University of Wyoming Wyoming Scholars Repository Honors Theses AY 16/17 Undergraduate Honors Theses Spring 5-13-2017 The Limiting Effect of Cytoplasmic Volume on Microtubule Dynamics Jacob Zumo [email protected] Follow this and additional works at: http://repository.uwyo.edu/honors_theses_16-17 Recommended Citation Zumo, Jacob, "The Limiting Effect of Cytoplasmic Volume on Microtubule Dynamics" (2017). Honors Theses AY 16/17. 53. http://repository.uwyo.edu/honors_theses_16-17/53 This Honors Thesis is brought to you for free and open access by the Undergraduate Honors Theses at Wyoming Scholars Repository. It has been accepted for inclusion in Honors Theses AY 16/17 by an authorized administrator of Wyoming Scholars Repository. For more information, please contact [email protected]. TheLimitingEffectofCytoplasmicVolumeon MicrotubuleDynamics JacobZumo Spring2017 B.S.inMolecularBiologyandMicrobiology HonorsProgram PrincipleInvestigator:Dr.JesseGatlin,MolecularBiology UniversityofWyoming Abstract: Mitotic spindles play a key role in cellular division. These structures, which are composed of dynamic filaments called microtubules, are responsible for separation and segregation of chromosomesduringmitosis.Spindlesmustbethecorrectshapeandsizetoinsurefidelityof this process, however, their formation and assembly are still not entirely understood. For example,themechanismsthatgovernspindleshapeanddetermineindividualspindlesizefora givencelltypearestillunknown.Basedonevidencefromrecentstudiesofspindlescaling,in whichspindlesizeeffectivelyscaledwithcellsize,wehypothesizethatwithinsmallcytoplasmic volumes,spindlebuildingblocksbecomelimitingandtherebylimitspindlesize.Thishypothesis predictsthatmicrotubuledynamicswithinthespindlewillbeadverselyaffectedbychangesin cytoplasmic volume. By combining cell-free cytoplasmic extracts, microfluidics, and confocal microscopy,wehopetomeasurechangesinmicrotubuledynamicstoelucidatetherelationship betweencellvolumeandspindlesizewithinthecell. Background: Cellulardivisionisatopicmostindividualscanconceptualize.Foracelltofaithfullyreplicateand divide,itmustensurethatthenewdaughtercellsaregivenequalamountsofthesamegenetic materialthatwasproducedduringDNAreplication.Mitoticspindlesplayakeyroleincellular division. They are responsible for the segregation of chromosomes into daughter cells during mitosis. These spindles are composed of microtubules, filamentous polymers made up of heterodimeric protein subunits called tubulin (Feit et al, 1971). Microtubules are inherently dynamicfilamentsinthesensethattheymustgrowandshortentofunction,e.g.tobindtoand separate the chromosomes during mitosis. The dynamics of microtubules are determined by several different parameters including growth rate, shrinkage rate, and the frequencies of transitionsbetweenthetwostates(AkhmanovaandSteinmetz,2015).Itmakessensethatthese dynamicsmightaffectspindlesize.Indeed,therateatwhichmicrotubulesgrow,thetubulinmass thathasbeenincorporatedintothemicrotubules,andtheaveragelengthofthemicrotubulesall affectspindlesize.Forexample,withinXenopuslaevis,abalanceofmassisrequiredbetween therate of tubulinentering spindleandthatoftubulinleavingspindleassembly(Reberetal, 2013). Inordertomaintainhomeostasis,everylivingcellmustbeabletoregulatethesizeofitsinternal partsregardlessofitsownsize.Thegeometricrelationshipistermedscalingandcomesintwo forms:isometricscalingandallometricscaling.Whentwoobjectsthataregeometricallysimilar, forexampleasmallequilateraltriangleandalargerequilateraltriangle,theyaresaidtoexhibit isometry.Isometricscalingwouldmeanthattherelationshipsbetweenvolumeandsurfacearea would remain constant between different sizes of cells because the