Hindawi Publishing Corporation Discrete Dynamics in Nature and Society Volume 2016, Article ID 4375069, 10 pages http://dx.doi.org/10.1155/2016/4375069 Research Article Approaching the Discrete Dynamical Systems by means of Skew-Evolution Semiflows Codruua Stoica Department of Mathematics and Computer Science, Aurel Vlaicu University of Arad, 2 Elena DraĚgoi Street, 310330 Arad, Romania Correspondence should be addressed to Codruţa Stoica; [email protected] Received 10 April 2016; Accepted 9 June 2016 Academic Editor: Allan C. Peterson Copyright © 2016 Codruţa Stoica. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The aim of this paper is to highlight current developments and new trends in the stability theory. Due to the outstanding role played in the study of stable, instable, and, respectively, central manifolds, the properties of exponential dichotomy and trichotomy for evolution equations represent two domains of the stability theory with an impressive development. Hence, we intend to construct a framework for an asymptotic approach of these properties for discrete dynamical systems using the associated skew-evolution semiflows. To this aim, we give definitions and characterizations for the properties of exponential stability and instability, and we extend these techniques to obtain a unified study of the properties of exponential dichotomy and trichotomy. The results are underlined by several examples. 1. Introduction The phenomena of the real world, in domains as economics, biology, or environmental sciences, do not take place continuously, but at certain moments in time. Therefore, a discretetime approach is required. By means of skew-evolution semiflows, we intend to construct a framework that deepens the analysis of discrete dynamical systems. Playing an outstanding role in the study of stable and instable manifolds and in approaching several types of differential equations and difference equations, the exponential dichotomy for evolution equations is one of the domains of the stability theory with an impressive development. The dichotomy is a conditional stability, due to the fact that the asymptotic properties of the solutions of a given evolution equation depend on the location of the initial condition in a certain subspace of the phase space. Over the last decades, the classic techniques used to characterize asymptotic properties as stability and instability were generalized towards a natural generalization of the classic concept of dichotomy, the notion of trichotomy. The main idea in the study of trichotomy is to obtain, at any moment, a decomposition of the state space in three subspaces: a stable subspace, an instable one, and a third one called the central manifold. We intend to give several conditions in order to describe the behavior related to the third subspace. A relevant step in the study of evolution equations is due to Henry, who, in [1], studied the property of dichotomy in the discrete setting, in the spirit of the classic theory initiated by Perron in [2]. A special interest is dedicated to the study of dynamic linear systems by means of associated difference equations, as emphasized by Chow and Leiva in [3] and Latushkin and Schnaubelt in [4]. In [5], the uniform exponential dichotomy of discretetime linear systems given by difference equations is presented, and the results are applied at the study of dichotomy of evolution families generated by evolution equations. In [6], a characterization of exponential dichotomy for evolution families associated with linear difference systems in terms of admissibility is given. In [7], characterizations for the uniform exponential stability of variational difference equations are obtained and, in [8], the uniform exponential dichotomy of semigroups of linear operators in terms of the solvability of discretetime equations over N is characterized. In [9], new characterizations for the exponential dichotomy of evolution families in terms of solvability of associate difference and 2 integral equations are deduced. In [10, 11], some dichotomous behaviors for variational difference equations are emphasized, such as a new method in the study of exponential dichotomy based on the convergence of some associated series of nonlinear trajectories or characterizations in terms of the admissibility of pairs of sequence spaces over N with respect to an associated control system. The notion of trichotomy was introduced in 1976 by Sacker and Sell and studied for the case of linear differential equations in the finite dimensional setting in [12]. For the first time, a sufficient condition for the existence of the trichotomy, in fact a continuous invariant decomposition of the state space Rđ into three subspaces, was given. In the same study, the case of skew-product semiflows was as well approached. A stronger notion, but still in the finite dimensional case, was introduced by Elaydi and Hajek in [13], the exponential trichotomy for linear and nonlinear differential systems, by means of Lyapunov functions. They prove the fact that the property of exponential trichotomy of a differential system implies the Sacker-Sell type trichotomy. Meanwhile, the