Impact of Buffer on Dissolution: In vivo Relevance Gregory E. Amidon Brian J. Krieg Gordon L. Amidon University of Michigan College of Pharmacy NIPTE: A Decade of Scientific Excellence April 30-May 1, 2015 Rockville, MD 1 Bicarbonate as a physiological buffer? • • • • It is physiologic It is the major (perhaps not the only) buffer in the GI It is not well characterized or understood (at least in the pharma world) It is challenging to work with All the ingredients (CO2 and H2O) are readily available to all biological systems free of charge. What can we do about it? • • • 2 We can understand it better What would an equivalent buffer be? • Phosphate? • • Concentration? pH? Can we benefit by identifying or using an “equivalent buffer”? Factors Affecting “In Vivo” Dissolution to be discussed today are: • • 3 GI Environmental / Physiological Factors • • • • • • pH Buffer species and concentration GI fluid hydrodynamics Intestinal motility Bile salts Volume, temperature, and viscosity, etc. Drug Properties: • • • Solubility pKa (acids and bases) Particle size Dissolution Testing: The Future • Need to transition to multiple dissolution methodologies for different purposes (eg: fit for purpose dissolution methodologies) • Quality control (eg: Good, Fast, and Cheap; appropriate for material and process control) • In Vivo Predictive (eg: QbD purposes: assess CMA, CPP, CQA; not necessarily Fast or Cheap) Need to “take into account” buffer, buffer capacity, drug pKa, drug solubility, pH, pH changes, hydrodynamics, absorption, etc • Need to consider BCS Class in selecting appropriate dissolution methodologies from several options • Current compendial methods (eg: Apparatus I, II, IV) • Multicompartment systems: Gastrointestinal Simulators (eg: GIS, ASD) • Multiphase systems: (eg: Biphasic) Need to “take into account” drug pKa (acid(a), base (b), neutral (c)), solubility, buffer, buffer capacity, pH, pH changes, absorption, etc. 4 Bicarbonate Buffer is One Important Component in Developing an In Vivo Predictive Dissolution Method • • • • 5 CO2(aq) reacts with water _ to form bicarbonate (HCO3 ) and (H+) . Bicarbonate is secreted by the epithelial cells throughout the GI tract to modulate luminal pH. Bicarbonate reacts with H+ in the lumen to form CO2 and H2O Carbonic Anhydrase (CA) catalyzes the relatively slow _ conversion of CO2 to HCO3 GI Lumen 𝑪𝑶𝟐 + 𝑯𝟐 𝑶 ⇌ 𝑯+ + 𝑯𝑪𝑶𝟑− CA XIV 𝑪𝑶𝟐 + 𝑯𝟐 𝑶 𝑪𝑨 𝑰𝑰 𝑯+ + 𝑯𝑪𝑶− 𝟑 GI Epithelial Cell Blood Carbon Dioxide in the GI Tract • • The CO2 concentration is between 4-10 % in the stomach of healthy humans (%v/v at 1 atm). In the duodenum, these values are typically significantly higher and can be as high as 66% CO2(g). 