cells are geometrically similar.Allometryreferstoachangeinshapeinresponsetoachangeinsize.Thismeansthat allometric scaling would result in not only a change in size, but shape. Scaling occurs at the extremeofcellsizes-bacteriaassmallas1µmindiameterandX.laevisblastomeres,whichcan beupto1.2mmindiameter(some1000timeslarger)bothmustscaletheirreplicationmachinery asameansforsurvival.Ineukaryotes,failureofchromosomeseparationcanleadtoaneuploidy, which can lead to problems like Down’s Syndrome and cancer (Fang and Zhang, 2011). This scalingchallengeisessentialfornormaldevelopment.Spindlesmustbeinthecorrectsizeand shapeinordereffectivelyensurefidelityofthisprocess.Dynamicsofmicrotubulesaffectspindle sizeandshape(DumontandMitchison,2009).Itisgenerallyobservedthat,upuntilapoint,as celldiameterincreases,sodoesspindlelength(Wühretal,2008).Thisistrueupuntilacertain point where relationship plateaus (Wühr et al, 2008). This suggests that to the relationship between cell size and spindle size could be regulated by limiting components, changes in cytoplasmic composition that accompany developmental progression, or negative feedback inducedbystericallyconstrainingspindlesinsmallvolumes. Itisknownthatenzymesareinvolvedintheregulationofspindlesizehoweverthisprocessisnot entirelyunderstood(Reberetal,2013;Petry,2016).Currently,a“limitingcomponent”modelis generallyaccepted(Goodetal2013,Hazeletal2013).Thismodepositsthatforasystemof microtubules(e.g.aspindle)isbuiltinsmallcellularenvironment,thecytoplasmicconcentrations ofspindlecomponentsandenzymesrequiredtoassemblethemwillbemoregreatlyaffected thaninalargercellbuildingthesamestructure.Forexample,theenzymeXMAP215,whichis partofafamilyofproteinsthatpromotesmicrotubulegrowth,candirectlycatalyzetheaddition upto25tubulindimerstothegrowingendofthemolecule(Brouhardetal,2008).Thisleadsto thegeneralquestionofnotonlyhowdoescellsizedeterminespindlesize,butalsotherateat which spindles are formed. We hypothesized that if spindle assembly occurs in a larger cell volume,thenthesespindleswillbeformedatafasterratethancellsofasmallervolumebecause they would be able to maintain a saturating number of enzyme molecules per growing microtubuleend.Inasmallcellularvolume,therelativestartingconcentrationofthatenzyme mightstillbethesame,howeverthenumberofenzymemoleculespermicrotubulegrowingend wouldbesub-saturating,resultinginaslowerrateofmicrotubuleassembly.Cellsofdifferent volumeswouldstillhavethesameconcentrationsofthisenzyme.However,oncemicrotubules begintoassemble,andtheenzymesthatbindthemareeffectivelypulledoutofsolutiontoadd tubulin subunits to growing ends, lowering the degree of saturation of this enzyme on those growingends(Reberetal,2013;Brouhardetal,2008). X.laeviseggextractshavealongandextensivehistoryforuseasmodelcell-freesystems.In 1985, Lohka and Maller demonstrated that nuclear envelope breakdown, chromosome condensation,andspindleassemblycouldallbestudiedivvitrousingextractsofamphibianeggs (LohkaandMaller,1985).Thissystemhasbeenusedtoresearchseveralfundamentalbiological processes ranging from analyzing the effect cigarette smoke has on the inhibition of CFTR expression,tostudyingstabilityoftheDNAreplicationfork(Moranetal,2014;Hashimotoand Costanzo,2011). X.laevisfrogswereinjectedwithhormonessotheycouldlayeggs(asdescribedinDesaietal, 1999).Oncetheeggswereharvested,theywerewashedwithbufferandde-jellied,andpacked into a test tube to remove any excess buffer. A crushing spin produced a stratified and fractionatedextractfromwhichthecytoplasmiclayerwascollected.Thiscytoplasmicextractis whatweusedtovisualizeandanalyzemicrotubulegrowth.Thereareseveraladvantagestousing thiscell-freesystem.Itallowsforeasycontrollingofinvitroprocesses,withproteinbiosynthesis