tectonics, vol. 12, no. 4, pages 801-813, august

TECTONICS, VOL. 12, NO. 4, PAGES 801-813, AUGUST 1993
AN INDENTATION
MODEL
FOR THE
NORTH
AND SOUTH
CHINA
COLLISION
AND THE DEVELOPMENT
OF THE
TAN-LU
AND HONAM
EASTERN
FAULT
SYSTEMS,
ASIA
1975],manycontroversies
regardingthenatureof thecollision
remain. It has been debated whether the collision occurred
duringthemiddlePaleozoic[Zhanget al., 1984;Mattaueret
al., 1985;Liu and Hao, 1989] or the Triassic[Sengor,1985;
Hsu et al., 1987; Lin and Fuller, 1990; Zhao and Coe, 1987;
Wanget al., 1992]andhowthecollisionbetweentheSCBand
theNCB wasaccomplished
[OkayandSengor,1992;Yin and
Nie, 1992].
An Yin
Department
of EarthandSpaceSciences,
Universityof
California,Los Angeles,California
Shangyou
Nie
Paleogeographic
AtlasProject,Department
of Geophysical
Sciences,Universityof Chicago,Chicago,Illinois
Abstract. Passivecontinentalmarginsaregeometrically
irregularasa consequence
of eithertriple-junction
evolutionor
thedevelopment
of transferzonesin detachment
faultsystems,
whereasactivecontinental
marginsaresmoothlyarc-shaped
dueto subduction
of plateson theEarth'ssphericalsurface.
We proposethatthisbasicdifferencein boundarygeometry
hasplayedan importantrole in thelatestPaleozoic-early
Mesozoiccollisionof NorthandSouthChina.In particular,
we suggestthatprior to collision,the activesouthernmargin
of theNorthChinaBlock(NCB) wascontiguous
acrossthe
Qilian Shan,Qinling,DabieShan,Shandong
peninsulaof
eastcentralChinato theImjingangareaof centralKorea.The
passivenorthernmarginof the SouthChinaBlock (SCB), in
contrast,hada moreirregularshape,suchthatits northeastern
segmentin northernJiangsuandeasternAnhuiprovincesof
China extended some 500 km farther north than its western
counterparts
in northernSichuan,southernShaanxi,and
northernHubeiprovinces.Collisionof theNCB andthe SCB
beganby indentation
of thenortheastern
SCB intotheeastern
NCB in thelate Early Permianandlasteduntil theLate
Triassic-Early
Jurassic.
Theindentation
produced
theleft-slip
Tan-Lufaultin northeastern
Chinaandtheright-slipHonam
Relatedto theproblemof theNorth and SouthChina
collisionis the originof the Tan-Lu fault [Xu et al., 1987],a
prominentleft-lateralstrike-slipfaultalongtheeasternmargin
of the Eurasian continent. The Tan-Lu fault offsets the
collisionalbelt betweentheNorthandSouthChinablocksby
about500 km (Figure2), however,displacement
decreases
sharplynorthof theShandongsuturezoneanddiminishesto
zeroimmediatelysouthof DabieShan[Xu et al., 1987;Okay
and Sengor,1992] (Figure2).
Recently,a Triassicright-lateralstrike-slipfault,theNE
trendingHonamshearzone,hasbeenrecognized
in South
Koreain theOgcheonbelt (Figure2) [Kim andLee, 1984;
Yanai et al., 1985].AlthoughCluzelet al. [1991a]suggest
thatthe shearzonejuxtaposesthe SCB to the northandthe
NCB to the south,andhasa minimumdisplacement
of 200
km, the development
of thisshearzonehasnotbeendiscussed
in the context of the NCB-SCB
collision.
In thispaper,we firstreviewtheregionalgeologicsetting
beforeandduringthecollisionandtheextentandgeometry
of
theNorth and SouthChinablocksprior to collision.We then
showthatthecollisionoccurreddiachronously,
startingfrom
theeastin Shandong
andnorthernKoreain lateEarly Permian
andprogressing
to thewestin Qinlingin thelatestTriassicto
earliestJurassic.
Finally,we proposea tectonicmodelthat
explainsthediachroneity
of thecollisionandthedevelopment
of theleft-slipTan-Lufaultin easternChinaandtheright-slip
Honam fault in southeastern Korea.
GEOLOGIC
SETTING
shear zone in southeastern Korea and caused the northward
displacement
of theShandong
andtheImjingangmetamorphic
belts.This modelpredictsthatcollisionalongtheDabieand
Qinlingmetamorphic
beltoccurredsignificantly
laterthan
alongtheShandong
belt, whichis consistent
with radiometric
anddepositional
constraints
on thetime of collision.The
proposed
modelaccounts
for theabrupttermination
of the
Tan-Lufaultat its southendandthedrasticdecrease
in slip
alongtheTan-Lu faultnorthof theShandong
metamorphic
belt.Themodelalsopredictsthedistribution
andagesof
metamorphism
alongthesutureandtheobserved
localbut
intenseTriassicdeformation
(=Indosinian
orogeny)in
northeastern
ChinaandnorthernKorea,whichwaspreviously
an enigmaticfeaturein thisregion.
INTRODUCTION
TheEurasiancontinentconsists
of a collageof
microplates
(Figure1). Major amalgamation
of thecontinental
blocks(microplates
withcontinental
basement)
occurred
during
thecollisionof theNorthChinaBlock(NCB) andtheSouth
ChinaBlock(SCB)[Sengor,1987].Althoughintense
research
hasbeenconducted
formorethantwodecades
sincetheconcept
of platetectonics
wasfirstappliedtoChinese
geology[Li,
Copyright1993by theAmericanGeophysical
Union.
Papernumber93TC00313.
0278-7407/93/93TC-00313
$10
North and South China Blocks
The locus of the North China-South China collision is
well constrained
in ChinaalongtheQinling,Dabie,and
Shandong
belts(Figure2). Theeasternextension
of the
Shandong
beltin Koreais notclear,because
ophiolites,
representing
theexistence
of an ocean(s),
havenotbeenfound
in Korea[ReedmanandUm, 1975;Lee, 1987].However,the
presence
of ophiolites
is a necessary
butnota sufficient
condition
for theexistence
of a suture,
because
ophiolites
are
commonly
accreted
to continental
marginspriorto collision.It
is alsopossible
thatcertainsegments
of anactivecontinental
marginhaveno accretionary
ophiolitessothatthecollisional
sutureis markedonlyby deformation
andmetamorphism.
On
thebasisof lithostratigraphy,
theKoreanpeninsula
is divided
by theImjingangandOgcheon
beltsintothreetectonicblocks
(Figure2). Theblocksare,fromnorthto south,theNangrimPyeongnam
(NPB),theGyeonggi(GB),andtheRyeongnm•l
(RB) [ReedmanandUrn, 1975;Lee, 1987;Cluzel et al.,
1990].Despitethelackof ophiolites
in Korea,theImjingang
belthasbeencorrelated
withtheShandong
suturezone[e.g.,
Ernst,1988;Hsuet al., 1990].FollowingCluzelet al.
[1990],weusetheHonamshearzoneastheboundary
between
theNPB andtheGB (Figure2). Thus,thetraditionally
defined
Ogcheonbelt [e.g.,ReedmanandUrn, 1975]consists
of rocks
belongingto boththeNPB andGB.
TheNangrim-Pyeongnam
andRyeongnam
Blockshave
Cambrianfaunaof NorthChinaaffinity[Kobayashi,
1966].In
contrast,theGyeonggiBlockin centralKoreaconsists
of
CambrianstratabearingSouthChinaaffinityfauna
802
Yin and Nie: Indentation Model for North and South China Collision
ANGARAN
SHIELD
SINO - KOREA
YANGT
Figure 2
6'0.'
80
90'E
120'E
100'E
• J accretlonaryassemblages
Tertiary
sutures
•• 1strike
-sllp
faults'
arrows
actlye
subductlon
zones
[II J Late
Palaeozoic
sutures,
suture
ofunknown
polarity
III u• lr]ass,c
-Jurass,c
sutures
thrust
belts,
arrows
•ndlcat•ng
oceamc
plate
IIll • • Jurass'cCretaceous
sutures
Indlcatlng directlon of motion
teeth on upperplate
thrust
d•rect•on
Fig.la.Tectonic
subdivisions
andsutures
ofeastern
Asiaandlocation
ofFigure
2,afterNieetal.[1991].
Key:
Sino-Korea
isNorth
China;
Yangtze
isSouth
China,
A isAbukuma;
CKLisCentral
Kunlun;
DHisDahinggan;
EQiseastern
Qiangtang,
K isKitikami;
KOisKohistan;
QDisQaidam;
WQiswestern
Qiangtang.
Sutures:
AI is
Ailaoshan;
ATisAltai;BL-MLisBela-Muslimbagh;
CK,Crocker;
GSisGhissar;
HGisHeganshan;
HRisHerat;
IB isIndo-Burma;
IT-BYisIrtysh-Baayitik;
IZ isIndus-Zangpo;
JSisJinshajiang;
KRisKerulan;
LD + Ladakh;
LM isLongmenshan;
LT isLitang;MGOKisMongolo-Okhotsk;
MR isMeratus;
MZ isMaizuru;
NI isnorth
Indus;
NTisnorth
Tianshan;
NUSBisNan-Tardit-Sm-Kaeo-Bentong;
QL-QLisQilian-Qinling;
SIissouth
Indus;
SOLTisSolon-Obo-Linxi-Tumen;
STissouth
Tianshan;
WSisWaser;
WZisWazaristan.