notion of invariance to perturbations of the property of trichotomy is given. Thus, in the case of a nonlinear perturbation of a linear exponential trichotomic system, the obtained system preserves the same qualitative behavior as the nonperturbed one. In [14], a relation between Lyapunov function and exponential trichotomy for the linear equation on time scales is given and, as application, the roughness of exponential trichotomy on time scales is proved. Several asymptotic properties for difference equations were studied in [15â17] and, recently, in [18, 19]. Other asymptotic properties for discrete-time dynamical systems were considered in [20, 21]. A new concept of đđ -trichotomy for linear difference systems is given in [22], as an extension of the đđ -dichotomy and of the exponential trichotomy in đđ spaces. The notion of skew-evolution semiflow considered in this paper and introduced by us in [23] generalizes the concepts of semigroups, evolution operators, and skewproduct semiflows and seems to be more appropriate for the study of the asymptotic behavior of the solutions of evolution equations in the nonuniform case, as they depend on three variables. The applicability of the notion has been studied in [24â28]. The case of stability for skew-evolution semiflows is emphasized in [29], and various concepts for trichotomy are studied in [30]. Some asymptotic properties, as stability, instability, and trichotomy for difference equations in a uniform as well in a nonuniform setting, were studied by us in [31â33]. The following sections outline the structure of this paper. In Section 2, the definitions for evolution semiflows, evolution cocycles, and skew-evolution semiflows are given, featured by examples. In Section 3, we present definitions and characterizations for the properties of exponential growth and decay, respectively, for the exponential stability and instability. The main results are stated in Sections 4 and 5, where we give definitions and characterizations for these asymptotic properties in discrete time for skew-evolution semiflows. Finally, some conclusions are emphasized in Section 6. Discrete Dynamics in Nature and Society The list of references allows us to build the overall context in which the discussed problem is placed. 2. Preparatory Notions Let us consider (đ, đ) a metric space, đ a real or complex Banach space, and B(đ) the family of linear đ-valued bounded operators defined on đ. The norm of vectors and operators is â â â. In what follows, we will denote đ = đ × đ, đ = {(đĄ, đĄ0 ) â R2 , đĄ ⼠đĄ0 ⼠0}, and Î = {(đ, đ) â N2 , đ ⼠đ}. By đź we denoted the identity operator on đ. Definition 1. The mapping đś : đ × đ â đ defined by the relation đś (đĄ, đ , đĽ, V) = (đ (đĄ, đ , đĽ) , ÎŚ (đĄ, đ , đĽ) V) , (1) where đ : đ × đ â đ has the properties (đ 1 ) đ(đĄ, đĄ, đĽ) = đĽ, â(đĄ, đĽ) â R+ × đ, (đ 2 ) đ(đĄ, đ , đ(đ , đĄ0 , đĽ)) = đ(đĄ, đĄ0 , đĽ), â(đĄ, đ , đĄ0 ) â đ, đĽ â đ and ÎŚ : đ × đ â B(đ) satisfies (đ1 ) ÎŚ(đĄ, đĄ, đĽ) = đź, â(đĄ, đĽ) â R+ × đ, (đ2 ) ÎŚ(đĄ, đ , đ(đ , đĄ0 , đĽ))ÎŚ(đ , đĄ0 , đĽ) = ÎŚ(đĄ, đĄ0 , đĽ), â(đĄ, đ , đĄ0 ) â đ, đĽ â đ, is called skew-evolution semiflow on đ. Remark 2. đ is called evolution semiflow and ÎŚ is an evolution cocycle. The approach of asymptotic properties in discrete time is of an obvious importance because the results obtained in this setting can easily be extended in continuous time. Example 3. Let đ = R be a Banach space and let đ = C(N, đ) be the set of R-valued sequences (đĽđ )đâĽ0 . The mapping đ : Î × đ ół¨â đ, đ (đ, đ, đĽ) = đĽđ + đ â đ (2) is an evolution semiflow on đ. We consider the linear system in discrete time: đĽđ+1 = đ´ đ đĽđ , đ â N, (3) where đ´ : N â B(đ). If we denote {đ´ đ+đâ1 â â â đ´đ+1 đ´ đ , đ > 0 đ¸ (đ + đ, đ) = { đź, đ = 0, { (4) where đ¸ : N2 â B(đ), then every solution of system (3) satisfies the relation đĽđ+đ = đ¸ (đ + đ, đ) đĽđ , âđ, đ â N. (5) Discrete Dynamics in Nature and Society 3 The pair đśđ¸ = (đ, ÎŚđ¸ ) is a skew-evolution semiflow, associated with system (3), where ÎŚđ¸ is an evolution cocycle over the evolution semiflow đ, given by ÎŚđ¸ (đ, đ, đĽ) = đ¸ (đ â đ + [đĽđ ] , [đĽđ ]) , (6) â (đ, đ) â Î, âđĽ â đ, Sufficiency. As a first step, if đĄ ⼠đĄ0 + 1, we denote đ = [đĄ] and đ0 = [đĄ0 ]. The following relations hold: đ ⤠đĄ < đ + 1, đ0 ⤠đĄ0 < đ0 + 1, where [đĽđ ] denotes the integer part of the term of rank đ. Example 4. To every skew-evolution semiflow đś = (đ, ÎŚ), one can associate the mapping đ´ ÎŚ : N â B(đ) given by đ´ ÎŚ (đ) = ÎŚ (đ + 1, đ, đĽ) , đ â N, đĽ â đ, where the existence of đ : R+ â Râ+ and of ] is given by Definition 6. (7) such that ÎŚđ´ ÎŚ = ÎŚ. đ0 + 1 ⤠đ. We obtain óľŠ óľŠóľŠ óľŠóľŠÎŚ (đĄ, đĄ0 , đĽ) VóľŠóľŠóľŠ ⤠đ (đ) óľŠ â đđ(đ)(đĄâđ) óľŠóľŠóľŠÎŚ (đ, đ0 + 1, đ (đ0 + 1, đĄ0 , đĽ)) óľŠ â ÎŚ (đ0 + 1, đĄ0 , đĽ) VóľŠóľŠóľŠ ⤠đđ đ2 (đ) This section aims to emphasize some asymptotic behaviors, as exponential growth and decay and exponential stability and instability, as a foundation for the main results. We give the definitions of these properties in continuous time and we underline the characterizations in discrete time, as results that play the role of equivalent definitions (see [33]). Definition 5. A skew-evolution semiflow đś has exponential growth if there exist mappings đ, đ : R+ â Râ+ , such that óľŠóľŠ óľŠ đ(đ )(đĄâđ ) óľŠ óľŠóľŠÎŚ (đ , đĄ0 , đĽ) VóľŠóľŠóľŠ , óľŠóľŠÎŚ (đĄ, đĄ0 , đĽ) VóľŠóľŠóľŠ ⤠đ (đ ) đ óľŠ óľŠ (8) for all (đĄ, đ ), (đ , đĄ0 ) â đ and all (đĽ, V) â đ. Definition 6. A skew-evolution semiflow đś is said to be exponentially stable if there exist a constant ] > 0 and a mapping đ : R+ â Râ+ such that óľŠóľŠ óľŠ â](đĄâđ ) óľŠ óľŠóľŠÎŚ (đ , đĄ0 , đĽ) VóľŠóľŠóľŠ , óľŠóľŠÎŚ (đĄ, đĄ0 , đĽ) VóľŠóľŠóľŠ ⤠đ (đ ) đ óľŠ óľŠ (9) for all (đĄ, đ ), (đ , đĄ0 ) â đ and all (đĽ, V) â đ. Proposition 7. A skew-evolution semiflow đś with exponential growth is exponentially stable if and only if there exist a constant đ > 0 and a sequence of real numbers (đđ )đâĽ0 with the property đđ ⼠1, âđ ⼠0, such that âÎŚ (đ, đ, đĽ) Vâ ⤠đđ đâđ(đâđ) âVâ , (10) for all (đ, đ) â Î and all (đĽ, V) â đ. for all (đĽ, V) â đ, where functions đ and đ are given by Definition 5. As a second step, for đĄ â [đĄ0 , đĄ0 + 1), we have óľŠóľŠ óľŠ đ(đĄ )(đĄâđĄ ) óľŠóľŠÎŚ (đĄ, đĄ0 , đĽ) VóľŠóľŠóľŠ ⤠đ (đĄ0 ) đ 0 0 âVâ ⤠đ (đĄ0 ) đđ(đĄ0 )+đ đâđ(đĄâđĄ0 ) âVâ , (14) for all (đĽ, V) â đ. Hence, đś is exponentially stable. Definition 8. A skew-evolution semiflow đś has exponential decay if there exist mappings đ, đ : R+ â Râ+ , such that óľŠ óľŠóľŠ đ(đĄ)(đĄâđ ) óľŠ óľŠóľŠÎŚ (đĄ, đĄ0 , đĽ) VóľŠóľŠóľŠ , óľŠóľŠÎŚ (đ , đĄ0 , đĽ) VóľŠóľŠóľŠ ⤠đ (đĄ) đ óľŠ óľŠ (15) for all (đĄ, đ ), (đ , đĄ0 ) â đ and all (đĽ, V) â đ. Definition 9. A skew-evolution semiflow đś is said to be exponentially instable if there exist a mapping đ : R+ â Râ+ and a constant ] > 0 such that óľŠ óľŠ óľŠ óľŠ (16) đ (đĄ) óľŠóľŠóľŠÎŚ (đĄ, đĄ0 , đĽ) VóľŠóľŠóľŠ ⼠đ](đĄâđ ) óľŠóľŠóľŠÎŚ (đ , đĄ0 , đĽ) VóľŠóľŠóľŠ , for all (đĄ, đ ), (đ , đĄ0 ) â đ and all (đĽ, V) â đ. Proposition 10. A skew-evolution semiflow with exponential decay đś is exponentially instable if and only if there exist a constant đ > 0 and a sequence of real numbers (đđ )đâĽ0 with the property đđ ⼠1, âđ ⼠0, such that óľŠ óľŠóľŠ âđ(đâđ0 ) óľŠ óľŠóľŠÎŚ (đ, đ0 , đĽ) VóľŠóľŠóľŠ , óľŠóľŠÎŚ (đ, đ0 , đĽ) VóľŠóľŠóľŠ ⤠đđ đ óľŠ óľŠ (17) for all (đ, đ), (đ, đ0 ) â Î and all (đĽ, V) â đ. Proof. We have the following. Proof. We have the following. Necessity. It is obtained immediately if we consider in relation (9) đĄ = đ and đ = đĄ0 = đ, and if we define đ = ] > 0, (13) â đ2[đ(đ)+đ] đâđ(đĄâđĄ0 ) âVâ , 3. Preliminary Results đđ = đ (đ) , (12) đ â N, (11) Necessity. We take in relation (16) đĄ = đ, đ = đ, and đĄ0 = đ0 and we define đđ = đ (đ) , đ â N, đ = ] > 0, (18) 4 Discrete Dynamics in Nature and Society where the existence of function đ : R+ â Râ+ and of constant ] is given by Definition 9. Sufficiency. First step, let us take đĄ ⼠đĄ0 + 1 and we denote đ = [đĄ] and, respectively, đ0 = [đĄ0 ]. We obtain Definition 13. A skew-evolution semiflow đś = (đ, ÎŚ) is called exponentially dichotomic if there exist functions đ1 , đ2 : R+ â Râ+ , constants ]1 , ]2 > 0, and two projectors đ1 and đ2 compatible with đś such that óľŠ óľŠ đ]1 (đĄâđ ) óľŠóľŠóľŠÎŚ (đĄ, đĄ0 , đĽ) đ1 (đĽ) VóľŠóľŠóľŠ đ ⤠đĄ < đ + 1, đ0 ⤠đĄ0 < đ0 + 1, óľŠ óľŠ â¤ đ1 (đ ) óľŠóľŠóľŠÎŚ (đ , đĄ0 , đĽ) đ1 (đĽ) VóľŠóľŠóľŠ (19) óľŠ óľŠ đ]2 (đĄâđ ) óľŠóľŠóľŠÎŚ (đ , đĄ0 , đĽ) đ2 (đĽ) VóľŠóľŠóľŠ đ0 + 1 ⤠đ. óľŠ óľŠ â¤ đ2 (đĄ) óľŠóľŠóľŠÎŚ (đĄ, đĄ0 , đĽ) đ2 (đĽ) VóľŠóľŠóľŠ It follows that óľŠ óľŠ óľŠóľŠ óľŠóľŠÎŚ (đĄ, đĄ0 , đĽ) VóľŠóľŠóľŠ = óľŠóľŠóľŠÎŚ (đĄ, đ, đ (đ, đ0 + 1, đĽ)) ⼠[đ (đĄ)]â1 đâđ(đĄâđ) [đ (đĄ)]â1 â đâ2đ đĚ](đâđ0 +1) âVâ ⼠(20) Example 14. We denote by C = C(R+ , R+ ) the set of all continuous functions đĽ : R+ â R+ , endowed with the topology of uniform convergence on compact subsets of R+ , metrizable relative to the metric â 1 đđ (đĽ, đŚ) , đ đ=1 2 1 + đđ (đĽ, đŚ) đ (đĽ, đŚ) = â đĚ] đĚ](đĄâđĄ0 ) âVâ , 2 Ě 2đ [đ (đĄ)] đđ óľ¨ óľ¨ where đđ (đĽ, đŚ) = sup óľ¨óľ¨óľ¨đĽ (đĄ) â đŚ (đĄ)óľ¨óľ¨óľ¨ . (21) If đĽ â C, then for all đĄ â R+ we denote đĽđĄ (đ ) = đĽ(đĄ + đ ), đĽđĄ â C. Let đ be the closure in C of the set {đđĄ , đĄ â R+ }, where đ : R+ â Râ+ is a nondecreasing function with the property limđĄââ đ(đĄ) = đ > 0. Then, (đ, đ) is a metric space and the mapping for all (đĽ, V) â đ. Hence, đ : đ × đ ół¨â đ, óľŠ óľŠ đ óľŠóľŠóľŠÎŚ (đĄ, đĄ0 , đĽ) VóľŠóľŠóľŠ ⼠đ](đĄâđĄ0 ) âVâ , (22) for all (đĄ, đĄ0 , đĽ, V) â đ × đ, where we have denoted Ě (âĚ]+2đ) , đ = đđ(Ě]+đ) + đ2 đđ ] = Ě], đ (đĄ, đ , đĽ) (đ) = đĽ (đĄ â đ + đ) óľŠ óľ¨ óľ¨ óľ¨ óľ¨ óľŠóľŠ óľŠóľŠ(V1 , V2 )óľŠóľŠóľŠ = óľ¨óľ¨óľ¨V1 óľ¨óľ¨óľ¨ + óľ¨óľ¨óľ¨V2 óľ¨óľ¨óľ¨ , V = (V1 , V2 ) â đ. Definition 11. A projector đ on đ is called invariant relative to a skew-evolution semiflow đś = (đ, ÎŚ) if the following relation ÎŚ (đĄ, đ , đĽ) (V1 , V2 ) (24) = (đđĄ sin đĄâđ sin đ â2đĄ+2đ V1 , đ2đĄâ2đ â3đĄ cos đĄ+3đ cos đ V2 ) , đ1 (đĽ) (V1 , V2 ) = (V1 , 0) , Definition 12. Two projectors đ1 and đ2 are said to be compatible with a skew-evolution semiflow đś = (đ, ÎŚ) if (đ1 ) projectors đ1 and đ2 are invariant on đ; (đ2 ) for all đĽ â đ, the projections đ1 (đĽ) and đ2 (đĽ) verify the relations (25) (31) is an evolution cocycle over the evolution semiflow đ. We consider the projectors holds for all (đĄ, đ ) â đ and all đĽ â đ. đ1 (đĽ) đ2 (đĽ) = đ2 (đĽ) đ1 (đĽ) = 0. (30) The mapping ÎŚ : đ × đ â B(đ), given by 4. Nonuniform Discrete Dichotomic Behaviors đ1 (đĽ) + đ2 (đĽ) = đź, (29) is an evolution semiflow on đ. Let đ = R2 be endowed with the norm (23) which proves the exponential instability of đś. đ (đ (đĄ, đ , đĽ)) ÎŚ (đĄ, đ , đĽ) = ÎŚ (đĄ, đ , đĽ) đ (đĽ) (28) đĄâ[0,đ] for all (đĽ, V) â đ, where the existence of function đ and of constant đ is assured by Definition 8. As a second step, if we consider đĄ â [đĄ0 , đĄ0 + 1), we obtain óľŠ óľŠ đ óľŠóľŠóľŠÎŚ (đĄ, đĄ0 , đĽ) VóľŠóľŠóľŠ ⼠đâđ(đĄâđĄ0 ) âVâ ⼠đâ(Ě]+đ) đĚ](đĄâđĄ0 ) âVâ , (27) for all (đĄ, đ ), (đ , đĄ0 ) â đ and all (đĽ, V) â đ. óľŠ â ÎŚ (đ, đ0 + 1, đ (đ0 + 1, đĄ0 , đĽ)) ÎŚ (đ0 + 1, đĄ0 , đĽ) VóľŠóľŠóľŠ â2 óľŠ óľŠ [đ (đĄ)] â đâđ(đ0 +1âđĄ0 ) óľŠóľŠóľŠÎŚ (đ, đ0 + 1, đĽ) VóľŠóľŠóľŠ âĽ Ě đ (26) đ2 (đĽ) (V1 , V2 ) = (0, V2 ) . (32) As đĄ sin đĄ â đ sin đ â 2đĄ + 2đ ⤠âđĄ + 3đ , â (đĄ, đ ) â đ, (33) we obtain that óľŠóľŠ óľŠ 2đ â(đĄâđ ) óľ¨óľ¨ óľ¨óľ¨ óľŠóľŠÎŚ (đĄ, đ , đĽ) đ1 (đĽ) VóľŠóľŠóľŠ ⤠đ đ óľ¨óľ¨V1 óľ¨óľ¨ , â (đĄ, đ , đĽ, V) â đ × đ. (34) Discrete Dynamics in Nature and Society 5 Similarly, as 2đĄ â 2đ â 3đĄ cos đĄ + 3đ cos đ ⼠âđĄ â 5đ , â (đĄ, đ ) â đ it follows that óľŠ óľŠ óľ¨ óľ¨ đ6đĄ óľŠóľŠóľŠÎŚ (đĄ, đ , đĽ) đ2 (đĽ) VóľŠóľŠóľŠ ⼠đ5(đĄâđ ) óľ¨óľ¨óľ¨V2 óľ¨óľ¨óľ¨ , â (đĄ, đ , đĽ, V) â đ × đ. (35) (đđ2ó¸ ) there exist a constant đ2 < 0 and a sequence of real positive numbers (đ˝đ )đâĽ0 such that đ óľŠ óľŠ â đâđ2 (đâđ) óľŠóľŠóľŠÎŚ (đ, đ, đĽ) đ2 (đĽ) VóľŠóľŠóľŠ đ=đ (36) (43) óľŠ óľŠ â¤ đ˝đ óľŠóľŠóľŠÎŚ (đ, đ, đĽ) đ2 (đĽ) VóľŠóľŠóľŠ The skew-evolution semiflow đś = (đ, ÎŚ) is exponentially dichotomic with characteristics đ (đ˘) = đ6đ˘ , ] = 1. for all (đ, đ), (đ, đ) â Î and all (đĽ, V) â đ. (37) In what follows, let us denote đśđ (đĄ, đ , đĽ, V) = (đ(đĄ, đ , đĽ), ÎŚ(đĄ, đĄ0 , đĽ)đđ (đĽ)V), where (đĄ, đĄ0 , đĽ, V) â đ × đ and đ â {1, 2}. In discrete time, we will describe the property of exponential dichotomy as given in the next proposition. Proposition 15. A skew-evolution semiflow đś = (đ, ÎŚ) is exponentially dichotomic if and only if there exist two projectors {đđ }đâ{1,2} , compatible with đś, constants ]1 ⤠0 ⤠]2 , and a sequence of real positive numbers (đđ )đâĽ0 such that Proof. We have the following. Necessity. According to Proposition 7, there exist a constant ] > 0 and a sequence of real numbers (đđ )đâĽ0 with the property đđ ⼠1, âđ ⼠0. We obtain for đ = ]/2 > 0 and according to Proposition 7 đ â đđ(đâđ) âÎŚ (đ, đ, đĽ) Vâ đ=đ đ ⤠đđ â đđ(đâđ) đâ](đâđ) âÎŚ (đ, đ, đĽ) Vâ (đ1ó¸ ) óľŠ óľŠ ] (đâđ) óľŠóľŠ óľŠ óľŠóľŠÎŚ (đ, đ, đĽ) đ1 (đĽ) VóľŠóľŠóľŠ ⤠đđ óľŠóľŠóľŠđ1 (đĽ) VóľŠóľŠóľŠ đ 1 đ=đ (38) (đ2ó¸ ) (44) đ = đđ âVâ â đâ(]/2)(đâđ) ⤠đźđ âVâ , đ=đ óľŠ óľŠ â] (đâđ) óľŠóľŠ óľŠ óľŠóľŠđ2 (đĽ) VóľŠóľŠóľŠ ⤠đđ óľŠóľŠóľŠÎŚ (đ, đ, đĽ) đ2 (đĽ) VóľŠóľŠóľŠ đ 2 âđ, đ â Î, â (đĽ, V) â đ, (39) for all (đ, đ) â Î and all (đĽ, V) â đ. where we have denoted Proof. We have the following. Necessity. If we consider for đś1 in relation (26) of Definition 13 đĄ = đ and đ = đĄ0 = đ and if we define đđ = đ (đ) , đ â N, (40) relation (đ1ó¸ ) is obtained. Statement (đ2 )ó¸ results from Definition 13 for đś2 if we consider in relation (27) đĄ = đ and đ = đĄ0 = đ and đđ = đ (đ) , đ â N. (41) Sufficiency. It is obtained by means of Proposition 7 for đś1 and, respectively, of Proposition 10 for đś2 . Hence, đś is exponentially dichotomic. Theorem 16. A skew-evolution semiflow đś = (đ, ÎŚ) is exponentially dichotomic if and only if there exist two projectors {đđ }đâ{1,2} , compatible with đś such that (đđ1ó¸ ) there exist a constant đ1 > 0 and a sequence of real positive numbers (đźđ )đâĽ0 such that đźđ = đđ đ]/2 , đ â N. By Proposition 10, there exist a constant ] > 0 and a sequence of real numbers (đđ )đâĽ0 with the property đđ ⼠1, âđ ⼠0. We obtain for đ = â]/2 > 0 đ â đâđ(đâđ) âÎŚ (đ, đ, đĽ) Vâ đ=đ đ ⤠đđ â đâđ(đâđ) đâ](đâđ) âÎŚ (đ, đ, đĽ) Vâ đ=đ đ=đ (42) (46) đ = đđ âÎŚ (đ, đ, đĽ) Vâ â đâ(]/2)(đâđ) đ=đ ⤠đźđ âÎŚ (đ, đ, đĽ) Vâ , for all (đ, đ) â Î and all (đĽ, V) â đ, where we have denoted đ óľŠ óľŠ óľŠ óľŠ â đđ1 (đâđ) óľŠóľŠóľŠÎŚ (đ, đ, đĽ) đ1 (đĽ) VóľŠóľŠóľŠ ⤠đźđ óľŠóľŠóľŠđ1 (đĽ) VóľŠóľŠóľŠ (45) đźđ = 1 đ , đ â N. 1 â đđ đ (47) 6 Discrete Dynamics in Nature and Society Sufficiency. Let đĄ ⼠đĄ0 + 1, đĄ0 ⼠0. We define đ = [đĄ] and đ0 = [đĄ0 ]. We consider đśâđ = (đ, ÎŚâđ ), where we define ÎŚâđ (đĄ, đĄ0 , đĽ) = đđ(đĄâđĄ0 ) ÎŚ(đĄ, đĄ0 , đĽ). We have that óľŠóľŠ óľŠ óľŠóľŠÎŚâđ (đĄ, đĄ0 , đĽ) VóľŠóľŠóľŠ óľŠ óľŠ óľŠóľŠ óľŠ = óľŠóľŠóľŠÎŚâđ (đĄ, đ, đ (đ, đĄ0 , đĽ)) ÎŚâđ (đ, đĄ0 , đĽ) VóľŠóľŠóľŠóľŠ (48) óľŠ óľŠ â¤ đ (đ) đđ(đĄâđ) óľŠóľŠóľŠóľŠÎŚâđ (đ, đĄ0 , đĽ) VóľŠóľŠóľŠóľŠ óľŠ óľŠ â¤ đ (đ) đđ óľŠóľŠóľŠóľŠÎŚâđ (đ, đĄ0 , đĽ) VóľŠóľŠóľŠóľŠ , for all (đĽ, V) â đ, where đ and đ are given by Definition 5. We obtain further for đ ⼠đ (đĄ2 ) for all đĽ â đ, the projections đ0 (đĽ), đ1 (đĽ), and đ2 (đĽ) verify the relations đ1 (đĽ) + đ2 (đĽ) + đ3 (đĽ) = đź, đđ (đĽ) đđ (đĽ) = 0, 0 ⤠đ óľŠ óľŠ â đ (đ) đđ óľŠóľŠóľŠóľŠÎŚâđ (đ, đĄ0 , đĽ) VóľŠóľŠóľŠóľŠ ⤠đ˝đ âVâ , (49) ]1 ⤠]2 ⤠0 ⤠]3 ⤠]4 , óľŠóľŠ óľŠ óľŠóľŠÎŚ (đĄ, đĄ0 , đĽ) đ1 (đĽ) VóľŠóľŠóľŠ óľŠ óľŠ â¤ đ1 (đ ) óľŠóľŠóľŠÎŚ (đ , đĄ0 , đĽ) đ1 (đĽ) VóľŠóľŠóľŠ đ]1 (đĄâđ ) óľŠ óľŠ đ4 (đĄ) óľŠóľŠóľŠÎŚ (đĄ, đĄ0 , đĽ) đ2 (đĽ) VóľŠóľŠóľŠ óľŠ óľŠ âĽ óľŠóľŠóľŠÎŚ (đ , đĄ0 , đĽ) đ2 (đĽ) VóľŠóľŠóľŠ đ]4 (đĄâđ ) for all (đĽ, V) â đ, where đ˝đ = đ(đ)đźđ đđ . Then, there exist đ ⼠1 and ] > 0 such that óľŠóľŠ óľŠ óľŠóľŠÎŚâđ (đĄ, đĄ0 , đĽ) VóľŠóľŠóľŠ ⤠đđâ](đĄâđĄ0 ) âVâ , óľŠ óľŠ (50) âđĄ ⼠đĄ0 + 1, â (đĽ, V) â đ. â (đĽ, V) â đ. óľŠ óľŠ đ2 (đĄ) óľŠóľŠóľŠÎŚ (đĄ, đĄ0 , đĽ) đ3 (đĽ) VóľŠóľŠóľŠ (51) (đ, đ, đĽ) â Î × đ. (52) Hence, there exists a sequence (đđ )đâĽ0 with the property đđ ⼠1, âđ ⼠0, such that đđ(đâđ) âÎŚ (đ, đ, đĽ) Vâ ⤠đđ âVâ , â (đ, đ, đĽ, V) â Î × đ, óľŠ óľŠóľŠ óľŠóľŠÎŚ (đĄ, đĄ0 , đĽ) đ3 (đĽ) VóľŠóľŠóľŠ óľŠ óľŠ â¤ đ3 (đ ) óľŠóľŠóľŠÎŚ (đ , đĄ0 , đĽ) đ3 (đĽ) VóľŠóľŠóľŠ đ]3 (đĄâđ ) đâđ(đâđ) âÎŚ (đ, đ, đĽ) Vâ ⤠đđ âÎŚ (đ, đ, đĽ) Vâ , (54) for all (đ, đ, đĽ, V) â Î × đ, which implies the exponential instability of đś2 and ends the proof. 5. Nonuniform Discrete Trichotomic Behaviors Definition 17. Three projectors {đđ }đâ{1,2,3} are said to be compatible with a skew-evolution semiflow đś = (đ, ÎŚ) if (đĄ1 ) each projector đđ , đ â {1, 2, 3} is invariant on đ; (58) (60) for all (đĄ, đ ), (đ , đĄ0 ) â đ and all (đĽ, V) â đ. Example 19. We consider the evolution semiflow đ defined in Example 14. Let đ = R3 be endowed with the norm óľŠóľŠ óľŠ óľ¨ óľ¨ óľ¨ óľ¨ óľ¨ óľ¨ óľŠóľŠ(V1 , V2 , V3 )óľŠóľŠóľŠ = óľ¨óľ¨óľ¨V1 óľ¨óľ¨óľ¨ + óľ¨óľ¨óľ¨V2 óľ¨óľ¨óľ¨ + óľ¨óľ¨óľ¨V3 óľ¨óľ¨óľ¨ . (53) which implies the exponential stability of đś1 and ends the proof. According to the hypothesis, if we consider đ = đ we obtain (57) (59) óľŠ óľŠ âĽ óľŠóľŠóľŠÎŚ (đ , đĄ0 , đĽ) đ3 (đĽ) VóľŠóľŠóľŠ đ]2 (đĄâđ ) We obtain that đśâđ is stable, where ÎŚâđ (đ, đ, đĽ) = đđ(đâđ) âÎŚ (đ, đ, đĽ)â , (56) and three projectors đ1 , đ2 , and đ3 compatible with đś such that đ=[đĄ0 ]+1 On the other hand, for đĄ â [đĄ0 , đĄ0 + 1), we have óľŠ óľŠóľŠ óľŠóľŠÎŚâđ (đĄ, đĄ0 , đĽ) VóľŠóľŠóľŠ ⤠đđđ(đĄâđĄ0 ) âVâ ⤠đđđ âVâ , óľŠ óľŠ (55) Definition 18. A skew-evolution semiflow đś = (đ, ÎŚ) is called exponentially trichotomic if there exist the functions đ1 , đ2 , đ3 , đ4 : R+ â Râ+ , constants ]1 , ]2 , ]3 , and ]4 with the properties đĄ óľŠ óľŠ âŤ óľŠóľŠóľŠóľŠÎŚâđ (đ, đĄ0 , đĽ) VóľŠóľŠóľŠóľŠ đđ đĄ +1 âđ, đ â {1, 2, 3} , đ ≠ đ. (61) The mapping ÎŚ : đ × đ â B(đ), given by đĄ đĄ ÎŚ (đĄ, đ , đĽ) V = (đâ2(đĄâđ )đĽ(0)+âŤ0 đĽ(đ)đđ V1 , đđĄâđ +âŤ0 đĽ(đ)đđ V2 , đĄ (62) â(đĄâđ )đĽ(0)+2 âŤ0 đĽ(đ)đđ đ V3 ) , is an evolution cocycle. Then, đś = (đ, ÎŚ) is a skew-evolution semiflow. We consider the projections đ1 (đĽ) (V) = (V1 , 0, 0) , đ2 (đĽ) (V) = (0, V2 , 0) , đ3 (đĽ) (V) = (0, 0, V3 ) . (63) Discrete Dynamics in Nature and Society 7 The skew-evolution semiflow đś = (đ, ÎŚ) is exponentially trichotomic with characteristics ]1 = ]2 = âđĽ (0) , đđ = đ (đ) , đ â N, ]3 = đĽ (0) , ]4 = ] > 0. ]4 = 1, đ1 (đ˘) = đđ˘đĽ(0) , â2đđ˘ đ2 (đ˘) = đ (đĄ2 ) follows according to Definition 9 for đś2 if we consider in relation (16) đĄ = đ, đ = đ, and đĄ0 = đ0 and (64) , (đĄ3 ) is obtained for đś3 out of relation (8) of Definition 5 for đĄ = đ, đ = đ, and đĄ0 = đ and if we define đđ = đ (đ) , đ3 (đ˘) = đ2đ˘đĽ(0) , ]2 = âđ (đ) < 0, As in the case of dichotomy, let đśđ (đĄ, đ , đĽ, V) = (đ(đĄ, đ , đĽ), ÎŚ(đĄ, đĄ0 , đĽ)đđ (đĽ)V), where (đĄ, đĄ0 , đĽ, V) â đ × đ and đ â {1, 2, 3}. In discrete time, the trichotomy of a skew-evolution semiflow can be described as in the next proposition. Proposition 20. A skew-evolution semiflow đś = (đ, ÎŚ) is exponentially trichotomic if and only if there exist three projectors {đđ }đâ{1,2,3} compatible with đś, constants ]1 , ]2 , ]3 , and ]4 with the property ]1 ⤠]2 ⤠0 ⤠]3 ⤠]4 , and a sequence of positive real numbers (đđ )đâĽ0 such that (đĄ2 ) (đĄ3 ) (đĄ4 ) óľŠóľŠ óľŠ óľŠóľŠÎŚ (đ, đ, đĽ) đ1 (đĽ) VóľŠóľŠóľŠ óľŠ óľŠ â¤ đđ óľŠóľŠóľŠÎŚ (đ, đ, đĽ) đ1 (đĽ) VóľŠóľŠóľŠ đ]1 (đâđ) , (71) đ â N. đ4 (đ˘) = đâđđ˘ . (đĄ1 ) (70) (đĄ4 ) follows for đś3 from relation (15) of Definition 8 for đĄ = đ, đ = đ, and đĄ0 = đ and if we consider đđ = đ (đ) , ]3 = đ (đ) > 0, (72) đ â N. Sufficiency. Let đĄ ⼠đĄ0 + 1. We denote đ = [đĄ] and đ0 = [đĄ0 ] and we obtained the relations đ ⤠đĄ < đ + 1, (65) đ0 ⤠đĄ0 < đ0 + 1, (73) đ0 + 1 ⤠đ. According to (đĄ1 ), we have óľŠóľŠ óľŠ óľŠóľŠÎŚ (đ, đ, đĽ) đ2 (đĽ) VóľŠóľŠóľŠ óľŠ óľŠ â¤ đđ óľŠóľŠóľŠÎŚ (đ, đ, đĽ) đ2 (đĽ) VóľŠóľŠóľŠ đâ]4 (đâđ) , óľŠ óľŠóľŠ óľŠóľŠÎŚ (đ, đ, đĽ) đ3 (đĽ) VóľŠóľŠóľŠ óľŠ óľŠ â¤ đđ óľŠóľŠóľŠÎŚ (đ, đ, đĽ) đ3 (đĽ) VóľŠóľŠóľŠ đâ]2 (đâđ) , óľŠ óľŠ đđ óľŠóľŠóľŠÎŚ (đ, đ, đĽ) đ3 (đĽ) VóľŠóľŠóľŠ óľŠ óľŠ âĽ óľŠóľŠóľŠÎŚ (đ, đ, đĽ) đ3 (đĽ) VóľŠóľŠóľŠ đâ]3 (đâđ) (66) (67) (74) óľŠ óľŠ â đ2[đ(đ)+đ] đâđ(đĄâđĄ0 ) óľŠóľŠóľŠđ1 (đĽ) VóľŠóľŠóľŠ , for all (đĽ, V) â đ, where functions đ and đ are given as in Definition 5. For đĄ â [đĄ0 , đĄ0 + 1), we have (68) Proof. We have the following. Necessity. (đĄ1 ) is obtained if we consider for đś1 in relation (9) of Definition 6 đĄ = đ and đ = đĄ0 = đ and if we define ]1 = â] < 0. óľŠ â đđ(đ)(đĄâđ) óľŠóľŠóľŠÎŚ (đ, đ0 + 1, đ (đ0 + 1, đĄ0 , đĽ)) óľŠ â ÎŚ (đ0 + 1, đĄ0 , đĽ) đ1 (đĽ) VóľŠóľŠóľŠ ⤠đđ đ2 (đ) for all (đ, đ), (đ, đ) â Î and all (đĽ, V) â đ. đđ = đ (đ) , đ â N, óľŠóľŠ óľŠ óľŠóľŠÎŚ (đĄ, đĄ0 , đĽ) đ1 (đĽ) VóľŠóľŠóľŠ ⤠đ (đ) (69) óľŠ óľŠ óľŠóľŠ đ(đĄ )(đĄâđĄ ) óľŠ óľŠóľŠÎŚ (đĄ, đĄ0 , đĽ) đ1 (đĽ) VóľŠóľŠóľŠ ⤠đ (đĄ0 ) đ 0 0 óľŠóľŠóľŠđ1 (đĽ) VóľŠóľŠóľŠ óľŠ óľŠ â¤ đ (đĄ0 ) đđ(đĄ0 )+đ đâđ(đĄâđĄ0 ) óľŠóľŠóľŠđ1 (đĽ) VóľŠóľŠóľŠ , (75) for all (đĽ, V) â đ. Hence, relation (57) is obtained. Let đĄ ⼠đĄ0 + 1 and đ = [đĄ] and, respectively, đ0 = [đĄ0 ]. It follows that đ ⤠đĄ < đ + 1, đ0 ⤠đĄ0 < đ0 + 1, đ0 + 1 ⤠đ. (76) 8 Discrete Dynamics in Nature and Society (đĄ3ó¸ ) there exist a constant đ3 > 0 and a sequence of positive real numbers (đžđ )đâĽ0 such that From (đĄ2 ), it is obtained that óľŠóľŠ óľŠ óľŠ óľŠóľŠÎŚ (đĄ, đĄ0 , đĽ) đ2 (đĽ) VóľŠóľŠóľŠ = óľŠóľŠóľŠÎŚ (đĄ, đ, đ (đ, đ0 + 1, đĽ)) đ óľŠ óľŠ â đâđ3 (đâđ) óľŠóľŠóľŠÎŚ (đ, đ, đĽ) đ3 (đĽ) VóľŠóľŠóľŠ â ÎŚ (đ, đ0 + 1, đ (đ0 + 1, đĄ0 , đĽ)) ÎŚ (đ0 + 1, đĄ0 , đĽ) óľŠ â đ2 (đĽ) VóľŠóľŠóľŠ ⼠[đ (đĄ)]â1 đâđ(đĄâđ) [đ (đĄ)]â1 óľŠ óľŠ â đâđ(đ0 +1âđĄ0 ) óľŠóľŠóľŠÎŚ (đ, đ0 + 1, đĽ) đ2 (đĽ) VóľŠóľŠóľŠ đ=đ óľŠ óľŠ â¤ đžđ đâđ3 (đâđ) óľŠóľŠóľŠÎŚ (đ, đ, đĽ) đ3 (đĽ) VóľŠóľŠóľŠ , (77) â2 ⼠[đ (đĄ)] â2đ Ě](đâđ0 +1) óľŠóľŠ óľŠ đ đ óľŠóľŠđ2 (đĽ) VóľŠóľŠóľŠ Ě đ ⼠đĚ] óľŠ óľŠ đĚ](đĄâđĄ0 ) óľŠóľŠóľŠđ2 (đĽ) VóľŠóľŠóľŠ , Ě 2đ [đ (đĄ)]2 đđ (đĄ4ó¸ ) there exist a constant đ4 > 0 and a sequence of positive real numbers (đżđ )đâĽ0 such that đ óľŠ óľŠ â đđ4 (đâđ) óľŠóľŠóľŠÎŚ (đ, đ, đĽ) đ3 (đĽ) VóľŠóľŠóľŠ đ=đ óľŠ óľŠ óľŠ óľŠ đ óľŠóľŠóľŠÎŚ (đĄ, đĄ0 , đĽ) đ2 (đĽ) VóľŠóľŠóľŠ ⼠đâđ(đĄâđĄ0 ) óľŠóľŠóľŠđ2 (đĽ) VóľŠóľŠóľŠ óľŠ óľŠ âĽ đâ(Ě]+đ) đĚ](đĄâđĄ0 ) óľŠóľŠóľŠđ2 (đĽ) VóľŠóľŠóľŠ , (79) for all (đĄ, đĄ0 , đĽ, V) â đ × đ, where we have denoted ] = Ě] (80) and which implies relation (58). By a similar reasoning, from (đĄ3 ) relation (59) is obtained, and from (đĄ4 ) relation (60) follows. Hence, the skew-evolution semiflow đś is exponentially trichotomic. Some characterizations in discrete time for the exponential trichotomy for skew-evolution semiflows are given in what follows. Theorem 21. A skew-evolution semiflow đś = (đ, ÎŚ) is exponentially trichotomic if and only if there exist three projectors {đđ }đâ{1,2,3} compatible with đś such that đś1 has exponential growth, and đś2 has exponential decay and such that the following relations hold: (đĄ1ó¸ ) there exist a constant đ1 > 0 and a sequence of positive real numbers (đźđ )đâĽ0 such that đ óľŠ óľŠ óľŠ óľŠ â đđ1 (đâđ) óľŠóľŠóľŠÎŚ (đ, đ, đĽ) đ1 (đĽ) VóľŠóľŠóľŠ ⤠đźđ óľŠóľŠóľŠđ1 (đĽ) VóľŠóľŠóľŠ , (81) đ=đ (đĄ2ó¸ ) there exist a constant đ2 > 0 and a sequence of positive real numbers (đ˝đ )đâĽ0 such that đ óľŠ óľŠ â đâđ2 (đâđ) óľŠóľŠóľŠÎŚ (đ, đ, đĽ) đ2 (đĽ) VóľŠóľŠóľŠ đ=đ âđ2 (đâđ) ⤠đ˝đ đ óľŠóľŠ óľŠ óľŠóľŠÎŚ (đ, đ, đĽ) đ2 (đĽ) VóľŠóľŠóľŠ , for all (đ, đ), (đ, đ) â Î and all (đĽ, V) â đ. Proof. We have the following. (78) for all (đĽ, V) â đ. It follows that óľŠ óľŠ óľŠ óľŠ đ óľŠóľŠóľŠÎŚ (đĄ, đĄ0 , đĽ) đ2 (đĽ) VóľŠóľŠóľŠ ⼠đ](đĄâđĄ0 ) óľŠóľŠóľŠđ2 (đĽ) VóľŠóľŠóľŠ , (84) óľŠ óľŠ â¤ đżđ đđ4 (đâđ) óľŠóľŠóľŠÎŚ (đ, đ, đĽ) đ3 (đĽ) VóľŠóľŠóľŠ for all (đĽ, V) â đ, where đ and đ are given by Definition 8. For đĄ â [đĄ0 , đĄ0 + 1), we have Ě (âĚ]+2đ) , đ = đđ(Ě]+đ) + đ2 đđ (83) (đĄ1 ) â (đĄ1ó¸ ) Necessity. As đś is exponentially trichotomic, Proposition 20 assures the existence of a projector đ, of a constant ]1 ⤠0, and of a sequence of positive real numbers (đđ )đâĽ0 such (đĄ1 ) holds. Let đ1 = đ. If we consider ] đ1 = â 1 > 0, (85) 2 we obtain đ óľŠ óľŠ â đđ1 (đâđ) óľŠóľŠóľŠÎŚ (đ, đ, đĽ) đ1 (đĽ) VóľŠóľŠóľŠ đ=đ đ óľŠ óľŠ â¤ đđ â đđ1 (đâđ) đ]1 (đâđ) óľŠóľŠóľŠÎŚ (đ, đ, đĽ) đ1 (đĽ) VóľŠóľŠóľŠ đ=đ (86) đ óľŠ óľŠ óľŠ óľŠ = đđ óľŠóľŠóľŠđ1 (đĽ) VóľŠóľŠóľŠ â đ(đ1 +]1 )(đâđ) ⤠đźđ óľŠóľŠóľŠđ1 (đĽ) VóľŠóľŠóľŠ , đ=đ âđ, đ â N, â (đĽ, V) â đ, where we have denoted đźđ = đđ đâ]1 /2 , đ â N. (87) Sufficiency. As đś1 has exponential growth, there exist constants đ ⼠1 and đ > 1 such that relation óľŠóľŠóľŠÎŚ (đ + đ, đ, đĽ) VóľŠóľŠóľŠ ⤠đđđ âVâ , (88) óľŠ óľŠ holds for all đ, đ â N and all (đĽ, V) â đ. If we denote đ = ln đ > 0, the inequality can be written as follows: âÎŚ (đ, đ, đĽ)â ⤠đđđ(đâđ) âÎŚ (đ, đ, đĽ)â , â (đ, đ) , (đ, đ) â Î, đĽ â đ. (89) We consider successively the đ â đ + 1 relations. By denoting đ = đ1 , we obtain âÎŚ (đ, đ, đĽ) đ (đĽ) Vâ (82) ⤠đđđ(đâđ) đź âđ (đĽ) Vâ , 1 + đđ1 + â â â + đđ1 (đâđ) đ (90) Discrete Dynamics in Nature and Society 9 for all (đ, đ) â Î and all (đĽ, V) â đ. If we define the constant ]1 = đ â đ1 for đ < đ1 We will define the projectors đ 1 = đ1 , (91) đ 2 = đ2 , and the sequence of nonnegative real numbers đđ = đđźđ , đ â N, đ 3 = đź â đ1 , (92) relation (đĄ1 ) is obtained. Similarly, the other equivalences can also be proved. đ 4 = đź â đ2 , such that In order to characterize the exponential trichotomy by means of four projectors, we give the next definition. Definition 22. Four invariant projectors {đ đ }đâ{1,2,3,4} that satisfy for all (đĽ, V) â đ the following relations đ 3 đ 4 = đ 4 đ 3 = đ3 . (đđ2ó¸ ) đ 1 (đĽ)đ 2 (đĽ) = đ 2 (đĽ)đ 1 (đĽ) = 0 and đ 3 (đĽ)đ 4 (đĽ) = đ 4 (đĽ)đ 3 (đĽ), 2 2 2 â[đ 1 (đĽ) + đ 2 (đĽ)]Vâ = âđ 1 (đĽ)Vâ + âđ 2 (đĽ)Vâ , â[đ 1 (đĽ) + đ 3 (đĽ)đ 4 (đĽ)]Vâ2 âđ 3 (đĽ)đ 4 (đĽ)Vâ2 , (đđ5ó¸ ) â[đ 2 (đĽ) + đ 3 (đĽ)đ 4 (đĽ)]Vâ2 âđ 3 (đĽ)đ 4 (đĽ)Vâ2 , = âđ 1 (đĽ)Vâ2 + = âđ 2 (đĽ)Vâ2 + ] = â]1 = â]2 > 0, đźđ = đđ , (99) đ â N. Hence, relations (93)â(96) hold. Sufficiency. We