beingespeciallyimportantforthisexperiment.Additionally,theabsenceofacellularmembrane usuallyallowsforafasterreactionthenmicrobialsystemswithcellularmembranes(Zhuetal, 2013;MartíndelCampoetal,2013). Dropletmicrofluidicsallowustoperformlaboratoryoperationsonverysmallscales(Mashaghi, etal,2016).Wecouldtakeourcytoplasmicextractandemulsifyitwithasurfactantandoilphase. Asthenameimplies,thisisdoneatamicroscopicscale,atasizewhichwecancontrol.Fillinga singledevicecanprovidethousandsofindividualextractdroplets.Thisprovidesuswithflexibility tosearchunderthemicroscopeforthedropletswithspecificconditionsweareinterestedin studying. Weutilizedthissystemtotestourpredictionthatlargercellularvolumeswillresultinafaster rateofmicrotubulegrowthandultimatelylargerspindles.Byusingcell-freecytoplasmicextracts, wedidnothavetorelyongeneticinvivocontrolofcellsize.Byinsertingfluorescentlylabeled proteins we could visualize and analyze microtubule growth rates using confocal microscopy. Usingdropletmicrofluidics,wecouldcontrolthesizeoftheextractdropletsinwhichmicrotubule structureswereassembled,whichisanalogoustocontrollingthevolumeofthecell. MaterialsandMethods: Extractandproteinsolutionpreparation-500µLofcytoplasmicextractfromtheeggsofX.laevis was prepared according to Desai and kept on ice (Desai et al, 1999). A genetically encoded microtubule,consistingofthemicrotubulebindingdomainoftheTauprotein(Elieetal,2015) was fused to mCherry (mCherry-Tau), expressed and purified in E. coli, and stored at a stock concentrationof180µM(workingconcentrationwas~1µM;Mooneyetal,inpress),wasused to visualize microtubules emanating from artificial microtubule organizing centers (aMTOCs; Fieldetal,2017;TsaiandZheng,2005)usedataconcentrationtoachieve0to1aMTOCsper extractdroplet.End-bindingprotein1fusedtoGFP(EB1:56µM)wasaddedtothemixtureata 1:100dilution.Both100xcalciumat40mMand100xcycloheximideat35mMweredilutedtoa a1:100workingconcentration.Thisextractmixturewaskeptoniceuntildropletscouldbemade. Assembly of droplets- A microfluidic-based platform for confining spindle assembly to desired dropletsizeaccordingtoHazeletal,2013.Picosurfsurfactantwasusedtosuspendtheextract mixture,andresponsibleforformingtheextractintodroplets.Differentsizeddropletdevices wereusedtoallowforsmallandlargedropletsizesandvolumes.1mLNormJectsyringeswere usedtoinjecttheextractmixtureandthesurfactantatprecisevolumesutilizingsyringepumps (CetoniCorp).Thesyringesanddropletdeviceswerekeptoniceuntilreadyforuse.Thedevices werefilledinaroomat0°Ctolimitthetemperature-sensitiveassemblyuntilreadytobeviewed ontheconfocalmicroscope.ThemixingoftheextractandsurfactantataT-junctionwithinthe deviceallowedforthesuspensionofextracttobecomestabilizeddropletsofrelativelysimilar size.Afterfillingthedevicewithdroplets,thetubeswereremovedandtheholeswerecovered withnailpolishtoactasaseal.Thedevicewasplacedonicepriortoviewingundertheconfocal microscope.600µLofextractallowedtwotothreedevicestobefilledatonce.Thisexperiment utilizeda63µLdevice,anda113µLdevicetoensuredropletsofdifferentsizesandvolumescould beanalyzed. Imagining spindle formation- Imaging of the spindle assembly was completed on a confocal microscopeat60xmagnificationunderoilimmersion.Time-lapseswerecompletedat2.5second intervalsforthreeminutes.EB1proteintrackingwasdonewiththemTrackJpluginontheimage analysissoftwareFiji. Figure1:A,theprocessedeggextractinwhichaMTOCs,mCherry-Tau,andEB1-GFPwereadded.B,adiagramofthe T-junctiondevicesusedtocreatethedroplets(Gatlin,2017).Anoilphasecontainingsurfactantwaspumpedintothe devicethroughoneinlet,whiletheextractandproteinsolutionenteredfromanother.AftermeetingattheTjunction,thesurfactantemulsifiedtheextractintodroplets.Cshowsthedropletsbeingformedasviewedfroma