𝑪𝑶𝟐 (𝒈) ⇌ 𝑪𝑶𝟐 (𝒍) + 𝑯𝟐 𝑶 ⇌ 𝑯+ + 𝑯𝑪𝑶− 𝟑 • 6 • • • • In the jejunum, the average %CO2 is ~13% at pH ~ 6.5. Sjoblom M 2011. Acta Physiologica 201:85-95. Brinkman A, et.al. 2001. Am J Respir Crit Care Med 163:1150-1152. McGee LC, Hastings AB 1942. J Biol Chem 142:893-904. Rune S 1972. Gastroenterology 62:533-539 Bulk Bicarbonate Buffer Considerations • • At physiological pH(~ 6.5) and % CO2 (~13-15%) • CO2/Bicarbonate Buffer concentration ([CO2]+[HCO3-]) is about 14 mM with a buffer capacity of ~6 mmol H+ /L/pH USP buffer: • 50 mM phosphate at pH 6.5 buffer capacity ~25 mmol H+ /L/pH Total Buffer Concentration, [CO2] + [HCO3-] (mM), Buffer Capacity, , in parentheses (mmol H+ /L/pH) % CO2 pH 5% 7 5.5 6 6.5 7 7.5 4.7 12.2 (2.49) 35.0 (2.67) 10% 15% 4.6 9.3 (4.10) 6.9 14.0 (6.16) 24.3 36.5 71.7 20% 9.2 18.7 40% 12.4 18.4 60% 18.6 (7.42) 27.6 Bicarbonate Buffer System: Reactions and Kinetics CO2 𝒂𝒒 + 𝑯𝟐 𝑶 ⇌ 𝑯𝟐 𝑪𝑶𝟑 ⇌ 𝑯+ + 𝑯𝑪𝑶− 𝟑 8 Bicarbonate Buffer: Reactions and Rates 𝑲𝒉 CO2 𝒂𝒒 + 𝑯𝟐 𝑶 ⇌ 𝑯𝟐 𝑪𝑶𝟑 𝑲𝒅 𝑲𝟎 = − + 𝑯𝟐 𝑪𝑶𝟑 ⇌ 𝑯 + 𝑯𝑪𝑶 𝟑 𝑲 𝒓 𝑯 + 𝑯𝑪𝑶𝟑− 𝑲𝟏 = 𝑯𝟐 𝑪𝑶𝟑 𝑯𝟐 𝑪𝑶𝟑 𝑲𝟎 = 𝑪𝑶𝟐 𝒂𝒒 𝑲𝒉 𝑲𝒅 𝑲𝒇 ~ 10-2.6 𝑲𝟏 = 𝑲𝒇 𝑲𝒓 ~ 10-3.5 𝑲𝒉 ~ 𝟎. 𝟏 𝒔−𝟏 𝑲𝒇 ~ 𝟖 × 𝟏𝟎𝟔 𝒔−𝟏 𝑲𝒅 ~ 𝟓𝟎 𝒔−𝟏 𝑲𝒓 ~ 𝟓 × 𝟏𝟎𝟏𝟎 𝒔−𝟏 𝑲𝒂 = 𝑲𝟎 𝑲𝟏 ~ 10-6.04 Carbonic anhydrase (CA) catalyzes both the hydration and dehydration of carbon dioxide. 9 Simultaneous Diffusion and Chemical Reaction Model 10 Applying the Film Model to Rotating Disk Dissolution (eg: weak acid drug) HCO3 CO2 HCO3 CO2 pH=6.5 𝑫𝒊𝒇𝒇𝒖𝒔𝒊𝒐𝒏 𝑳𝒂𝒚𝒆𝒓 𝒕𝒉𝒊𝒄𝒌𝒏𝒆𝒔𝒔 = 𝒉 = 𝟏. 𝟔𝟏𝑫𝟏/𝟑 𝝎−𝟏/𝟐 𝒗𝟏/𝟔 11 Mooney K, et al. V 1981. J Pharm Sci 70(1):22-32. Levich VG. 1962. Physicochemical Hydrodynamics. ed., New jersey: Prentice Hall. Film Model: Bicarbonate Buffer 𝐻 + + 𝑂𝐻 − ⇌ 𝐻2 𝑂 Boundary Conditions at X = h: 𝐻𝐴 ⇌ 𝐻 + + 𝐴− 𝐻𝐴 = 𝐻𝐴 𝐻𝐴 + 𝑂𝐻− ⇌ 𝐻2 𝑂 + 𝐴− 𝐴− = 𝐴− 𝐻𝐴 + 𝐻𝐶𝑂3− ⇌ 𝐶𝑂2 + 𝐻2 𝑂 + 𝐴− 𝐻+ = 𝐻+ 𝐶𝑂2 + 𝐻2 𝑂 ⇌ 𝐻𝐶𝑂3− + 𝐻 + 𝑂𝐻− = 𝑂𝐻− 𝛿 [𝐻𝐴] = 𝐷𝐻𝐴 𝛿𝑡 𝛿 𝐴− 𝛿𝑡 = 𝐷𝐴 𝛿 𝐻+ 𝛿𝑡 = 𝐷𝐻 𝛿 𝑂𝐻 − 𝛿 𝐻𝐶𝑂3− 𝛿 𝐶𝑂2 𝛿𝑡 𝛿𝑋2 𝛿 2 𝐴− 𝛿 2 𝐻+ 𝛿𝑋2 = 𝐷𝐶𝑂2 + ∅1 = 0 + ∅3 = 0 𝛿 2 𝑂𝐻 − 𝛿𝑋2 = 𝐷𝐻𝐶𝑂3 𝛿2 + ∅4 = 0 𝛿 2 𝐻𝐶𝑂3− 𝛿𝑋2 𝐶𝑂2 𝛿𝑋2 ℎ ℎ ≅0 (𝑘𝑛𝑜𝑤𝑛) 𝐻𝐶𝑂3− = 𝐻𝐶𝑂3− + ∅2 = 0 𝛿𝑋2 = 𝐷𝑂𝐻 𝛿𝑡 𝛿𝑡 𝛿 2 [𝐻𝐴] ≅0 ℎ + ∅5 = 0 + +∅6 = 0 𝐶𝑂2 = 𝐶𝑂2 ℎ (𝑘𝑛𝑜𝑤𝑛) ℎ ℎ (𝑘𝑛𝑜𝑤𝑛) (𝑘𝑛𝑜𝑤𝑛) Boundary Conditions at X = 0: 𝐻𝐴 = 𝐻𝐴 𝐴− = 𝐴− 𝐻+ = 𝐻+ (𝑊𝑒𝑎𝑘 𝑎𝑐𝑖𝑑 𝑖𝑛𝑡𝑟𝑖𝑛𝑠𝑖𝑐 𝑆𝑜𝑙𝑢𝑏𝑖𝑙𝑖𝑡𝑦) 0 0 0 (𝑈𝑛𝑘𝑛𝑜𝑤𝑛) (𝑈𝑛𝑘𝑛𝑜𝑤𝑛) 𝑂𝐻− = 𝑂𝐻− 0 𝐻𝐶𝑂3− = 𝐻𝐶𝑂3− 𝐶𝑂2 = 𝐶𝑂2 0 (𝑈𝑛𝑘𝑛𝑜𝑤𝑛) 0 (𝑈𝑛𝑘𝑛𝑜𝑤𝑛) (𝑈𝑛𝑘𝑛𝑜𝑤𝑛) ∆ 𝑭𝒍𝒖𝒙 𝑶𝑯− 𝒊𝒏 + ∆ 𝑭𝒍𝒖𝒙 𝑯𝑪𝑶𝟑− 𝒊𝒏 = ∆ 𝑭𝒍𝒖𝒙 𝑯𝑨 𝒐𝒖𝒕 + ∆ 𝑭𝒍𝒖𝒙 𝑯+ 𝒐𝒖𝒕 𝑱𝒕𝒐𝒕𝒂𝒍 = 𝑱𝑯𝑨 + 𝑱𝑯 + 𝑱𝑶𝑯 + 𝑱𝑯𝑪𝑶 𝟑 12 Ref: Mooney K, et al. V 1981. J