consider the projectors đ1 = đ 1 , đ2 = đ 2 , (100) đ3 = đ 3 đ 4 . are called compatible with the skew-evolution semiflow đś. Theorem 23. A skew-evolution semiflow đś = (đ, ÎŚ) is exponentially trichotomic if and only if there exist four projectors {đ đ }đâ{1,2,3,4} compatible with đś, constants đ > ] > 0, and a sequence of positive real numbers (đźđ )đâĽ0 such that (đĄ1ó¸ ó¸ ) óľŠ óľŠ â]đ óľŠ óľŠóľŠ óľŠóľŠÎŚ (đ + đ, đ, đĽ) đ 1 (đĽ) VóľŠóľŠóľŠ ⤠đźđ óľŠóľŠóľŠđ 1 (đĽ) VóľŠóľŠóľŠ đ , (98) Projectors đ 1 , đ 2 , đ 3 , and đ 4 are compatible with đś. Let us define đ = ]3 = ]4 > 0, (đđ1ó¸ ) đ 1 (đĽ) + đ 3 (đĽ) = đ 2 (đĽ) + đ 4 (đĽ) = đź, (đđ3ó¸ ) (đđ4ó¸ ) (97) These are compatible with đś. The statements of Proposition 20 follow if we consider ]1 = ]2 = â] < 0, ]3 = ]4 = đ > 0, (101) đđ = đźđ , đ â N. Hence, đś is exponentially trichotomic, which ends the proof. (93) 6. Conclusions (đĄ2ó¸ ó¸ ) óľŠ óľŠ âđđ óľŠóľŠ óľŠ óľŠóľŠđ 2 (đĽ) VóľŠóľŠóľŠ ⤠đźđ óľŠóľŠóľŠÎŚ (đ + đ, đ, đĽ) đ 2 (đĽ) VóľŠóľŠóľŠ đ , (94) (đĄ3ó¸ ó¸ ) óľŠóľŠ óľŠ óľŠ ]đ óľŠ óľŠóľŠđ 3 (đĽ) VóľŠóľŠóľŠ ⤠đźđ óľŠóľŠóľŠÎŚ (đ + đ, đ, đĽ) đ 3 (đĽ) VóľŠóľŠóľŠ đ , (95) (đĄ4ó¸ ó¸ ) óľŠ óľŠóľŠ óľŠ óľŠ đđ óľŠóľŠÎŚ (đ + đ, đ, đĽ) đ 4 (đĽ) VóľŠóľŠóľŠ ⤠đźđ óľŠóľŠóľŠđ 4 (đĽ) VóľŠóľŠóľŠ đ (96) for all đ, đ â N and all (đĽ, V) â đ. The paper emphasizes a way to unify the analysis of continuous and discrete asymptotic properties for skewevolution semiflows, such as the exponential dichotomy and trichotomy. Thus, we give characterizations for the asymptotic behaviors in discrete time, in order to gain necessary instruments in punctuating the properties of the solutions of difference equations. Competing Interests The author declares that there is no conflict of interests regarding the publication of this paper. Proof. We have the following. Acknowledgments Necessity. As đś is exponentially trichotomic, according to Proposition 20 there exist three projectors {đđ }đâ{1,2,3} compatible with đś, constants ]1 ⤠]2 ⤠0 ⤠]3 ⤠]4 , and a sequence of positive real numbers (đđ )đâĽ0 such that relations (65)â(68) hold. The author gratefully acknowledges helpful suggestions and support from Professor Emeritus Mihail Megan, the Head of the Research Seminar on Mathematical Analysis and Applications in Control Theory at the West University of Timişoara, Romania. 10 References [1] D. B. Henry, Geometric Theory of Semilinear Parabolic Equations, vol. 840 of Lecture Notes in Mathematics, Springer, Berlin, Germany, 1981. [2] O. Perron, âDie StabilitaĚtsfrage bei Differentialgleichungen,â Mathematische Zeitschrift, vol. 32, no. 1, pp. 703â728, 1930. [3] S.-N. Chow and H. Leiva, âExistence and roughness of the exponential dichotomy for skew-product semiflow in Banach spaces,â Journal of Differential Equations, vol. 120, no. 2, pp. 429â 477, 1995. [4] Y. Latushkin and R. Schnaubelt, âEvolution semigroups, translation algebras, and exponential dichotomy of cocycles,â Journal of Differential Equations, vol. 159, no. 2, pp. 321â369, 1999. [5] M. Megan, A. L. Sasu, and B. Sasu, âDiscrete admissibility and exponential dichotomy for evolution families,â Discrete and Continuous Dynamical Systems, vol. 9, no. 2, pp. 383â397, 2003. [6] P. H. Anh Ngoc and T. Naito, âNew characterizations of exponential dichotomy and exponential stability of linear difference equations,â Journal of Difference Equations and Applications, vol. 11, no. 10, pp. 909â918, 2005. [7] A. L. Sasu, âNew criteria for exponential stability of variational difference equations,â Applied Mathematics Letters, vol. 19, no. 10, pp. 1090â1094, 2006. [8] A. L. Sasu, âDiscrete methods and exponential dichotomy of semigroups,â Acta Mathematica Universitatis Comenianae, vol. 73, no. 2, pp. 197â205, 2004. [9] B. Sasu, âUniform dichotomy and exponential dichotomy of evolution families on the half-line,â Journal of Mathematical Analysis and Applications, vol. 323, no. 2, pp. 1465â1478, 2006. [10] B. Sasu, âOn exponential dichotomy of variational difference equations,â Discrete Dynamics in Nature and Society, vol. 2009, Article ID 324273, 18 pages, 2009. [11] B. Sasu, âOn dichotomous behavior of variational difference equations and applications,â Discrete Dynamics in Nature and Society, vol. 2009, Article ID 140369, 16 pages, 2009. [12] R. J. Sacker and G. R. Sell, âExistence of dichotomies and invariant splittings for linear differential systems III,â Journal of Differential Equations, vol. 22, no. 2, pp. 497â522, 1976. [13] S. Elaydi and O. Hajek, âExponential trichotomy of differential systems,â Journal of Mathematical Analysis and Applications, vol. 129, no. 2, pp. 362â374, 1988. [14] J. Zhang, âLyapunov function and exponential trichotomy on time scales,â Discrete Dynamics in Nature and Society, vol. 2011, Article ID 958381, 22 pages, 2011. [15] L. Barreira and C. Valls, âStability in delay difference equations with nonuniform exponential behavior,â Journal of Differential Equations, vol. 238, no. 2, pp. 470â490, 2007. [16] S. Elaydi and K. Janglajew, âDichotomy and trichotomy of difference equations,â Journal of Difference Equations and Applications, vol. 3, no. 5-6, pp. 417â448, 1998. [17] G. Papaschinopoulos and G. Stefanidou, âTrichotomy of a system of two difference equations,â Journal of Mathematical Analysis and Applications, vol. 289, no. 1, pp. 216â230, 2004. [18] C.