microscopeunderthe20xobjectivelens.DdemonstratestherelationshipofEB1andtubulinusingimagescaptured bytheconfocalmicroscope.EB1protein(pseudocoloredred)attachedtothegrowingendsofthemicrotubules (pseudocoloredgreen).Thesefluorescentlytaggedproteinsweretrackedtoanalyzemicrotubuleassemblyvelocity. Data: MicrotubulegrowthratesfromindividualaMTOCsweremeasuredintwodropletsofdifferent sizes(Fig2).Thefirstdroplethadadiameterof62µm,andtheseconddroplethadadiameterof 86µm.Manualtrackingwasusedtomeasurethevelocitiesoftwentygrowingmicrotubuleends usingtheMtrackJplugininFiji(NIH).Themeanvelocityofallofthecomets’averagevelcocities wasdeterminedforeachdroplettoassesaveragemicrotubuleassemblyvelocityforeachdroplet Figure2:A-BsingleimagesobtainedviaconfocalmicroscopyofEB1andtubulinofthe62µmdroplet,respectively.CDsingleimagesobtainedviaconfocalmicroscopyofEB1andtubulinofthe86µmdroplet,respectively.Etheaverage velocitiesofthemicrotubuleassemblybetweenthetwodropletsizes. size.The62µmdroplethadanaveragemicrotubuleassemblyvelocityof20.706µm/minute,with astandarddeviationof0.0537.The86µmdroplethadanaveragemicrotubuleassemblyvelocitiy of 20.571µm/minute, with a standard deviation of 0.0396 (Tables A-B). A two-tailed t-test reportedthevalueof0.9suggeststhatthereisnostatisticaldifferencebetweentheaverage microtubleassemblyvelocityofthesetwodroplets. TablesA-B:Minimum,maximum,andaveragevelocitiesof20differenttrackedEB1cometsforthe 62µmand86µmdroplets. Discussion: We sought to determine the effect cell size has on the rate of microtubule assembly. As discussed, the limiting component model suggests that smaller cells would assemble microtubules at a slower rate than larger cells. The absolute concentration of enzymes and tubulinrequiredformicrotubulegrowthwoulddepletedfasterinadropletwithasmallervolume thanadropletwithalargevolume.Alargecellwouldhavealargecytoplasmwithmorevolume thanasmallcell.Whenmicrotubulesareconstructedinthecell,thismeansthattherewouldbe moreenzymesandresourceswithinthecytoplasmthatarereadilyavailablecomparedtocells ofasmallervolume.Whenexperimenting,weworkedtotestthismodelwhileoperatingunder acoupleassumptionsthatwerenotassessed.First,webelievedthateachsizeddropletwould havethesamerelativeinitialconcentrationofbuildingblocks,especiallyXMAP215,requiredfor microtubule assembly. Secondly, we assumed that the number of growing microtubule ends wouldbethesameforeachsystem,i.e.thatthisparameterwouldnotscalewithcytoplasmic volume.ThismeansthatthesamenumberofXMAP215moleculesthatwerebeingdrawnoutof solutiontofacilitatemicrotubuleassemblywouldbethesameforeachgrowingmicrotubuleend despitedropletsize.Aspreviouslystated,eachmoleculeXMAP215canadd25tubulindimersto thegrowingendofthemicrotubulesperbindingevent(Brouhardetal,2008),whichweassumed wastrueofeachdropletsize. Weexpectedtheaveragemicrotubuleassemblyvelocityofthesmallerdroplettobeslowerthan thelargerdroplet.Theresultsofthisexperimentarenotwhatwepredicted.Thisprovidesus informationonwheretotaketheexperimentsinthefuture.Itispossiblethatthedifferencein sizebetweenthetwodropletsinthisexperimentwasnotsubstantialenoughtomakeastatistical difference in microtubule assembly velocity. Previous research has suggested the maximum velocityofgrowthofamicrotubule,suchthatoccurswhenallpossibleXMAP215bindingsitesat thegrowingendouroccupied,isbetween20-25µm/minuteThisisclosetowhatwasobserved inbothdropletsizesexploredinthesestudies.Thismightsuggestthatallmicrotubuleendsare saturatedeveninthesmallerdroplet,however,thisisinconsistentwithpreviousresultsfrom the Gatlin lab (unpublished data). Additionally, we would expect more growing ends to be