Pharm Sci 70(1):22-32. Is the slow hydration (and dehydration) reaction a problem? Average lifetime of a molecule in the DL is ~ 0.4 sec at 100 rpm (DL~40 ) 𝒕𝑫𝒊𝒇𝒇𝒖𝒔𝒊𝒐𝒏 𝒉𝟐 = 𝟐𝑫 The time it takes for the reaction to occur in the DL (63% complete) 𝟏 𝒕𝒓𝒆𝒂𝒄𝒕𝒊𝒐𝒏 = 𝒌 ~ 5-10 sec for the hydration reaction: 𝑪𝑶𝟐 𝒂𝒒 + 𝑯𝟐 𝑶 → 𝑯𝟐 𝑪𝑶𝟑 ~ 0.01 - 0.02 sec for the dehydration reaction: 𝑪𝑶𝟐 𝒂𝒒 + 𝑯𝟐 𝑶 ← 𝑯𝟐 𝑪𝑶𝟑 In the diffusion layer: • Hydration reaction is too slow to be important • Dehydration reaction is fast enough to occur 13 Mooney KG et al. 1981. JPharmSci 70(12):1358-1365. Higuchi, etal, 1917 Farm. Aikak 80, 55. Brian and the Three Models Includes Both hydration and dehydration Includes Neither hydration or dehydration Includes Only dehydration Bulk Chemical Equilibrium (BCE) Carbonic Acid Ionization (CAI) Irreversible Dehydration Reaction (IRR) 𝐾0 𝐾1 + 𝐶𝑂2 𝑎𝑞 + 𝐻2 𝑂 𝐻2 𝐶𝑂3 𝐻 + pKa1 = K0*K1= 6.04 𝐻𝐶𝑂3− 𝐾1 𝐻2 𝐶𝑂3 𝐻 + + 𝐻𝐶𝑂3− pK1 = 3.55 𝑘𝑑 𝐾1 𝐶𝑂2 𝑎𝑞 + 𝐻2 𝑂 𝐻2 𝐶𝑂3 𝐻 + + 𝐻𝐶𝑂3− Kd = 50 sec-1 pK1 = 3.55 Kh = 0 sec-1 eg: Mooney, Stella, etal eg: Mooney, Stella, etal eg: Krieg, etal For each of these three models, we can solve for pH at the dissolving surface and the resulting dissolution rate. Ref: 1. Mooney, K., Mintun, M., Himmelstein, K., and Stella, V. (1981) J. Pharm. Sci. 70, 22-32 2. Krieg, B. J., Taghavi, S. M., Amidon, G. L., and Amidon, G. E. (accepted for publication July 2014) J Pharm Sci 14 Experimental Setup: CO2-bicarbonate buffer Rotating Disk Air & CO2 flow rates adjusted to obtain 5-20% CO2 Dissolved CO2 Monitor Air CO2 pH Drug 5-20% CO2 15 Predicted and Experimental Flux: Ibuprofen (Weak acid) Solubility=3.3x10-4 M, pKa=4.43, Diffusion Coefficient =7.9x10-6 cm2/s Buffer Conc. 0.1 BCE 0.35 0.6 BCE 0.25 Flu x (mg /cm^2/min ) 0.06 0.04 0.5 0.02 0.25 0 0 0.4 0.2 Flux (mg/cm^2/min) Flux (mg/cm^2/min) 0.3 Phosphate Buffer (BCE model) 0.15 IRR 0.1 0.05 CAI 0 -10 10 30 Buffer Concentration (mM) 50 pH BCE 0.08 0.3 16 (Rotation Speed)1/2 Flux (mg/cm^2/min) 0.4 1 2 3 4 5 6 7 8 Rad/S ^1/2 0.3 0.2 0.2 0.15 0.1 IRR IRR 0.05 CAI 0 0.1 0 0 1 2 3 100RPM 4 Rad/S ^1/2 5 6 7 500RPM 8 CAI 5.2 5.4 5.6 5.8 6 pH 6.2 6.4 6.6 6.8 The experimental and predicted flux of ibuprofen in bicarbonate buffer at multiple concentrations (at pH 6.5 and 37 oC), at different rotating disk speeds, and as different pH. Key: () Experimental Bicarbonate buffer. () BCE=Bulk Chemical Equilibrium model, CAI = Carbonic Acid Ionization model, IRR=Irreversible Reaction model. 