-L. Mihiţ, M. Megan, and T. Ceauşu, âThe equivalence of Datko and Lyapunov properties for (â, đ)-trichotomic linear discrete-time systems,â Discrete Dynamics in Nature and Society, vol. 2016, Article ID 3760262, 8 pages, 2016. [19] X.-q. Song, T. Yue, and D.-q. Li, âNonuniform exponential trichotomy for linear discrete-time systems in Banach spaces,â Journal of Function Spaces and Applications, vol. 2013, Article ID 645250, 6 pages, 2013. Discrete Dynamics in Nature and Society [20] A. L. Sasu and B. Sasu, âDiscrete admissibility and exponential trichotomy of dynamical systems,â Discrete and Continuous Dynamical Systems, vol. 34, no. 7, pp. 2929â2962, 2014. [21] B. Sasu and A. L. Sasu, âOn the dichotomic behavior of discrete dynamical systems on the half-line,â Discrete and Continuous Dynamical SystemsâSeries A, vol. 33, no. 7, pp. 3057â3084, 2013. [22] S. Matucci, âThe lp trichotomy for difference systems and applications,â Archivum Mathematicum, vol. 36, pp. 519â529, 2000. [23] M. Megan and C. Stoica, âExponential instability of skewevolution semiflows in Banach spaces,â Studia Universitatis Babeş-Bolyai Mathematica, vol. 53, no. 1, pp. 17â24, 2008. [24] A. J. G. Bento and C. M. Silva, âNonuniform dichotomic behavior: Lipschitz invariant manifolds for ODEs,â Bulletin des Sciences Mathmatiques, vol. 138, no. 1, pp. 89â109, 2014. [25] P. Viet Hai, âContinuous and discrete characterizations for the uniform exponential stability of linear skew-evolution semiflows,â Nonlinear Analysis: Theory, Methods & Applications, vol. 72, no. 12, pp. 4390â4396, 2010. [26] P. Viet Hai, âDiscrete and continuous versions of Barbashintype theorem of linear skew-evolution semiflows,â Applicable Analysis, vol. 90, no. 12, pp. 1897â1907, 2011. [27] P. Viet Hai, âA generalization for theorems of Datko and Barbashin type,â Journal of Function Spaces, vol. 2015, Article ID 517348, 5 pages, 2015. [28] T. Yue, X.-Q. Song, and D.-Q. Li, âOn weak exponential expansiveness of skew-evolution semiflows in Banach spaces,â Journal of Inequalities and Applications, vol. 2014, no. 1, article 165, pp. 1â11, 2014. [29] C. Stoica and M. Megan, âOn uniform exponential stability for skew-evolution semiflows on Banach spaces,â Nonlinear Analysis: Theory, Methods & Applications, vol. 72, no. 3-4, pp. 1305â1313, 2010. [30] C. Stoica, âTrichotomy for dynamical systems in Banach spaces,â The Scientific World Journal, vol. 2013, Article ID 793813, 8 pages, 2013. [31] M. Megan and C. Stoica, âOn exponential trichotomy for discrete time skew-evolution semiows in Banach spaces,â Scientific Bulletin of the Politehnica University of Timisoara, MathematicsPhysics Series, vol. 51, no. 2, pp. 25â32, 2006. [32] M. Megan and C. Stoica, âTrichotomy for discrete skewevolution semiows in Banach spaces,â Annals of the Tiberiu Popoviciu Seminar of Functional Equations, Approximation and Convexity, vol. 5, pp. 3â9, 2007. [33] C. Stoica and M. Megan, âDiscrete asymptotic behaviors for skew-evolution semiflows on Banach spaces,â Carpathian Journal of Mathematics, vol. 24, no. 3, pp. 348â355, 2008. Advances in Operations Research Hindawi Publishing Corporation http://www.hindawi.com Volume 2014 Advances in Decision Sciences Hindawi Publishing Corporation http://www.hindawi.com Volume 2014 Journal of Applied Mathematics Algebra Hindawi Publishing Corporation http://www.hindawi.com Hindawi Publishing Corporation http://www.hindawi.com Volume 2014 Journal of Probability and Statistics Volume 2014 The Scientific World Journal Hindawi Publishing Corporation http://www.hindawi.com Hindawi Publishing Corporation http://www.hindawi.com Volume 2014 International Journal of Differential Equations Hindawi Publishing Corporation http://www.hindawi.com Volume 2014 Volume 2014 Submit your manuscripts at http://www.hindawi.com International Journal of Advances in Combinatorics Hindawi Publishing Corporation http://www.hindawi.com Mathematical Physics Hindawi Publishing Corporation http://www.hindawi.com Volume 2014 Journal of Complex Analysis Hindawi Publishing Corporation http://www.hindawi.com Volume 2014 International Journal of Mathematics and Mathematical Sciences Mathematical Problems in Engineering Journal of Mathematics Hindawi Publishing Corporation http://www.hindawi.com Volume 2014 Hindawi Publishing Corporation http://www.hindawi.com Volume 2014 Volume 2014 Hindawi Publishing Corporation http://www.hindawi.com Volume 2014 Discrete Mathematics Journal of Volume 2014 Hindawi Publishing Corporation http://www.hindawi.com Discrete Dynamics in Nature and Society Journal of Function Spaces Hindawi Publishing Corporation http://www.hindawi.com Abstract and Applied Analysis Volume 2014 Hindawi Publishing Corporation http://www.hindawi.com Volume 2014 Hindawi Publishing Corporation http://www.hindawi.com Volume 2014 International Journal of Journal of Stochastic Analysis Optimization Hindawi Publishing Corporation http://www.hindawi.com Hindawi Publishing Corporation http://www.hindawi.com Volume 2014 Volume 2014
© Copyright 2026 Paperzz