producedbyaspindlerelativetoasingleaMTOC.ThiswouldimpactthenumberofXMAP215 pulledfromsolutionandwhethereachgrowingendisfullysaturatedwithXMAP215molecules. Thiscouldexplaindiscrepancieswithpublishedspindlescalingdatawhichshowthatspindles begintoscalewithcellsizewhendiametersarelessthan~150um(Goodetal,2013;Hazeletal, 2013).Futureexperimentscouldnotonlytestsmallerandlargerdropletsizesthantheones usedforthisexperiment,butalsoincreasethenumberofdropletsanalyzedforthisrelationship. References Ahigh-energy-densitysugarbiobatterybasedonasyntheticenzymaticpathway.Zhu,Z., Tam,T.K.,Sun,F.,You,C.,Zhang,Y.H.P.(2014)NatureCommunications.3026. Aneuploidyandtumorigenesis.Fang,X.,Zhang,P.(2011).SeminarsinCellandDevelopmental Biology.22(6):595-601 Aqueouscigarettesmokeextractinducesavoltage-dependentinhibitionofCFTRexpressedin Xenopus oocytes. Moran, A.R., Norimatsu, Y., Dawson, D.C., MacDonald, K.D. (2014) AmericanJournalofPhysiologyLungCellMolecularPhysiology.306(3)284-291. Aurora A kinase-coated beads function as microtubule-organizing centers and enhance RanGTP-inducedspindleassembly.Tsai,M.Y.,Zheng,Y.(2005)CurrentBiology.15(23): 2156-2163 ChangesinCytoplasmicVolumeareSufficienttoDriveSpindleScaling.Hazel,J.,Krutkramelis, K.,Mooney,P.,Tomschik,M.,Gerow,K.,Oakey,J.,Gatlin,J.C.(2013).Science.342(6160): 853-856. Controlofmicrotubuleorganizationanddynamics:twoendsinthelimelight.Akhmanova,A., Steinmetz,M.O.(2015).NatureReviewsMolecularCellBiology.16(12):711-726 Cytoplasmicvolumemodulatesspindlesizeduringembryogenesis.Good,M.C.,Vahey,M.D., Skandarajah,A.,Fletcher,D.A.,Heald,R.(2013).Science.343(6160):856-860 Droplet microfluidics: A tool for biology, chemistry and nanotechnology. Mashaghi, S., Abbaspourrad,A.,Weitz,D.,vanOijen,A.,M.(2016).TrendsinAnalyticalChemistry.82: 118-125. Evidenceforanupperlimittomitoticspindlelength.Wühr,M.,Chen,Y.,Dumont,S.,Groen, A.C.,Needleman,D.J.,Salic,A.,Mitchison,T.J.(2008).CurrentBiology.18(16):12561261 Force and length in the mitotic spindle. Dumont, S., Mitchison, T.J. (2009). Current Biology. 19(17):R749-761 Growth, interaction and positioning of microtubule asters in extremely large vertebrate embryocells.Mitchison,T.J.,Wühr,M.,Nguyen,P.,Ishihara,K.,Groen,A.,Field,C.M. (2012).Cytoskeleton.69(10):738-750 Heterogeneityoftubulinsubunits.Feit,H.,Slusarek,L.,Shelanski,M.L.(1971).Proceedingsof theNationalAcademyofSciences.68(9):2028-2031 High-YieldProductionofDihydrogenfromXylosebyUsingaSyntheticEnzymeCascadeina Cell-FreeSystem.MartíndelCampo,J.S.,Rollin,J.,Myung,S.,Chun,Y.,Chandrayan,S., Patiño,R.,Adams,M.W.W.,Zhang,Y.,H.,P.AngwandteChemie.52(17):4587-4590. Inductionofnuclearenvelopebreakdown,chromosomecondensation,andspindleformation incell-freeextracts.Lohka,M.J.,Maller,J.L.(1985)JCB.101(2):518. Mechanismsofmitoticspindleassembly.Petry,S.AnnualReviewofBiochemistry.85:659-683 Studying DNA replication fork stability in Xenopus egg extract. Hashimoto, Y., Costanzo, V. (2011).MethodsinMolecularBiology.745:437-445. Tau co-organizes dynamic microtubule and actin networks. Elie, A., Prezel, E., Guérin, C., Denarier, E., Ramirez-Rios, S., Serre, L., Andrieux, A., Fourest-Lieuvin, A., Blanchoin, L., Arnal,I.(2015).ScientificReports.5:9964 TheuseofXenopuseggextractstostudymitoticspindleassemblyandfunctioninvitro.Desai, A.,Murray,A.,Michison,T.J.,Walczak,C.E.(1999)MethodsinCellBiology.61:385-412. Xenopusextractapproachestostudyingmicrotubuleorganizationandsignalingincytokinesis. Field,C.M.,Pelletier,J.F.,Mitchison,T.J.(2017).MethodsinCellBiology.137:395-435 XMAP215isaprocessivemicrotubulepolymerase.Brouhard,G.J.,Stear,J.H.,Noetzel,T.L.,AlBassam,J.,Kinoshita,K.,Harrison,C.H.,Howard,J.,Hyman,A.A.(2008)Cell.132(1):7988.
© Copyright 2026 Paperzz