Majorstrike-slip
faults:
ATF is AltynTaghfault;FGFisFergana
fault;RRFisRedRiverfault;TLF isTan-Lufault;YRFis Yellow
Riverfault.Thrust
belts:
MBTisMainBoundary
thrust;
SDTisSette-Daban
thrust.
Accretionary
complex:
SP-GZ
is Songpan-Ganzi.
[Kobayashi,1966].It haslongbeenknownthatJurassic
basinsin thesouthwestern
partof theNangrim-Pyeongnam
Blockdirectlynorthof theImjingangbeltcontainboulders
with Silurianfossils[Shimizuet al., 1934]. Thesefossils
cannothavebeenderivedfromtheNangrim-Pyeongnam
Block,
which
lacks
Silurian
orDevonian
strata.
Thus,
theGyeonggi
Blocksouth
of theImjingang
beltwasthemostlikelysource
of thefossils.
AsSilurian
strata
arecharacteristic
oftheSCB,
thepreservation
of Silurianfossilsin theJurassic
basins
suggests
thattheGyeonggi
Blockwaspartof theSCBand
Yin andNie: IndentationModelfor NorthandSouthChinaCollision
/'
8O3
Heilongjiang
ß
'*,'x Jilin
xr
•,.-
ß
•_'
$ * C',•'Liaoninl•
Xinjiang
•'
r
{"•'?
.3.Hebei
Inner
Mongolia• q
.
ß•
•
j ß •.
.• .• )
..r'
•
'•.
•in•hai[• ß,'•'•i • •.• Shand6ng
•
•
(
G•su c--
•
ß
•
.
•.
Xizang(TibeO
' ' ?
X
i
'
'.
.'
....
ß
[I Sichu•
1•,-•-.•'•Hu•2
[,•4/t
• F•gure
2
• • /•'
'7'
Zheji•g
•.
r' '• x.
'
x.•
/ Ji•gxi ./' •'•
{"'%
.-L.
t" Za,w
Fig. lb.Locations
ofFigure
2 andstratigraphic
sections
shown
inFigure
4.
sheddetritus
across
theImjingang
belttotheNangrimPyeongnam
Blockduring
theJurassic.
TheOgcheon
beltunderwent
threemainpre-Cretaceous
tectonic
events
marked
byregional
unconformities
and/or
sedimentary
hiatus
[Cluzeletal.,1990]:(1)LateSilurian-
EarlyDevonian
contractional
tectonism
thatclosed
anearly
belt,because
theyliealongstrikeofoneanother
(Figure
2).
Continent-continent
collisions
maychange
theshapeof
thecollided
continents
byintraplate
deformation
[Tapponnier
etal.,1982;England
andHouseman,
1988].Ontheother
hand,
knowledge
of theoriginal
shape
ofthecollided
continents
canhelpusunderstand
thenature
ofthecollision.
Dewey
andBurke[1973,1974]noticed
thefundamental
inshape
between
convergent
anddivergent
margins.
right-lateral
Honam
shear
zone;
and(3)intrusion
ofwidespread difference
Ingeneral,
convergent
margins
aresmooth
andarc-shaped
due
Jurassic
andCretaceous
plutons
thatcuttheHonamshear
Paleozoic
intracontinental
rift;(2) development
of theTriassic
zone. The middle Paleozoiccontractionalevent was
synchronous
withtheCaledonian/Guangxian
orogeny
that
foldedlowerPaleozoic
sequences
in thesoutheastern
SCB
[Yanget al., 1986;Rowleyetal., 1989].Thus,the
deformational
history
of thesouthwestern
partof theOgcheon
belt is similarto that of the SCB [Cluzel et al., 1990, 199la,
b; Cluzel,1991].Onthebasisof Paleozoic
lithostratigraphy,
paleontology,
andtectonic
history,
Cluzeletal.[1990,1991b]
suggest
thattheNangrim-Pyeongnam
andtheRyeongnam
Blocks
belong
totheNCB,whereas
theGyeonggi
Blockand
theearlyPaleozoic
Ogcheon
riftsequence
westof theHonam
shear
zonebelongtotheSCB.Thepresence
of fossiliferous
tosubduction
of inclined
platesona spherical
surface
[see
Turcotte
andSchubert,
1982,p. 12],whereas
divergent
margins
areirregular
duetotriple-junction
development
during
therifting
episode
ofcontinental
breakup
[Dewey
andBurke,
1973,1974]orby thedevelopment
oftransfer
structures
in
extensional
faultsystems
during
theformation
ofpassive
continental
margins
[Wemicke
andTilke,1989;Etheridge
et
al., 1989].Collision
of thetwofundamentally
different
boundaries
canproduce
complex
structural
evolution
bothin
space
andtime[e.g.,Sengor,
1976].
Theinitialgeometry
ofthenorthern
margin
oftheSCB
wasprobably
irregular.
Asshown
byZhang
etal.[1989],
the
sedimentary
facies
andisopachs
oftheupper
Precambrian
to
Silurianrocksandtheunconformable
contactbetweenthe
Carboniferous
andearlierrocks[Lee et al., 1988] alsosuggest
LowerTriassicrockstrendN-NE eastof theTan-Lufaultin
thatpartof theOgcheon
beltbelongs
totheSCB.Such
division
implies
thattheImjingang
beltandtheHonam
shear
Tan-Lufaultbutis discordant
to theeastern
projection
of the
zonearetheboundaries
betweentheNorthandSouthChina
Blocks.We correlate
theImjingang
beltwiththeShandong
thenortheastern
SCB(Figure
3).Thistrendisparallel
tothe
Dabiesuture
zone(Figure
2), a relationship
suggesting
that
theoriginal
northern
edgeoftheSCBwasnota straight,
E-W-
Yin andNi½:Indentation
Modelfor NorthandSouthChinaCollision
804
105o
0
100
110o
200
300
400
1250
km
Mongolia
400
400
Japan Sea
Pyongyang
Bohai Bay
Nangrlm-Peoongman
Block
Seoul
Gyeonggl
Xian
Tancheng
Yellow
Sea
•
Mesozoic-Cenozoic
basin
:.-.i•Triassic
ß
strataconformably
on
top of Permian
strata
:.ø'•Triassicstrataunconformably
on
top of Permian
strata
•
Triassicplutons
•
Qinling-Shandong
deformationbelt
"•:• NorthChinaBlock
•
300
SouthChina Block
::'• Xingkai-Bureya
Block
-•-
Suture
•
Folds
_a_s_Intraplate
ß•.
thrust
Strike-slipfault
1300
Fig.
2.Simplified
geologic
map
ofeast-central
Asia
and
location
ofFigure
3,after
Y.Q.
Chen
[1989].
trending
boundary.
In contrast,
theprecollisional
facies
distribution
in thesouthern
marginof theNCB westof the
Tan-LufaultisE-W trending
[Sunet al., 1989,pp.67-68],
parallelto theQinling-Dabie
collisional
belt.Thistrend,
however,
is truncated
by theN-NE strikingTan-Lufault,as
suggested
by subsurface
datafor PaleozoicandLower
Mesozoic
strataimmediately
northof theDabieShan[Hanet
al., 1989,p. 128].
Abundant
geological
andpaleomagnetic
evidence
suggests
thatin thePaleozoic
NCBandSCBweretwowidelyseparate
tectonicentitiesthatdidnotjoin eachotheruntilthePermoTriassic[Nie, 1991].Althoughtransform
faultscancause
juxtaposition
of differentplates,we believethatit wasa
convergent
plateboundary
thatbrought
themtogether.
Thisis
notonlysuggested
bythepresence
of metamorphic
sequences
inDabieandnorthern
Jiangsu
andeastern
Shandong
[Xiaoand
Wang,1984]andtherecently
discovered
ultrahigh-pressure
metamorphic
rocks[e.g.,Wanget al., 1992],butalsoby the
presence
of a series
of earlyMesozoic
foreland
basins
preserved
alongthenorthern
margin
of theSCB,all indicating
contractional
tectonics.
Because
thenorthern
margin
of the
SCBexperienced
virtually
continuous
passive-margin
sedimentation
duringtheentirePaleozoic,
it suggests
thatthe
southern
margin
of theNCBhadtobeanactive
plateboundary
in orderto consumean oceanbetweenthe SCB andtheNCB.
Therecordforthisactiveplateboundary
isbestpreserved
in
thewestin theQilianShanwithinGansuprovince
where
andesites
andgranodiorites
existforeveryperiodfromthe
Cambrian
totheTriassic
[Gansu
Bureau
of Geology,
1989,
pp.341-447].Farthertotheeastin thenorthern
Qinling
withinShaanxi
province,
theevidence
fora "Caledonian"
and,
to a lesserdegree,"Hercynian"
arcis alsounmistakable
[Shaanxi
Bureauof Geology,1989,pp.369-445],butaswe
movefarthereastintoHenan,Anhui,andShandong
provinces,
therecordfor anAndeanmarginbecomes
unclear.For
example,theonlyvolcanicrocksdescribed
fromthePaleozoic
to Triassicof Henan are several"acid volcanic"interbedsfrom
theTangzhuang
Formation
ofLateTriassic
age[HenanBureau
of Geology,1989,p. 231].However,
oneinteresting
feature
fortheCarboniferous
- Triassic
sequences
is thedominance
of
claylayersin southern
Henannorthof theQinling.We
suspect
thatsomeof theseclaybedsmightbe tuffaceous
layers.Stillfarthereastin AnhuiandShandong
provinces,
thereisnorecord
of Paleozoic
toTriassic
volcanism,
though
andesitic
volcanism
isreported
ascommonplace
in thepreCambrian
metamorphic
sequences.