7 Predicted and Experimental Flux at pH 6.5: Ketoprofen & Indomethacin 0.9 0.04 Flux (mg/cm^2/min) Flux (mg /cm^2/min) BCE 0.8 0.7 0.6 0.5 0.4 0.3 IRR 0.2 CAI 0.1 BCE 0.03 0.025 0.02 IRR 0.015 0.01 0.005 CAI 0 0 0 50 Buffer Concentration (mM) Ketoprofen (Weak acid) x10-4 Solubility=5.3 M, pKa=4.02, Diffusion Coefficient =9.3x10-6 cm2/s 17 0.035 100 0 5 10 15 20 25 Bicarbonate Buffer Concentration (mM) Indomethacin 30 35 40 (Weak acid) Solubility=5.96x10-6 M, pKa=4.27, Diffusion Coefficient =6.8x10-6 cm2/s The experimental and predicted flux of Ketoprofen in bicarbonate buffer at multiple concentrations (at pH 6.5 and 37 oC). Key: ( • ) Experimental Predicted and Experimental Flux at pH 6.5: Haloperidol (Weak base) Solubility=8.5x10-6 M, pKa=8.0, Diffusion Coefficient =6.6x10-6 cm2/s 0.035 Flux (mg /cm^2/min) 0.03 Flux (mg/cm^2/min) 0.025 BCE 0.02 0.015 IRR 0.01 CAI 0.005 Buffer Conc. 0.012 pH BCE 0.01 50 mM phosphate buffer (BCE model) 0.008 IRR 0.006 0.004 CAI 0.002 0 0 0 6 6.5 7 pH 7.5 10 20 30 40 Buffer Concentration (mM) The experimental and predicted flux of haloperidol in bicarbonate as a function of pH and buffere concentration at 37oC. Key ( ) Experimental Flux in Bicarbonate Buffer and () phosphate buffer. 18 50 A Phosphate Buffer to Equivalent 15% CO2 (10.4 mM HCO3- ) is Possible! Weak Acids 19 @ pH=6.5 Weak Bases Is an “equivalent phosphate buffer” actually equivalent to physiologically relevant bicarbonate buffer in USP 2? 120 • Drug = 200 mg of 235 um diameter ibuprofen particles (suspension) • 11 mM bicarbonate buffer • pH = 6.5 for ibuprofen % Dissolved • 3.5 mM phosphate buffer Bicarbonate buffer 100 80 Phosphate buffer 60 40 • USP Apparatus 2, 50 rpm, 900 mL 20 0 0 20 40 Time (Minutes) 20 60 Is an “equivalent phosphate buffer” actually equivalent to physiologically relevant bicarbonate buffer in USP 2? • Tablet is pre-disintegrated in 0.01 N HCl before adding to dissolution vessel • 3.5 mM phosphate buffer • 11 mM bicarbonate buffer • pH = 6.5 for ibuprofen • USP Apparatus 2, 50 rpm, 900 mL 120 Phosphate buffer 100 % Dissolved • Drug Product = 200 mg commercially available, film-coated ibuprofen tablet (Motrin IB) 80 Bicarbonate buffer 60 40 20 0 0 10 20 30 Time (Minutes) 21 40 50 Is an “equivalent phosphate buffer” actually equivalent to physiologically relevant bicarbonate buffer in USP 2? • Drug Product = 200 mg commercially available, film-coated ibuprofen tablet (Motrin IB) 120 Bicarbonate buffer • Tablet is introduced intact into dissolution vessel • 3.5 mM phosphate buffer • 11 mM bicarbonate buffer • pH = 6.5 for ibuprofen % Dissolved 100 80 Phosphate buffer 60 40 20 • USP Apparatus 