax sec x 4 Sa (5) f (x) = loga x + logx a, where a is a constant. sk DEO PAT- ET RIÆ atc h sis iversitas Un e w ane n 2003 Doug MacLean Solution: f (x) = 1 x ln a f (x) = ln a ln x ln x + = + ln a(ln x)−1 , so ln a ln x ln a + ln a(−1)(ln x)−2 (ln x) = 1 ln a 1 1 − ln a(ln x)−2 = − = x ln a x x ln a x(ln x)2 1 f (x) = − ln a x −1 (ln x)−2 = x ln a −1 − ln a x −1 (ln x)−2 − ln a x −1 (ln x)−2 = 2 x ln a −1 −1 −2 −2 −3 − ln a −x − ln a x (ln x) (−2)(ln x) (ln x) = x 2 ln a ln a 2 ln a −1 + + x 2 ln a x 2 (ln x)2 x 2 (ln x)3 (ln x)2 − (ln a)2 x ln a(ln x)2 5 sk DEO PAT- ET RIÆ atc h sis 2 −4x+5 Sa (6) f (x) = 2x iversitas Un e w ane n 2003 Doug MacLean Solution: f (x) = e(x 2 ln 2(x − 2)2x and , so f (x) = e(x 2 −4x+5) ln 2 (x 2 − 4x + 5) ln 2 x 2 −4x+5 x 2 −4x+5 f (x) = 2 ln 2 (x − 2)2 = 2 ln 2 (x − 2) 2 2 2 2 ln 2 (1)2x −4x+5 + (x − 2) 2 ln 2(x − 2)2x −4x+5 = 2 x −4x+5 = + (x − 2) 2 2 2 ln 2 1 + 2 ln 2(x − 2)2 2x −4x+5 (7) f (x) = x ln x Solution: f (x) = 1 x = e(x 2 −4x+5 2 −4x+5) ln 2 1 = f (x) = (x) ln x + x(ln x) = (1) ln x + x x ln x + 1 2 −4x+5) ln 2 ((2x − 4) ln 2) = 6 Sa (8) f (x) = x 2x sk DEO PAT- ET RIÆ atc h sis iversitas Un e w ane n 2003 Doug MacLean Solution: f (x) = e2x ln x , 1 so f (x) = e (2) ln x + (2x) = x 2x [2 ln x + 2] = 2(ln x + 1)x 2x (2x ln x) = e [(2x) ln x) + (2x)(ln x) ] = x x 2x 1 1 2x 2x 2x 2 + 0 x +2(ln x+1) 2(ln x + 1)x + 2(ln x + 1) x 2x and f (x) = 2(ln x+1) x +2(ln x+1) x =2 = 2 x x 2x ln x 2x ln x 2x (9) f (x) = x sin x Solution: f (x) = e sin x ln x , so f (x) = e sin x ln x (sin x ln x) = e sin x ln x [(sin x) ln x + sin x(ln x) ] = x sin x x cos x ln x + x 1 1 and f (x) = x sin x cos x ln x + (sin x) + x sin x cos x ln x + (sin x) = x x 1 2 1 1 −1 x sin x cos x ln x + (sin x) = + x sin x − sin x ln x + cos x + (cos x) + sin x x x x x2 sin x 2 sin x cos x sin x cos x ln x + − x − sin x ln x + 2 x x x2 sin x sin x 1 cos x ln x + (sin x) x = 7 Solution: f (x) = x sk PAT- ET RIÆ atc h e w ane n 2003 Doug MacLean − ln x =e −(ln x)2 , so f (x) = e −(ln x)2 2 −(ln x) Thus f (x) > 0 on (0,1) and f (x) < 0 on (1, ∞). ln x −(ln x)2 ln x −(ln x)2 f (x) = −2 e e −2 = x x (ln x) x − ln x(x) ln x −(ln x)2 ln x −(ln x)2 −2 e = −2 e − 2 x2 x x 1 x − ln x(1) (ln x)2 −(ln x)2 −(ln x)2 e = + 4 e −2 x x2 x2 (ln x)2 2 2(ln x)2 + ln x − 1 −(ln x)2 1 − ln x −(ln x)2 +4 = e e −2 x2 x2 x2 1 1 √ −1 ± 3 = −1, , or x = , e, 2 e 4 √ 1 1 √ ∪ , e . so we have f (x) > 0 on 0, e, ∞ , and f (x) < 0 on e e Thus f (x) = 0 if ln x = DEO sis Sa ln x 1 (10) f (x) = x iversitas Un =e −(ln x)2 1 −2 ln x x = −2 ln x −(ln x)2 e . x
© Copyright 2026 Paperzz