It is probable
thatsomeof
these"pre-Cambrian"
volcanic
unitsmightactually
be
Paleozoic-Triassic
in age.Weraisethispossibility
because
it
wasnot uncommon
in theearlyinvestigations
of Chinese
geologythata rockunitassigned
tobepre-Cambrian
is notso
Yin andNie: Indentation
Modelfor NorthandSouthChinaCollision
805
l! I N(,
Fig.3.Isopach
andsedimentary
facies
map
ofupper
Precambrian
(=Sinian)
tolower
Middle
Triassic
sequences
in
thenortheastern
partofSouth
China,
afterZhang
etal.[1989].
SeeFigure
2 forlocation.
Z2isupper
Precambrian;
032isUpper
Ordovician;
S3isUpper
Silurian;
D3isUpper
Devonian;
P12- P21
isupper
Lower
Permian
tolower
Upper
Permian;
T21islower
Middle
Triassic.
Sedimentary
facies:
I isfluvioclastic
facies;
II isfluvioclastic
and
swamp
facies;
Ill isnear-shore
clastic
facies;
IV istidalflatfacies;
V isplatform
evaporite
facies;
VI isshallow
beachcarbonate
faciesinterbedded
withclastic
facies;
VIII isbroadandrestricted
platform
carbonate
facies;
IX is
marginal
siliciclastic
andflysch
facies;
XI isbathyal
volcanoclastic
andflysch
facies;
XII isbathyal
trough
flysch
facies.
Notethatthetidalflatanddeltaicfaciesinitiated
duringtheLatePermian
thatmaysignaltheinitialcontact
between the NCB and the SCB.
muchbasedoneitherstratigraphic
relations
or radiometric
dating,
butratheronitsspatial
association
withhigh-grade
metamorphic
rocks.Mesozoic
dates
haverecently
beenreported
onsomeof thesepreviously
assigned
pre-Cambrian
metamorphic
andintrusive
rocksfromtheDabieShan[Liet
al., 1989;Ameset al., 1993].Futuregeochronologic
investigation
in thisareamightrevealthisproblem
tobemore
extensive.
The aforementioned
relationships
provideevidence
foranAndean-type
platemarginin thewestern
portion
of the
Qilian-Qinling-Dabie
system,
butnotin theeast.Thismight
be the resultof differentialerosionsothatwe are seeinga
profileof different
crustal
levelsfromshallow
in thewestto
deepin theeastacross
thesuture
zone.Thisspeculation
seems
tobesupported
bytheincrease
inmetamorphic
grade
inthe
samedirection
asdiscussed
by WangandLiou [1991].
TimingandDurationofNorthChina-South
ChinaCollision
Mattaueret al. [ 1985] suggesta Devoniancollisionin the
Qinling
beltonthebasis
of40Ar/39Ar
metamorphic
mineral
agesof 314-348 Ma (biotiteandmuscovite)andthe
unconformable
relationship
betweentheDevonianunitsand
806
Yin and Nie: IndentationModel for North and SouthChina Collision
Shanandnorthern
Jiangsu
(34øN/119.8øE)
in theeast(Figure
theunderlying
lowerPaleozoicrocksin thecentralQinling
metamorphic
complex.The collisionwasfollowedby
Mesozoicintracontinental
deformation,
asindicated
by
2). All sectionsweretakenfrom actualmeasuredoutcrops
exceptsection5 whichis basedexclusivelyon drill holedata.
40Ar/39Ar
mineral
ages
of232Ma(phengite)
to216Ma
Sections1, 2, and 3 containshallowmarine carbonatesfrom
(riebeckite)in the forelandfold belt of the northernSCB.
Becausetheclosuretemperatures
for biotitesandmuscovites
aregenerally
lowerthan350øC[McDougall
andHarrison,
1988],thePaleozoicmetamorphic
agesfromthecentral
metamorphic
complexof theQinlingcouldhavebeena result
of metamorphism
in an Andean-type
platemargin,thatis,
intra-arcthrusting
andnormalfaultingcanresultin coolingof
crustal
sections
recorded
by39Ar/40Ar
thermochronology.
This situationis typicalof theNorth AmericanCordillera,
whichwasan Andean-type
marginthroughmuchof the
Mesozoic[e.g.,Ernstet al., 1988]. Distinguishing
collisionrelatedversussubduction-related
metamorphism
is possible
if
theageof theyoungest
arcmagmatism
is knownwithrespect
to the ageof metamorphism,
thatis, metamorphism
priorto
thelastphaseof arcmagmatism
is likelyto berelatedto
subduction,
whereasmetamorphism
youngerthanthelast
phaseof arcmagmatism
maybe relatedto collision.The
crystallization
ageof a granitein the Qinlingbelt was
determined
by U-Pb zirconanalyses
as211 Ma [Reischmann
et
al., 1990].Thisgraniteis characterized
by a low Sr initial
ratioandSm-Ndvalueswith strongmantlesignatures
andthus
is interpreted
to be relatedto subduction
[Reischmann
et al.,
1990].This ageindicatesthatthe collisionin the Qinlingbelt
did notbeginbeforetheLate Triassic.
Liet al. [1989] obtaineda Sm-Nd isotopicdatefrom an
eclogite(243 + 5.6 Ma) in the northeastern
Dabie Shan.They
interpretthisdateto representthe time of ultramaficintrusion
priorto ultrahigh-pressure
metamorphism
thatled to formation
of theeclogitesandwasrelatedto thecontinental
collision.
Using the samemethod,Liet al. alsodateda diorite(230.6 +
30 Ma) in the northeastern
Dabie Shan.On the basisof low
Nd initial isotopicratios,Liet al. [1989, pp. 1397-1398]
suggest
thatthedioritewasformedby mixingbetween
pyroxeniticmagmaandthewall rocksof thecontinental
crust
andmayhaveoccurred
in an island-arc
setting.Thesedates
suggest
thatthecollisiondid not startin theDabieregion
prior to about230 Ma. U-Pb datingof zirconfrom ultrahighpressure
eclogitesin theDabieShanyieldsa metamorphic
age
of 209 + 2 Ma [Ameset al., 1993]. This dateprovidesthe
youngestagefor the initial collisionbetweenthe SCB andthe
NCB.
Isotopicdateson theageof collisionin Shandong
arefew.
Application
of40Ar/39Ar
multidomain
analysis
ofK-feldspars
[Loveraet al., 1989, 1991]from theophioliticmelange
revealsthreeintervalsof coolingat 105-125Ma, 172-196Ma,
and 260 Ma [Chen et al., 1992]. Chen et al. attributedthe
earliestcoolingeventof 260 Ma to theNorth and SouthChina
collision,because
thissamplewascollecteddirectlyfromthe
suture between the North and South China Blocks. The above
isotopicdatessuggest
thatcollisionstartedfirstin Shandong
duringthelateEarlyPermian(-260 Ma) andpropagated
westwardto theDabieregionin theMiddle to theLate Triassic
(-240-208 Ma) andto theQinlingin theLateTriassicto the
Early Jurassic(i.e., after-210 Ma).
Diachroneity
of thecollisionis illustrated
alsoby
sedimentological
records.
Figure4 includes
fiverepresentative
Permianto MiddleJurassic
stratigraphic
columnsfromthe
northernmarginof theSCB, in an east-west
transect.
Agesof
unitsin thesesections
arewell constrained,
because
they
containrich fossilrecords.Sections1, 2, and 3 are from
northernSichuan,southwestern
Hubei, and northwestern
Jiangxiin thewest,whereassections4 and5 arefrom
southeastern
Anhui(30.5øN/117.0øE)
southeast
of Dabie
the Lower Permian to the Middle Triassic. The Lower to
Middle Triassiccarbonate
sequences
in thesesections
arethick
(>2000m), whichmightrepresent
enhanced
sedimentation
on
topof a flexuallyloadedmargin.Theyareoverlainby a
regionaldisconformity
andthousands
of metersof transitional
to terrestrial coarse clastics.These clastics were derived from
the north [Jianget al., 1979]. We suggestthe initial
sedimentation
of theclasticsequence
to marktheonsetof
collision between the SCB and the NCB.
Sections4 and 5, on the otherhand,reveal an earlier
transitionfrom carbonate
to clasticdeposition.In southeastern
Anhui(section4) thickcoarseclasticsbeganto accumulate
in
theMiddle Triassic,whereasin northernJiangsu(section5), it
beganearlierin the latestEarly Permianto theearliestLate
Permian.Usingthetime scaleof Harlandet al. [ 1990],we
observea diachroneityin the initiationof the continental
collision,startingat about258 Ma in northernJiangsuand
about 243 Ma in southeasternAnhui east of the Tan-Lu fault,
to about 231 Ma in Hubei and Sichuan west of the Tan-Lu
fault.Note thatthepresence
of thetypicalSouthChinalower
andmiddlePaleozoicsequence
in section5 is criticalto extend
thenorthernboundaryof theSCB alongthe Shandong
suture
zone.
Clasficdeposition
prevailedduringthePermianasshown
in section5 (Figure4). Duringthistime,otherregionsin
centralandsouthern
Jiangsuwerestilldominated
by carbonate
deposition.However,fartherto thesouth,Permianclastic
deposition
dominated[Jiangsu
Bureauof Geology,1984,pp.
196-214],indicatingthatthemweretwo sourceareas,oneto
thesouth,represented
by theCathaysian
Oldlandof Wang
[1985], andanotherto thenorth,whichwe interpretasthesite
of collision between the SCB and the NCB. The Permian
clastic unit in section 5 is the thickest and closest to the
Shandongsuturezoneof all suchunitsin Jiangsu,suggesting
a northerlyclasficsource[Jiangsu
Bureauof Geology,1984].
In theNangrim-Pyeongnam
Blocknorthof theImjingang
belt andtheRyeognamBlocksouthof theHonamshearzone
(Figure2), the transitionfrom marineto terrestrialdeposition
occurredduringtheArtinskianat about268-263Ma (latest
Early Permian)[ReedmanandUm, 1975,p. 51]. This
transitionwasassociated
with crustalshorteningin andnorth
of theImjingangbelt [Um andChun,1984],andthefight-slip
faultingalongthe Honamshearzone[Cluzelet al., 199la]
duringthe TriassicSongrimorogeny.This agerelationship
suggests
thatthechangein depositional
settingandthe
Triassicdeformational
eventsin Koreawerecloselyrelatedand
mayrepresent
theclosureof anoceanbetweentheNorthand
South China Blocks.
Collision-Related
Deformation
Deformation due to the collision of the NCB and the SCB
can be observed both within the collisional belt and in a broad
areain easternAsia.The belt in Chinatypicallyconsists
of,
from northto south,(1) synmetamorphic
thrustsand
recumbent
foldsinvolvingPrecambrian
basement
withits
Sinian(= late Precambrian)andPaleozoiccoverof theNorth
Chinafacies,(2) a metamorphic
complexwith ophioliteand
synkinematic
to postkinematic
granite,(3) flyschnappes,and
(4) foldedPaleozoicandTriassicstrataof the SouthChina
facies [Mattauer et al., 1985; Hsu et al., 1987; Liu and Hao,
1989]. Deformationrelatedto thecollisionis characterized
by
crustalshortening,
indicatedby thewidelydeveloped
thrusts
andfoldswithinandoutsidethecollisionalbelt,andby left-
807
Yin andNie: Indentation
Modelfor NorthandSouthChinaCollision
1.N Sichuan
2.SWHubei
3.NWJiangxi
4.SEAnhui
.............................
5.N Jiangxu
-.-7-7-7-7-7-7-•
."-7-7-7'-7-'.-7-
2717•n
ßv ......
1066•n
...............
....
ß..'."'
... ."••.•.'_.i:.':,
:-:..............
:•::- :.--:.--:.--:.--:.--
2817m
;:;:;:;:
o.**'&'.%'.%'.%'.%'
:•
..............
•
O
,ß4,ß4,ß4,ß4,ß4,ß4,ß'•
2m
...............
'7-7-7-7-7-r'-7'
...............
4, ß4, ß4, ß4, ß4, ß4, ß4, ß
(1•
...............
•,ß4,ß4,ß4,ß4,ß4,ß4,ß,
I•
...............
•'*'*'*'*'*'*" 7••
'_'
--.
O-7-7-7-7-7-7-7:
7-7-7-7-7œ7-7-]
!::.:.:.-::
.......................
..........
....
•'.............
O
1735m
[[!1111111111I
I I i I i I I
rlffrl•e!'•l
ff'lff'l/l't'
..........................
i I I i I I i i i i iii I
•L•L,L,LiL,L,L
._._._.. _
I
[llllllll!11 I
•r/ / / if'if'if'
[[.....
.....................
,,•,?
•l•l•,•l.[[lll;
'',':':ll,':l4444?,4?,
illIIIiIiIili
I I i i i i i i i i.i.I I
, { { ..'..'..'..-,r
iiii111111111 I
I Ii Ii Ii Ii II Ii II
IIiiii
...
Iii!'!'l'lll'l'
I,I i i i i i
iiiiiiiii
.....
i i
1
•: •......
.....
|,,,,,,,,,,,,,,
,.,.,
-_
,.,,:,:.:,:,:,:
,,,,.,.
l,,,,,,
Ii'
:'"'"l
:,
:l
', ........ '-'i'lI•II'IlIlI
I
I I I 'l•lI
' I
,','-"-"-"-"-",',',,',',',','
4•m
I',,',',',',',',
214m
1
,';,';,';,';,';,';,';353•n,,, ,,,,,,,,,,
, ,',',',',','l
i
i
i
i
i
i
i
i
1
,;,;,;,;,;;;
>117•n
,,,,,,,,l,,,,l I_
.[.!...'...'..
:..:...l.. •.......T_'T:.-_"
:-"-":'--"-":"-'
Fig.,-.,'.,-.r .,- 277,n
................
',::::::'
580,n
66On
'-'..-':-•
- I I--I I-I-- 782,n
IiIlI,I,Ill,lx
•l-I-
.--.--.._:-:
._:--.
--.
:,,,,,,,.,.,,,,
;::':.:/:.:/:..',.':.:,.':..',:.'.:,:.
...............
West
conglomerates
•'•
•
limestone
'•z""" coarse
sandstone
cherrylimestone
•..........siltstone
fine
sandstone,
dolomite
East
coalbeds
,'-"L,_• tuffaceous
beds
disconformity
siltstone
and
shale
Figure
4.Five
representative
Permian-Middle
Jurassic
stratigraphic
sections
from
thenorthern
margin
oftheSCB.
Allthesections
arescaled
bythicknesses
inmeters.
These
columns
aretaken
from
regions
immediately
south
ofthe
Qinling-Dabie-Shandong
suture
zone
(see
Figures
1and
2bforlocation).
Note
thediachroneity
ofinitiation
ofthick
clastic
units
fromtheLatePermian
intheeast
totheMiddle
Triassic
inthewest
asmarked
byarrows.
These
sections
aretaken
from
therecently
published
provincial
geologic
summaries
[Sichuan
Bureau
ofGeology,
1991;
Hubei
Bureau
ofGeology,
1990;
Jiangxi
Bureau
ofGeology,
1984;
Anhui
Bureau
ofGeology,
1987;
Jiangsu
Bureau
ofGeology,
1984],
with
supplementary
data
from
theprovincial
stratigraphic
lables
published
about
adecade
ago.
Section
5from
northern
Jiangsu
isbased
ondrillhole
data,
whereas
others
arebased
onsections
measured
inthe
field.
Stratigraphic
correlation
isbased
onNanjing
Institute
ofGeology
[1982]
and
Yang
etal.[1986].
808
Yin and Nie: IndentationModel for North and SouthChina Collision
lateralstrike-slipfaultsalongthe suturezonewestof theTanLu fault [Mattauer et al., 1985; Liu and Hao, 1989]. Some
low-anglefaultsin theDabiesuturezonejuxtaposelowergrademetamorphic
rocksoverhigher-grade
metamorphic
rocks,
althoughtheirrelationshipto thecollisionremainspoorly
understood[Ames et al., 1993]. The left-lateral faults are
inferredto havedisplacements
of severalhundreds
of
kilometerson the basisof (1) the fault zone width (>1 km),
(2) theapparentabsence
of a Paleozoicmagmaticarcnorthof
theQinlingandDabiebelts,and(3) thecorrelationof clastsin
Triassicrocksin the Qinlingareawith rocksin Qilian Shan
about 700 km farther west [Mattauer et al., 1985]. These faults
northeastern
NCB, E to E-NE trendingthrustsandfolds
involvingPermianstrataareunconformably
overlainby
Jurassic
strata[GeologicMap of LiaoningProvince,1989]
(Figure2). This impliesTriassiccrustalshortening
in theN-S
direction.
Triassicto EarlyJurassic
deformation
duringthe
Songrim(=Indosinian)orogenyis widespread
in Korea.In
particular,E to E-NE trendingthrustsandfoldsdeveloped
alongandnorthof the Imjingangbelt [UrnandChun,1984].
Numerous small Triassic and Jurassic intermontane basins
developedin thisbelt. Typically,theyconsistof terrestrial
conglomerate
andredsandstone
thatweredeposited
during
thrustingandfolding[ReedmanandUrn, 1975].
do not offset the Tan-Lu fault and the folds and thrusts to the
east.Thissuggests
thattheleft-slipfaultingprobablyoccurred
eitherpriorto or synchronously
with thecollision.Oneleftslipshearzonein theQinlingbelt wasactiveduring-211 Ma
[Reischmann
et al., 1990].Thisdatepermitssynchroneity
of
collisionandleft-slipalongthesuture.Thus,theleft-slip
faultingalongthe suturecouldhavebeena resultof either
escapingof smallcrustalblocksalongthe sutureduring
collision,a situationsimilarto thatalongthe Indus-Tsangpo
sutureasproposed
by PeltzerandTapponnier[1988]or
accommodation
of theirregularmarginof theSCB againstthe
NCB.
