Introduction to Transverse Beam Dynamics Bernhard Holzer, CERN-LHC The Ideal World I.) Magnetic Fields and Particle Trajectories * Largest storage ring: The Solar System astronomical unit: average distance earth-sun 1AE ≈ 150 *106 km Distance Pluto-Sun ≈ 40 AE AE Luminosity Run of a typical storage ring: HERA Storage Ring: Protons accelerated and stored for 12 hours distance of particles travelling at about v ≈ c L = 1010-1011 km ... several times Sun - Pluto and back guide the particles on a well defined orbit („design orbit“) focus the particles to keep each single particle trajectory within the vacuum chamber of the storage ring, i.e. close to the design orbit. Transverse Beam Dynamics: 0.) Introduction and Basic Ideas „ ... in the end and after all it should be a kind of circular machine“ need transverse deflecting force F Lorentz force q *( E v B) typical velocity in high energy machines: v c 3*108 m s Example: B 1T F F q 3 108 q 300 m Vs 1 2 s m MV m equivalent el. field … E technical limit for el. field: E 1 MV m The ideal circular orbit ẑ θ ρ s circular coordinate system condition for circular orbit: Lorentz force centrifugal force FL e*v * B FZentr m0v 2 m0 v 2 e*v * B p e B* 1.) The Magnetic Guide Field Dipole Magnets: define the ideal orbit homogeneous field created by two flat pole shoes 0 B nI h Normalise magnetic field to momentum: p e B 1 convenient units: eB p B Vs m2 T p GeV c Example LHC: B 8.3T GeV p 7000 c 1 1 8.3 Vs e m 7000*109 eV 0.333 8.3 s 3 *108 m 2 8.3 1 7000 m c s 7000*109 m 2 The Magnetic Guide Field ρ α ds field map of a storage ring dipole magnet 2πρ = 17.6 km ≈ 66% 2.53 km rule of thumb: 1 0.3 BT p GeV / c B 1 ... 8 T „normalised bending strength“ 2.) Quadrupole Magnets: Calculation of the Quadrupole Field: integration path coil N * I H ds N *I 1 Hds 2 H 0ds 0 H Feds 0 Hds 1 2 HFe = H0 / μFe μFe ≈ 1000 now we know that N *I H court. K. Wille H ┴ ds B 1 0 and we require gradient of a quadrupole field: B(r ) g H 0ds g *r 2 0 a *N *I r2 0 0 B0 0 a dr 0 g *r 0 dr N *I Quadrupole Magnets: required: focusing forces to keep trajectories in vicinity of the ideal orbit linear increasing Lorentz force By linear increasing magnetic field gx Bx gy normalised quadrupole field: gradient of a quadrupole magnet: simple rule: g 2 0 nI r2 k g p/e k g (T / m) 0.3 p(GeV / c) what about the vertical plane: ... Maxwell B= j LHC main quadrupole magnet g 25 ... 220 T / m E t 0 By x Bx y 3.) The equation of motion: Linear approximation: * ideal particle design orbit * any other particle coordinates x, z small quantities x,z << ρ magnetic guide field: only linear terms in x & z of B have to be taken into account Taylor Expansion of the B field: Bz ( x) Bz 0 dBz x dx B( x) p/e B0 B0 g*x p/e 1 d 2 Bz 2 x 2 2! dx 1 eg´ 2! p / e 1 eg´´ ... 3 3! dx 1 eg´´ 3! p / e ... normalise to momentum p/e = Bρ The Equation of Motion: B( x ) p/e 1 k*x 1 mx 2 2! 1 nx3 3! ... only terms linear in x, z taken into account dipole fields quadrupole fields Separate Function Machines: Split the magnets and optimise them according to their job: bending, focusing etc Example: heavy ion storage ring TSR * man sieht nur dipole und quads linear ẑ Equation of Motion: θ Consider local segment of a particle trajectory ... and remember the old days: ρ z x s (Goldstein page 27) radial acceleration: ar d2 dt 2 d dt 2 const , Ideal orbit: Force: F F general trajectory: ρ ρ + x F d2 m 2 (x dt ) mv 2 x e Bz v m d dt mv 2 / d dt 0 2 m 2 F d2 m 2 (x dt mv 2 x ) ẑ e Bz v 2 1 z ρ x s 2 2 1 d (x 2 dt 2 remember: x ≈ mm , ρ ≈ m … develop for small x 1 x d x 2 dt ) 1 (1 x … as ρ = const Taylor Expansion ) f ( x) d 2x m 2 dt mv 2 (1 x ) eBz v f ( x0 ) (x x0 ) * f ( x0 ) 1! (x x0 ) 2 * f ( x0 ) 2! ... guide field in linear approx. Bz B0 x Bz x d 2x m 2 dt d 2x dt 2 mv 2 v2 (1 (1 x x ) ev B0 x Bz x ) e v B0 m ev x g m ) e v B0 m ev x g m : m independent variable: t → s dx dt d 2x dt 2 d 2x dt 2 dx ds * ds dt d dx ds * dt ds dt x * v2 d dx ds ds * ds ds dt dt dx dv * *v ds ds x x v v 2 v2 (1 x : v2 x x x 1 x (1 1 ) B0 p/e x 2 1 e B0 mv x e xg mv mv=p xg p/e 1 normalize to momentum of particle B0 p/e kx 2 g p/e x * x( 1 2 k) 0 Equation for the vertical motion: 1 2 k no dipoles … in general … 0 k quadrupole field changes sign z k z 0 1 k Remarks: x * k ( 1 2 k) x 0 … there seems to be a focusing even without a quadrupole gradient 0 x „weak focusing of dipole magnets“ 1 *x 2 even without quadrupoles there is a retriving force (i.e. focusing) in the bending plane of the dipole magnets … in large machines it is weak. * bending and focusing fields … are functions of the independent variable „s“ Hard Edge Model: x ( s) 1 k ( s ) * x( s ) 0 2 ( s) Inside a magnet the focusing properties are constant ! 1 const (!) k const „effective magnetic length“ l mag B * leff Bds 0 4.) Solution of Trajectory Equations Define … hor. plane: K 1 … vert. Plane: K k 2 k y K*y 0 Differential Equation of harmonic oscillator … with spring constant K Ansatz: x(s) a1 cos( s) a2 sin( s) general solution: linear combination of two independent solutions x ( s) a1 sin( s) a2 cos( s) x ( s) a1 2 cos( s) a2 2 sin( s ) 2 x( s ) general solution: x(s) a1 cos( K s) a2 sin( K s) K determine a1 , a2 by boundary conditions: s 0 x(0) x0 , a1 x (0) x0 , a2 x0 x0 K Hor. Focusing Quadrupole K > 0: x( s ) x0 cos( x (s) x0 K s) K 1 x0 s1 x M foc * x cos( sin( K s) x0 cos( s = s0 s0 K s) 1 sin( Ks K M foc K sin( K s) cos( K s) K For convenience expressed in matrix formalism: x x sin( K s) 0 K s) s = s1 s=0 s = s1 hor. defocusing quadrupole: x K *x 0 Remember from school: f (s) cosh(s) , f (s) sinh(s) x(s) a1 cosh( s) a2 sinh( s) Ansatz: cosh Kl K sinh K=0 ! M drift sinh Kl K M defoc drift space: 1 Kl cosh Kl 1 l 0 1 with the assumptions made, the motion in the horizontal and vertical planes are independent „ ... the particle motion in x & z is uncoupled“ Thin Lens Approximation: cos matrix of a quadrupole lens 1 kl sin kl k M k sin kl cos kl in many practical cases we have the situation: f limes: 1 klq l lq 0 Mx ... focal length of the lens is much bigger than the length of the magnet while keeping kl = const 1 0 1 f 1 Mz 1 0 1 f 1 ... useful for fast (and in large machines still quite accurate) „back on the envelope calculations“ ... and for the guided studies ! Transformation through a system of lattice elements combine the single element solutions by multiplication of the matrices M total M QF * M D * M QD * M Bend * M D*..... focusing lens x x M (s2,s1) * s2 x x dipole magnet s1 defocusing lens court. K. Wille x(s) 0 typical values in a strong foc. machine: x ≈ mm, x ≤ mrad s 5.) Orbit & Tune: Tune: number of oscillations per turn 31.292 32.297 Relevant for beam stability: non integer part HERA revolution frequency: 47.3 kHz 0.292*47.3 kHz 13.81 kHz Question: what will happen, if the particle performs a second turn ? ... or a third one or ... 