2, 50 rpm, 900 mL 0 0 20 40 Time (Minutes) 22 60 Predicted Dissolution rate per cm2 (Flux, Rotating Disk Method) in Physiologically Relevant Bicarbonate Buffer, USP Dissolution Media, USP Simulated Intestinal Fluid, and FaSSIF Buffer Conc. Buffer Species pH Ibuprofen Flux mg/cm2/min Physiologically Relevant Bicarbonate Physiologically Relevant Phosphate 11 mM USP USP monograph test 3.5 mM 50 mM 10 mM 50 mM 28.7 mM Bicarbonate Phosphate Phosphate Phosphate Phosphate Phosphate 6.5 6.5 7.2 7.2 6.8 6.5 0.06 0.06 0.71 0.48 0.22 1 11.9 x 8.0 x 3.7 x 0.092 0.066 0.033 7 x 5 x 2.5 x Ratio Ratio (bicarb/phosphate) 1Galia, FaSSIF1 w/o surfactants monograph test (bicarb/phosphate) Indomethacin Flux mg/cm2/min USP Simulated Intestinal Fluid 0.013 E.; Nicolaides, E.; Horter, D.; Lobenberg, R.; Dressman, J. B. Evaluation of various dissolution media for predicting in vivo performance of class I and II drugs. Pharmaceutical research 1998, 15, (May), 698. 23 Conclusions 24 • Buffers that undergo instantaneous reversible chemical reactions (eg: phosphate buffer) are predicted accurately by a simultaneous diffusion and chemical reaction model (eg: Mooney, etal (1981)). • The Irreversible Reaction Rate (IRR) accounting for the slow reaction rate between CO2 and H2O accurately predicts dissolution of weak acids and weak bases for bicarbonate buffer. • Matching the dissolution rate of drugs in phosphate and bicarbonate buffer systems is possible. • In general, the buffer capacity of 50 mM phosphate (pH=6.5-6.8) is substantially greater than physiologically relevant bicarbonate buffer. • Low phosphate buffer concentrations (~5-30 mM) are expected to better simulate physiologically relevant bicarbonate buffer concentrations (based on rotating disk method). • An equivalent phosphate buffer varies depending on drug properties (acid, base, pKa, solubility) Future Work: • Test and demonstrate relevance of buffer type and capacity using • In vivo predictive dissolution methodology(ies) • In vivo “data” • Address some of the technical challenges in using bicarbonate buffer • Address some of the technical challenges in using an equivalent (eg: phosphate) buffer • 25 Low buffer capacity buffer matches surface pH conditions but not “bulk” buffer conditions. Dissolution Testing: The Future • Need to transition to multiple dissolution methodologies for different purposes (eg: fit for purpose dissolution methodologies) • Quality control (eg: Good, Fast, and Cheap; appropriate for material and process control) • In Vivo Predictive (eg: QbD purposes: CMA, CPP, CQA assessment; not necessarily Fast or Cheap) Need to “take into account” buffer, buffer capacity, drug pKa, drug solubility, pH, pH changes, hydrodynamics, absorption, etc • Need to consider BCS Class in selecting appropriate dissolution methodologies from several options • Current compendial methods (eg: Apparatus I, II, IV) • Multicompartment systems: Gastrointestinal Simulators (eg: GIS, ASD) • Multiphase systems: (eg: Biphasic) Need to “take into account” drug pKa (acid(a), base (b), neutral (c)), solubility, buffer, buffer capacity, pH, pH changes, absorption, etc. 26 Acknowledgements • • • Brian J. Krieg Deanna Mudie Gordon Amidon Graduate Student, Postdoctoral Fellow Co-advisor Financial Support Provided by: • Chingju Wang Sheu Graduate Student Fellowship: 2009-2011 • USP Fellowship: 2010-2012 • AstraZeneca (Bertil Abrahamson, Jennifer Sheng) 2012-2013 • FDA Contract HHSF223201310144C: 2013-2016 27 References: 1. 2. 3. 4. 5. 6. 7. 8. 28 Krieg, B. J.; Taghavi, S. M.; Amidon, G. L.; Amidon, G. E. In Vivo Predictive Dissolution: Transport Analysis of the CO2, Bicarbonate In Vivo Buffer System. Journal of Pharmaceutical Sciences 2014, 103, (11), 3473-3490. Krieg, B. J.; Taghavi, S. M.; Amidon, G. L.; Amidon, G. E. In Vivo Predictive Dissolution: Comparing the Effect of Bicarbonate and Phosphate Buffer on the Dissolution of Weak Acids and Weak Bases. Journal of Pharmaceutical Sciences 2015, accepted. Mooney, K. G.; Mintun, M.; Himmelstein, K.; Stella, V. Dissolution kinetics of carboxylic acids I: Effect of pH under unbuffered conditions. J. Pharm. Sci. 1981, 70, (1), 13-22. Mooney, K.; Mintun, M.; Himmelstein, K.; Stella, V. Dissolution kinetics of carboxylic acids II: Effect of buffers. J. Pharm. Sci. 1981, 70, (1), 22-32. Mooney, K. G.; Q, M. R.-G.; Mintun, M.; Himmelstein, K. J.; Stella, V. J. Dissolution Kinetics of Phenylbutazone. J. Pharm. Sci. 1981, 70, (12), 1358-1365. Aunins, J. G.; Southard, M. Z.; Myers, R.; Himmelstein, K. J.; Stella, V. J. Dissolution of Carboxylic Acids III: The Effect of Polyionizable Buffers. Journal of Pharmaceutical Sciences 1985, 74, (12), 1305-1316. Tsume, Y.; Mudie, D. M.; Langguth, P.; Amidon, G. E.; Amidon, G. L. The Biopharmaceutics Classification System: Subclasses for in vivo predictive dissolution (IPD) methodology and IVIVC. European Journal of Pharmaceutical Sciences 2014, 57, 152-163. Mudie, D. M.; Amidon, G. L.; Amidon, G. E. Physiological Parameters for Oral Delivery and in Vitro Testing. Mol. Pharmaceutics 2010, 7, (5), 1388-1405.
© Copyright 2026 Paperzz