Closure of the ocean between the North and South China
Blockswasaccomplished
by a northward
dippingsubduction
[Hsuet al., 1987;Sengor,1985].Precollisional,
arc-related
plutonsare few on eithersideof thecollisionalbelt.
Exceptionsexistin theQinlingmetamorphic
belt whereLate
Triassic(210 Ma) granitesrelatedto subduction
were
recognized[Reischmann
et al., 1990].The lackof arc-related
plutonsnearthe suturezonemaybe dueto syncollisional
and/orpostcollisional
intraplatethrusting( i.e., themagmatic
arccouldhavebeenthrustbeneathbackarccrust).This
mechanism
hasbeenrecentlyproposed
to explainthepartial
absenceof theGangdese
magmaticarcin southern
Tibet
[Harrisonet al., 1992;Yin et al., 1992].Alternatively,the arc
mayhavebeentranslated
fromits originalpositionby largemagnitude,postcollisional
strike-slipfaults[Mattaueret al.,
1985].Cenozoicleft slipon theorderof severaltensof
kilometershasoccurredalongbrittlefaultsin theQinling
suturezone[Peltzeret al., 1985]andmayhavefurther
contributed
to offsetof themagmaticarc.
Coesite-beadng
eclogiteswererecentlydiscovered
in the
DabieandShandong
suturebelts[Okayet al., 1989;Wanget
al., 1989]. Theycouldbe theresultof a subduction
of
continentalprotoliths,continent-continent
collision[Wangand
Liou, 1991],or postcollision
intracontinental
thrusting[Okay
andSengor,1992].In anycase,themetamorphism
hadto
occurat a depthof at least90 km. Peakmetamorphic
conditionsof theserocksshowsystematic
spatialvariation.
Peakmetamorphic
pressures
andtemperatures
decrease
westwardalongthesutureandsouthward
acrossthesuture.As
summarized
by WangandLiou [ 1991],theinferredtemperature
for theformation
of theeclogites
is 880øCin easternmost
Shandong,
decreasing
to650ø-710øC
in eastern
DabieShan,
andreachingevenlowermetamorphic
temperatures
fartherto
thewestin westernDabieShan.The peakmetamorphic
temperatures
in northem
DabieShanarebetween
698ø-813øC
TheTan-Luand HonamFault Systems
The Tan-Lu fault systemhasa slipof about540 km, as
indicated
by theoffsetof theQinling-Dabie
andShandong
metamorphic
belts(Figure2) [WangandLiou, 1989;Okay
andSengor,1992].The fault slipdecreases
northward
to about
100-150km northof theShandong
belt [Xu et al., 1987],and
southward to zero near the Dabie suture zone where the
precollisional
Paleozoicsedimentary
faciesof theSCB arenot
offset[Ji andFang, 1987;Chen,1989;Zhanget al., 1989]
(Figure2). Sucha slipdistribution
makestheTan-Lufault
oneof themostenigmatictectonicelementsin easternAsia
[e.g., Fitcheset al., 1991].
The ageof theTan-Lu fault hasvariablybeenassigned
to
thePrecambrian
[Zhanget al., 1984],Paleozoic[Watsonet
al., 1987],Mesozoic[OkayandSengor,1992;Xu et al.,
1987;Xu, 1985], and Cenozoic[Ma, 1986], becausethe fault
apparentlycontrolsthedistributionof rocksformedin these
geologicperiods.The oldestpossibleageof theTan-Lufault
is constrained
aslatestPaleozoicto earlyMesozoic,theageof
theDabie-Shandong
collisionalbelt thatis offsetby theTanLu fault.The youngest
possibleageof thefaultis constrained
ll
millill'ill
•
[ '-'ß •
Suture
Futureintracontinentai
thrust
Original
Original
position of suture
position of
intracontinentai
thrusts
'::::•i• Area thickenedby
intracontinentai
thrustin8
and decreaseto 582ø-611 oc in southemDabie Shan.
Estimatedpressures
showthesamesystematic
trend.Coesitebearing,ultrahigh-pressure
rocksare notpresentin theQinling
belt [Mattauer et al., 1985], an observationconsistentwith the
aforementioned
regionalpatternof metamorphism.
Triassicto EarlyJurassic
deformation
is widespread
in the
NCB northof theShandong
suturezoneandwasprobably
related to the North China-South China collision. In the
Fig. 5. Kinematicimplications
of theOkayandSengormodel
[1992]for thedevelopment
of theTan-LufaultandtheDabie
andShandong
ultrahigh-pressure
metamorphic
rocks.Notethat
themodelpredictsa tmncational
relationship
betweentheTanLu faultandprecollisional
sedimentary
facieson bothsidesof
thethult.It alsopredictssynchroneity
of development
of the
Dabiebelt,theShandong
belt,andtheTan-Lufault.
Yin andNie: IndentationModel for North andSouthChinaCollision
by the ageof severalsmallbasinsthatcontainCretaceous
volcanicrocks.Thesebasinsoverlapsegments
of theTan-Lu
fault [AnhuiBureauof Geology,1987].The youngeragelimit
hasalsobeenconstrained
by theageof faultgougecollected
from theTan-Lu fault zone.Datingof thismaterialby K-Ar
andRb-Srmethodsyieldedmodelagesof 90-110 Ma and
106.8+ 2.8 Ma, respectively[Chenet al., 1988].
Numerousmodelshavebeenproposed
for thedevelopment
of theTan-Lu fault. Xu et al. [1985] suggestthattheTan-Lu
fault is a Cretaceous normal fault, becauseit bounds
Cretaceous
basins.AlthoughtheTan-Lufaultmayindeedhave
hada normalfaultinghistoryin theEarly Cretaceous
as
impliedby rapidcoolingandpossiblyrapidunroofingof rocks
adjacentto it during105-123Ma [Chenet al., 1992], this
modeldoesnotexplaintheapparentseparation
of theDabie
andShandongsuturezonesandthejuxtaposition
of theNCB
andtheSCB Paleozoicstratigraphy
in JiangsuandAnhui
provinces.Xu et al. [1987] suggestthattheTan-Lu fault is a
left-lateralstrike-slipfaultresultingfromobliquesubduction
of thePacificplateduringtheJurassic
[cf. OkayandSengor,
1992],buttheydo not specifyhowandwheretheTan-Lufault
terminates.
Watsonet al. [ 1987]proposethattheTan-Lufault
initiatedduringtheCarboniferous
alongtheN-NE trending
easternmarginof theNCB. The SCB latercameinto contact
with theNCB alongtheTan-Lufault.It seemsunlikelythat
theprecollisional
geometries
of theNorthandSouthChina
Blockscouldfit perfectlyalongthefaultwithoutproducing
observablecontractionor extension.Furthermore,
precollisional
Paleozoicto EarlyTriassiclithofaciesin the
NCB weretruncatedby theTan-Lufault (Figure3) [Sunet al.,
1989;Han et al., 1989], suggesting
thattheTan-Lu fault
cannotbe a Carboniferous
structure
thatparalleledthe
Paleozoiceasternmarginof theNCB. Kimuraet al. [1990]
attributedthe development
of theTan-Lufaultto JurassicCretaceous back arc extension in the N-S direction. The
proposed
axisof thespreading
centerwasorientedE-W,
linkingwith theTan-Lufault.As slipalongtheTan-Lufault
is at least540 km, theproposed
backarcextensionshould
haveproducedJurassic-Cretaceous
oceaniccrusteastof the
Dabiesuturebelt.Contraryto thisprediction,theproposed
809
Kim et al. [1984]. Yanai et al. [1985] namedthisfault system
theHonamshearzone.Recentkinematic,geochronologic,
and
lithostratigraphic
studiesby Cluzel et al. [1991a]suggestthat
right slip alongthisfault systemwasat least200 km, the
lengthof the exposedHonamshearzoneon the Korean
Peninsula,becausethe fault juxtaposesthe SouthChina
Paleozoic lithofacies on its northwest side with the North
Chinalithofacieson its southwestside.The fault systemwas
activeduringtheLate Triassic,asconstrained
by synkinematic
granitewith a Rb-Sr wholerockageof 211 Ma [Chooand
Kim, 1985].
TECTONIC
MODEL
The lithofaciesdistributionalongthe northernmarginof
the SCB and southernmarginof theNCB is consistent
with
an interpretation
thatthesouthern
edgeof theNCB was
originallya smooth,E-W trendingboundarypriorto collision,
whereasthe SCB hadan irregulargeometrywith its eastern
partextendingsome500 to 550 km fartherto thenorththan
its westerncounterpart.
This geometricalconfiguration
of the
NCB andthe SCB is somewhatsimilarto thatproposed
by
Mattaueret al. [1991]. However,theirinterpretation
of the
NCB-SCB collisionsystemis markedlydifferentfromours.
The collisionof theNCB andtheSCB producedtheTan-Lu
fault, which truncatesthe trend of lithofacies to the west but is
concordant with the trend of lithofacies in the east.