1010 turns x 0 s 19th century: Ludwig van Beethoven: „Mondschein Sonate“ Sonate Nr. 14 in cis-Moll (op. 27/II, 1801) Astronomer Hill: differential equation for motions with periodic focusing properties „Hill‘s equation“ Example: particle motion with periodic coefficient equation of motion: x (s) k (s) x(s) 0 restoring force ≠ const, k(s) = depending on the position s k(s+L) = k(s), periodic function we expect a kind of quasi harmonic oscillation: amplitude & phase will depend on the position s in the ring. 6.) The Beta Function General solution of Hill´s equation: (i) x( s ) ( s) cos( ( s) ) ε, Φ = integration constants determined by initial conditions β(s) periodic function given by focusing properties of the lattice ↔ quadrupoles (s L) ( s) Inserting (i) into the equation of motion … s (s) 0 ds (s) Ψ(s) = „phase advance“ of the oscillation between point „0“ and „s“ in the lattice. For one complete revolution: number of oscillations per turn „Tune“ Qy 1 ds o 2 ( s) Beam Emittance and Phase Space Ellipse general solution of Hill equation (1) x( s) (2) x ( s) * ( s) *cos( ( s) ( s) * ) ( s)*cos( ( s) ) sin( ( s) ) from (1) we get cos( ( s) ) 1 ( s) 2 1 ( s)2 ( s) ( s) ( s) x( s) * ( s) Insert into (2) and solve for ε (s)* x2 (s) 2 ( s) x( s) x ( s) ( s) x ( s) 2 * ε is a constant of the motion … it is independent of „s“ * parametric representation of an ellipse in the x x‘ space * shape and orientation of ellipse are given by α, β, γ Beam Emittance and Phase Space Ellipse (s)* x2 (s) 2 ( s) x( s) x ( s) ( s) x ( s) 2 x´ Liouville: in reasonable storage rings area in phase space is constant. A = π*ε=const x x(s) s ε beam emittance = woozilycity of the particle ensemble, intrinsic beam parameter, cannot be changed by the foc. properties. Scientifiquely spoken: area covered in transverse x, x´ phase space … and it is constant !!! Particle Tracking in a Storage Ring Calculate x, x´ for each linear accelerator element according to matrix formalism plot x, x´as a function of „s“ ● x x' … and now the ellipse: note for each turn x, x´at a given position „s1“ and plot in the phase space diagram 7.) Résumé: beam rigidity: p B 1 bending strength of a dipole: focusing strength of a quadrupole: q 1 m k m 2 k m 2 focal length of a quadrupole: f 1 k lq equation of motion: x Kx xs 2 matrix of a foc. quadrupole: 1 cos K l sin K sin Kl 0.2998 g p(GeV / c) 0.2998 2 0 nI p(GeV / c) ar2 1 p p M xs1 Kl K M 0.2998 B0 (T ) p(GeV / c) cos K l , M 1 0 1 f 1 Bibliography 1.) Klaus Wille, Physics of Particle Accelerators and Synchrotron Radiation Facilicties, Teubner, Stuttgart 1992 2.) M.S. Livingston, J.P. Blewett: Particle Accelerators, Mc Graw-Hill, New York,1962 3.) H. Wiedemann, Particle Accelerator Physics (Springer-Verlag, Berlin, 1993) 4.) A. Chao, M. Tigner, Handbook of Accelerator Physics and Engineering (World Scientific 1998) 5.) Peter Schmüser: Basic Course on Accelerator Optics, CERN Acc. School: 5th general acc. phys. course CERN 94-01 6.) Bernhard Holzer: Lattice Design, CERN Acc. School: Interm.Acc.phys course, http://cas.web.cern.ch/cas/ZEUTHEN/lectures-zeuthen.htm 7.) Frank Hinterberger: Physik der Teilchenbeschleuniger, Springer Verlag 1997 9.) Mathew Sands: The Physics of e+ e- Storage Rings, SLAC report 121, 1970 10.) D. Edwards, M. Syphers : An Introduction to the Physics of Particle Accelerators, SSC Lab 1990
© Copyright 2026 Paperzz