Radiometric
datingandstratigraphic
datadiscussed
above
indicatethat (1) the collisionbetweenthe SCB andtheNCB
occurredin thelatestPaleozoicto earlyMesozoic,not middle
Paleozoicasproposed
by Mattaueret al. [1985],and(2) on a
finer time scale,thereis a diachroneityin thissuturezone.The
collisionoccurredfirst in theeastin the latestEarly Permian,
proceeded
intotheMiddleTriassicin theregionswestof the
Tan-Lu fault, andfinishedin theLate Triassicto Early
Jurassic.The durationof thediachroneityis at least20-25
m.y.
On thebasisof thesegeologicrelationships,
we proposea
tectonic model for the collision of the North and South China
marinesequence
overlainby theJurassic
andyoungerterrestrial
deposits(section5 in Figure4) [Chen,1989;Zhanget al.,
1989],precluding
theexistence
of a Jurassic-Cretaceous
ocean
Blocks(Figure6). In orderto makeour reconstruction
as
realisticas possible,we restoretheknownCenozoicleft slip
alongthe Altyn Tagh fault of the northwesternmost
Tibetan
PlateauandtheLongmenShandeformation
beltalongthe
westernedgeof theSCB [PeltzerandTapponnier,
1988;
in east central China.
Burchfiel et al., 1989; Peltzer et al, 1989; Burchfiel and
To explaintheoccurrence
of ultrahigh-pressure
rocksin
theDabieandShandong
belts,OkayandSengor[1992]
proposed
thattheTan-Lufaultis a postcollisional
transfer
fault thatlinks the intracontinental
thrustsystemswith
oppositepolarityin DabieandShandong.
The kinematic
implications
of thismodelareshowndiagrammatically
in
Figure5. The modelrequiresthattheNorth andSouthChina
suturezonetrendE-W andbe relativelystraightpriorto
initiationof theTan-Lufault,andthattheprecollisional
and
syncollisional
sedimentary
faciesonboththeNCB andSCB
be truncated
andoffsetby theTan-Lufault.Clearlythisis not
thecasefor theSCB.As discussed
above[Zhanget al., 1989]
(Figure3), sedimentary
faciesin theSCBareparallelto the
Tan-Lufault.Because
theintracontinental
thrustsystems
in
theDabieandShandong
beltswerelinkedby theTan-Lufault
in OkayandSengor's[1992]model,synchroneity
of these
threestructures
is requiredfromthebeginning
to theend.This
contradicts
the25- to 50-m.y.differencein ageof the
ultrahigh-pressure
eclogites
in theShandong
andtheDabie
beltsandthestratigraphic
recordalongthenorthern
marginof
Royden,1991].The positionof theSCB andtheNCB in the
Late Carboniferous
to theearlyEarly Permianis schematically
shownin Figure6a. Duringthistime interval,the southern
marginof theNCB wasthelocusof a relativelystraight,E-W
trending,northwarddippingsubduction
zone,whereasthe
northernedgeof theSCB wasirregular,with its easternpart
extending550 km farthernorththanits westerncounterpart.
The collisionstartedalongthesegmentof theNCB between
thepresentTan-LufaultandtheHonamshearzoneduringthe
latestEarly Permianto early Late Permiandueto the
indentationof the northeastern
SCB into theNCB (Figure6b).
The Tan-Lu andtheHonamfault systemsare similarto the
ChamanandtheNinetyEastRidgefaultson thewestandeast
sidesof theIndianplateaccommodating
collisionof Indiainto
Asia [Tapponnieret al., 1982;Farahet al., 1984].Thrusts,
folds,andthrust-related
basinsdeveloped
nearthecollision
zonein theNorth andSouthChinablocks.The modelpredicts
site of the back arc basin consists of Permian to Triassic
the SCB.
Mesozoicductileright-lateralstrike-slipfaultsin the
Ogcheon
beltwerefirstrecognized
by Kim andLee [1984]and
that volcanism could have been active west of the Tan-Lu fault
andeastof theHonamshearzoneduringtheLatePermianto
Early Triassic(Figure6b). A sequence
of Triassicflysch
depositsup to 7-8 km thickis presentovera vastareaof the
Songpan-Ganzi
regionwestof the SCB [Yanget al., 1986,
pp. 128;Chen,1989],whichmaybe erodedfrom the
b. Late
a. Late Carboniferous to Early Permian
(320-2•8 Ma)
,-"•'•,•\,,..
c.
....
•
Permian
(258-248 Ma)
Junggar •/'; (
Xmgkai-Bu"
.
reya
Block
\
•x•
Ordos
y/•'•
"- • Qaidam
(/
•Korea
reference
lines
••
•
N. ChinaBiock•
Future
Shahalong
Future
Dabei
belt
• belt
• •
!talc
deposits
Future Qinling
d. Late
Triassic
(231-213 Ma)
c. Early to Middle Triassic
,%
/
(248-231 Ma)
",,
,",,.•
/x
,)3
!
/
•
•
•
• •-
/
-•
,•
Triassic
/'terrestrial
deposits
...:.•,•.
,•:•
:?,
:.'
thrust and
fault
Fig. 6. Tectonicmodelfor theprocesses
relatedto thecollisionof theNorthandSouthChinaBlocks.(a) Late
Carboniferous
to EarlyPermian(320-258Ma). The southern
marginof theNCB wasa straightnorthwarddipping
subduction
zone,whereasthenorthernmarginof theSCBwasirregularwithitseastern
partextending550 km
farthernorththanits westerncounterpart.
(b) LatePermian(258-248Ma). ThecollisionstartedbetweentheTan-Lu
faultandtheHonamshearzonedueto indentation
of thenortheastern
partof theSCB into theNCB. Thrusts,folds,
andtherelatedforelandbasinsdeveloped
nearthecollisionzone.Volcanismis expected
to be continuous
eastof the
Tan-Lufault andwestof theHonamshearzone.Sedimentserodedfromthecollisionzoneweredepositedon both
sidesof theSCB,a situationsimilarto thepresentBengalandIndusfansontheeastandwestsidesof theIndian
continent.(c) Early to MiddleTriassic(248-231Ma). Due to theirregularityof thenorthernmarginof theSCB, the
oceanin theeasternpartof thefutureDabiebelt wasclosedfirst.(d) LateTriassic(231-213Ma). In response
to this
diachronous
closureof theocean,volcanism
relatedto subduction
hadsystematically
shutdownwestwardfromthe
Tan-Lualongthesuturezone.Partof theearlierfiyschdeposits
weresubducted
underneath
theNCB duringthe
closureof theoceanbetweenthetwoblocks.The irregulargeometryof thenorthernmarginof theSCB mayalso
haveproducedleft-slipfaultswestof theTan-Lufaultalongthesuturezone.Triassicclasticsediments
were
deposited
in a wideareaof NorthChina.The westwardsubduction
of thePacificplateunderneath
theEumsianplate
beganto develop.(e) EarlyJurassic
(213-188Ma). Indentation
of theirregularnorthernmarginof theSCB caused
left-slipmotionalongthesuturezone.TheTan-Lufaultpropagated
northward
andoffsetthenorthernboundary
of
theSino-Korean
craton.The westwardsubduction
of thePacificplateproduced
a continuous
magmaticarcalongthe
entireeasternedgeof the Eurasiancontinent(not shown).
Yin andNie: IndentationModel for North andSouthChina Collision
811
Qinling-Dabiesuturezoneasa meansof accommodating
the
collision(Figure6d). Meanwhile,the Tan-Lu fault beganto
propagatenorthwardandoffsetthenorthernboundaryof the
Sino-Koreancraton.Final suturingof theNCB andthe SCB
e. Early Jurassic
(213-188 Ma)
occurredin the latestTriassic. However, continuouscollision
afterthe oceanclosurepossiblylasteduntil theEarly Jurassic
(Figure6e). Initiationof westwarddippingsubduction
of the
Pacificplateunderneath
theEurasianplatecouldhaveoccurred
duringor immediatelyafterthecollision(Figures6 d and6e),
producinga continuous
magmaticarcalongtheeasternmargin
of the Eurasian continent.
SUMMARY
Fig. 6 (continued)
collisionalbelt anddepositedin a remnantoceanto the west
(Figures6b to 6e). The depositional
settingof theseTriassic
sediments
maybe similarto thatof thepresentBengaland
Indus fans on the east and west sides of the Indian continent as
proposed
by Sengor[1985].Besidesthemodemexampleof the
Himalaya-Bengal
system,theproposed
depositional
and
tectonicsettingsfor thecollisionof theNCB andtheSCB are
alsosimilarto thoseof theAppalachian-Ouachita
systemas
investigated
by Grahamet al. [1975]:botharediachronous
collisionalbeltswith flyschsediments
deposited
diachronously
in response
to the progressive
collision.Becauseof the
irregularityof the northernmarginof the SCB, theoceanin
the eastnearShandongclosedfirst in theLate Permian(Figure
6b). In response
to diachronous
closureof thisocean,
volcanism
relatedto subduction
is predictedto have
systematically
shutdownwestwardfromtheTan-Lu faultand
eastwardfrom theHonamshearzonealongthesuturezonein
theLateTriassicandtheEarlyJurassic
(Figures6d and6e).
Duringthefinal collisionalstage,Triassicclasticsediments
thatmayhaveb•n derivedfrom thecollisionalbelt to theeast
andsouthweredeposited
in a wideareaof NorthChina.The
irregularnorthernmarginof theSCBcaused
greatest
shortening
alongthe Shandong-Imjingang
belt, lessshortening
alongtheDabiebelt,andleastshortening
alongtheQinling
belt.As thegradeof tectonically
inducedmetamorphism
corresponds
with themagnitude
of shortening,
thismodel
predicts
theobserved
decrease
in metamorphic
gradesfromthe
Shandong
andDabiesuturebeltsto theQinlingbelt [Wang
andLiou, 1991].In addition,theirregularnorthernmarginof
theSCBproduced
left-lateralstrike-slipfaultsalongthe
A tectonicmodelis proposed
for theNorthandSouth
Chinacollision.Sedimentary-facies
distribution
andthe
tectonicnatureof continentalmarginssuggest
thattherifted
northernedgeof theSCB wasirregularandthattheactive
southernedgeof theNCB wassmooth.In particular,the
northeastern
partof theSCB wasrectangular
andextendedat
least550 km farthernorththanits westerncounterpart.
Collisionof two continentalmarginswith suchdifferent
shapescontrolledthediachronous
collisionandthecomplex
evolutionof structures
thatinvolvedthrusting,strike-slip
faulting,sedimentary-basin
development,
andsystematic
variationof metamorphic
gradesandagesalongthesuture
zone.In thismodel,we suggestthatthe collisionwas
accomplished
by theindentation
of thenortheastern
pan of the
SCB into theNCB thatbeganin thelatestEarly Permianand
lastedto theLateTriassicandpossiblyEarlyJurassic.
The
left-slipTan-Lu faultsystemin northeastern
Chinaandthe
right-slipHonamfault systemin southeastern
Koreawere
lithospheric-scale
transform
faultsaccommodating
the
northward indentation of the SCB. The Tan-Lu and the Honam
faultsareanalogous
to theChamanandtheNinetyEastRidge
fault systemson thewestandeastsidesof theIndiancontinent
thatis presentlycollidingintotheEurasianplate.Left-slip
faultingalongthe suturezoneduringthe collisionmaybe a
resultof eitherescapingof crustalblocksor translation
of the
irregularnorthernmarginof theSCB. Our modelexplainsthe
abruptterminationof the Tan-Lu fault in bothends.It also
requiressignificantamountof crustalshortening
in the
Triassicin regionsnorthof theShandong
suture.Althoughthe
Triassic/Jurassic
thrustsarewidespread
in theseareas,the
magnitudeof shortening
accommodated
by thesefaultsis
poorlyconstrained
andrequiresfurtherstructural
investigation.
Acknowledgments.Discussions
with Leslie Ames,B.C.
Burchfiel, SteveGraham,Brad Hacker, T. Mark Harrison,Juhn
G. Liou, DaveRowley, ChrisSmith,XiaomingWang,and
Zh. M. Zhang(EdmonChang)helpedclarifymanyideas
presentedhere.We thankJ. Fillipone,S. Graham,B. Hacker,
R. V. Ingersoll,J. Liou, andD. J. Youngfor reviewingthe
preliminaryversionof thismanuscript.
We aregratefulto R.
Coleman,K. Burke,andA.M.C. Sengorfor theirconstructive
comments. Research in the tectonic evolution of Asia has been
supported
by NSF grantsEAR-9118125awardedto T.M.
Harrisonand A. Yin, EAR-92 20105 awardedto A. Yin, and
EAR-92 06532 awardedto D. RowleyandS.Y. Nie.
REFERENCES
Ames, L., G.R. Tilton, and G.Z. Zhou,
Timing of collision of the SinoKoreanandYangtsecratons:U-Pb
zircon dating of coesite-bearing
eclogites,Geology, in press,1993.
Anhui Bureauof Geology,Regional
Geologyof Anhui Province (in
Chinesewith summary),721 pp.,
GeologicalPublishingHouse,Beijing,
1987.
Burchfiel,B.C., and L.H. Royden,
Tectonicsof Asia 50 yearsafter the
deathof Emile Argand,Eclogae.Geol.
Helv., 84, 599-629, 1991.
Burchfiel, B.C. et al., Intracontinental
812
Yin andNie: IndentationModel for North and SouthChina Collision
detachment
within
zones of
continentaldeformation,Geology,
17, 748-752, 1989.
Chen,W.J., Q. Li, D. Li, andX. Wang,
Geochronologicalimplications of
K/Ar isotopesystemof fault gouge- A
preliminarystudy,Phys. Chem.Earth,
17, 17-23, 1988.
Chen, W.J., T.M. Harrison, M.T. Heizler,
R.X. Liu, B.L.Ma, and J.L. Li, The
tectonichistoryof melangezone in
north Jiangsu-SouthShandongregion:
Evidencefrom multiple diffusion
domain40Ar-39Arthermal
geochronology,Acta Petrol. Sin., 8,
1-17, 1992.
Chen, Y.Q., GeologicMap of China, scale
1:5,000,000, Geological Publishing
House, Beijing, 1989.
Choo, S.H., and S.J. Kim, A studyof Rb-Sr
age determinationsin the Ryeongnam
Massif (I): Ryeonghae,Buncheonand
Kimcheon granitegneissesand
gneissosegranitesin the southwesternJirisanregion,Korea Inst.
EnergyRes. Rept, 86-7, 7-29, 1985.
Cluzel, D., Late Paleozoicto early
Mesozoicgeodynamicevolutionof the
Circum-Pacificorogenicbelt in South
Korea and southwestJapan,Earth
Planet. Sci. Lett., 108, 289-3015,
1991.
Cluzel, D., J-P. Cadet,andH. Lapierre,
Geodynamicsof the Ogcheonbelt
(SouthKorea), Tectonophysics,
193,
41-56,
1990.
Cluzel, D., B.-J. Lee, and J.-P. Cadet,
Indosiniandextralductilefault system
and synkinematicplutonismin the
southwestof the Ogcheonbelt (South
Korea), Tectonophysics,194, 131-
east Asia, Tectonics, 10, 1130-1151,
1991b.
Dewey, J.F., and K.C.A. Burke,Tibetan,
Variscan, and Precambrian basement
Products of continental
collision, J. Geol., 81, 683-692,
1973.
Dewey, J.F., andK.C.A. Burke,Hot spots
and continentalbreak-up:Implications
for collisionalorogeny,Geology, 2,
57-60, 1974.
England,P., andG. Houseman,The
mechanicsof the Tibetanplateau,
Philos. Trans. R. Soc. London, A326,
307-336, 1988.
Ernst,W.G., Metamorphicand Tectonic
Evolutionof the WesternCordillera,
ConterminousUnited States,Rubey
Symp., v. 7, Prentice-Hall,Englewood
Cliffs, N.J., 1988.
Ernst,W.G., R.L. Cao, andJ.Y. Jiang,
Reconnaissance
studyof Precambrian
metamorphic rocks, northeastern
Sino-Koreanshield,People'sRepublic
of China, Geol. Soc. Am. Bull., 100,
692-701,
Tamkard and H.R. Balkwill, AAPG
Mem. 46, 23-40, 1989.
Farah,A., A. Ghazanfar,K.S. DeJong,and
R. Lawrence, Evolution of the
lithospherein Pakistan,
Tectonophysics,105, 207-227,1984.
Fitches, W.R., C.J.N. Fletcher, and J.W.
Xu, Geotectonicrelationshipsbetween
cratonic blocks in E. China and Korea,
J. Southeast Asia Earth Sci., 6, 185199, 1991.
GansuBureauof Geology,Regional
Geologyof GansuProvince(in
Chinesewith Englishsummary),690
pp., GeologicalPublishingHouse,
Beijing, 1989.
GeologicMap of LiaoningProvince,
P.R.C., Bureauof GeologyandMineral
Resourcesof Liaoning Province,
GeologicalPublishingHouse, Beijing,
1989.
Graham, S.A., W.R. Dickinson, and R. V.
Ingersoll, Himalayan-Bengalmodel
for flyschdispersalin AppalachianOuachitasystem,Geol. Soc. Am.
Bull., 86, 273-286, 1975.
Han, J.-X, S.-A. Zhu, and S.-R. Xu, The
generationand evolutionof the Hehuai
basin,in ChineseSedimentaryBasins
editedby X. Zhu, pp. 125-135,
Elsevier, New York, 1989.
Harland,W.B., R.L. Armstrong,A.V. Cox,
L.E., Craig, andA.G. Smith,A
Geological Time Scale, 263 pp.,
CambridgeUniversityPress,New
York, 1990.
Harrison,T.M., P. Copeland,W.S.F. Kidd,
and A. Yin, RaisingTibet, Science,
255,
151, 1991a.
Cluzel, D., L. Jolivet,and J.-P. Cadet, Early
Middle Paleozoicintraplateorogenyin
the Ogcheonbelt (SouthKorea), A new
insighton the Paleozoicbuildupof
reactivation:
passivemargins,in Extensional
Tectonicsand Stratigraphyof the
North Atlantic marginseditedby A.J.
1988.
Etheridge,M.A., P.A. Symonds,andG.S.
Lister, Applicationof the detachment
model to reconstruction
of conjugate
1663-1670,
1992.
HenanBureauof Geology,Regional
Geologyof Henan Province(in
Chinesewith Englishsummary),772
pp., GeologicalPublishingHouse,
Beijing, 1989
Hsu, K.J., Q. Wang, J. Li., D. Zhou, andSh.
Sun, Tectonic evolutionof Qinling
Mountains,China, Eclogae. Geol.
Helvet., 80, 735-752, 1987.
Hsu, K.J., J. Li, H. Chen,Q. Wang, S. Sun,
andA.M.C. Sengot,Tectonicsof south
China:Key to understanding
West
Pacific, Tectonophysics,
183, 9-39,
1990.
HubeiBureauof Geology,Regional
Geologyof Hubei Province(in
Chinesewith Englishsummary),705
pp., GeologicalPublishingHouse,
Beijing, 1990.
Ji, F.J, and Z.J. Fang, Regionaltectonic
framework of the Tan-Lu fault, in The
Tan-LuFault editedby H.-X. Jiang,pp.
12-22, SeismologicalPublishing
Company,Beijing, 1987.
Jiang,C.F., Z.Z. Zhu, andF.Z. Kong,On
the Liufengguanflysch(in Chinese
with Englishabstract),Acta. Geol.
Sin., 3, 203-218, 1979.
JiangsuBureauof Geology,Regional
Geologyof JiangsuProvince(in
Chinesewith Englishsummary),857
pp., GeologicalPublishingHouse,
Beijing, 1984.
JiangxiBureauof Geology,Regional
Geologyof Jiangxi Province(in
Chinesewith Englishsummary),921
pp., GeologicalPublishingHouse,
Beijing, 1984.
Kim, D.H., andB.-J. Lee, GeologicMap of
Korea,scale1:50,000,Geol. Rep.,
NamweonSheet,editedby Korea
Instituteof Energyand Resources,
1984.
Kim, K.B., W.C. Choi, I.H. Hwang, and
J.W. Kim, Geologicmap of Korea,
scale 1:50,000, O Su sheet, Korea
Instituteof Energy and Resources,
1984.
Kimura, G., M. Takahashi, and M. Kono,
Mesozoic
collision-extrusion
tectonics in eastern Asia,
Tectonophysics,181, 15-23, 1990.
Kobayashi,T., Stratigraphyof the Chosen
Groupin KoreaandSouthManchuria
and its relations of the Cambro-
Ordovician formations of other areas,
J. Fac. Sci., 6, Univ. Tokyo, 6, 381535, 1966.
Lee, D.S., Geologyof Korea, Kyohak-Sa
PublishingCo., Seoul, Korea, 1987.
Li, C.Y., Analysis of regional tectonic
developmentof China in the
frameworkof plate tectonics,Acta
Geophys.Sin., 18, 52-76, 1975.
Li, S.G., S.R. Hart, S.G. Zheng,D.L. Liu,
G.W. Zhang,andA.L. Guo,Timing of
collision between the North and South
ChinaBlocks- The Sm-Nd isotopic
age evidence,Sci. Sin. (Ser. B), 32,
1393-1400,
1989.
Lin, J.L., and M. Fuller, Paleomagnetism,
north China and south China
collision, and the Tan-Lu fault in
Allochthonous
Terraneseditedby J.F.
Dewey, I.G. Gass,G.B. Curry, N.B.W.
Harris, and A.M.C. Sengot,pp. 133142, CambridgeUniversity Press,New
York, 1990.
Liu, X.H., and J. Hao, Structureand tectonic
evolutionof the Tongbai-Dabierange
in the easternQinling collisionalbelt,
China, Tectonics, 8, 639-645, 1989.
Lovera, O.M., F.M. Richter, T.M.
Harrison,
The40Ar/39Ar
thermochronology
for slowly cooled
sampleshaving a distributionof
diffusiondomainsizes,J. Geophys.
Res., 94, 17,917-17,935, 1989.
Lovera, O.M., F.M. Richter, F.M., and
Harrison, T.M., Diffusion domains
determined
by39Atrelease
during
step
heating,J. Geophys.Res., 96, 20572069, 1991.
Ma., X.Y., Geodynamicmap of China,
scale 1:4,000,000, Geological
PublishingHouse, Beijing, 1986.
Mattauer, M., P. Matte, J. Malavieille, P.
Tapponnier,H. Maluski,Z.Q. Xu, Y.L.
Lu, andY.Q. Tang,Tectonicsof the
Qinling belt: Build-upand evolutionof
easternAsia, Nature, 317, 496-500,
1985.
Mattaug, M., P. Matte, H. Maluski, Z. Xu,
Q.W. Zhang,andY.M. Qiang,
PaleozoicandTriassicplate boundary
betweenNorth and South China; New
structural and radiometric data on the
Dabie Shan (easternChina), C. R.
Acad. Sci., Ser. II, 312, 1227-1233,
1991.
Yin andNie: IndentationModel for NorthandSouthChinaCollision
McDougall,I., and T.M. Harrison,
Geochronologyand
Thermochronology
ofthe40Ar/39Ar
Method, Oxford UniversityPress,New
York, 212, 1988.
Sengot,A.M.C., East Asia tectonic
collage,Nature, 318, 16-17, 1985.
Sengot,A.M.C., Tectonicsubdivisionand
evolution of Asia, Bull. Technical
Univ. Istanbul, 40, 355-435, 1987.
ShaanxiBureauof Geology,Regional
NanjingInstituteof Geologyand
Geology of ShaanxiProvince (in
Paleontology,ChineseAcademyof
Chinesewith Englishsummary),698
Sciences,StratigraphicCorrelation
pp., GeologicalPublishingHouse,
Charts in China with ExplanatoryText
Beijing, 1989
(in Chinese),298 pp., SciencePress,
Shimizu, S., K. Ozaki, and T. Obata,
Beijing, 1982.
Gotlandiandepositsof north-westNie, S.Y., Paleoclimaticandpalcomagnetic
Korea, J. ShanghaiSci. Inst., sect.2
constraints on the Paleozoic
reconstruction of south China, north
China and Tarim, Tectonophysics,
196, 279-308, 1991.
Nie, S. Y., D.B. Rowley,andA.M. Ziegler,
Constraints on the locations of Asian
microcontinentsin Paleo-Tethys
duringthe Late Paleozoic,in Paleozoic
Paleogeography
and Biogeography
editedby W.S. McKerrowandC.R.
(2), 1-11, 1934.
SichuanBureauof Geology,Regional
Geology of SichuanProvince(in
Chinesewith Englishsummary),735
pp., GeologicalPublishingHouse,
Beijing, 1991.
Sun,Z.C., Q.-Y. Xie, andJ.-J.Yang,Ordos
basin- A typical exampleof an
unstable
cratonic
interior
superimposedbasin, in Chinese
SedimentaryBasinseditedby X. Zhu,
pp. 63-75, Elsevier,New York, 1989.
Okay, A.I., andA.M.C. Sengot,Evidence
Tapponnier,P., G. Peltzer,A.Y. Le Dain,
for intracontinental thrust-related
R. Armijo, and P. Cobbold,
exhumationof the ultra-high-pressure
Propagatingextrusiontectonicsin
rocksin China, Geology,20, 411Asia, Geology, 10, 611-616, 1982.
414, 1992.
Scotese,Mem. Geol. Soc. London, 12,
397-408, 1990.
Turcotte, D.L., and G. Schubert,
Okay,A.I., S. Xu, andA.M.C. Sengot,
Geodynarnics,JohnWiley & Sons,
Coesitefrom the Dabie Shaneclogites,
central China, Eur. J. Mineral., 1,595598, 1989.
New York, 450 pp., 1982.
Urn, S.H., and H.Y. Chun,TectonicMap of
Korea,KoreanInstituteof Energyand
tectonic framework
813
of the U.S. central
Atlantic passivemargin, in
Extensional
Tectonics
and
Stratigraphyof the North Atlantic
marginseditedby A.J. Tamkardand
H.R. Balkwill, AAPG Mem. 46, 7-21,
1989.
Xiao, X.C. andF.G. Wang,An introduction
to the ophiolite of China, Bull. Chin.
Acad. Geol. Sci., 9, 19-30, 1984.
Xu, J.W, G. Zhu, W. Tong,K. Cui, andQ.
Liu, Formation and evolution of the
Tancheng-Lujiang
wrenchfault
system:a major shearsystemto the
northwest of the Pacific ocean,
Tectonophysics,134, 273-310, 1987.
Xu, Zh.Q., Generalfeaturesof the
Tangcheng-Lujiang
rift system(in
Chinesewith Englishabstract),
Collect. Struct. Geol., 3, 39-46, 1985.
Yanai, S., Z., B.S. Park, and S. Otah, The
Honam shearzone (SouthKorea):
Deformationand tectonicimplications
in the Far East,Scient.Pap. College
Arts Sci., Univ. Tokyo,32, 181-210,
1985.
Yang,Z.Y, Y.Q., Cheng,and H.Z. Wang,
The Geologyof China,OxfordMonog.
Geol. Geophys.vol. 3, 303 pp.,
Clarendon Press, Oxford, 1986.
Yin, A., S.Y. Nie, The collision of North
China and South China and the
developmentof the Tan-Lu fault,
WesternPacificGeophysics
Meeting,
Resources, Seoul, Korea, 1984.
Eos Trans. AGU 73 (25), 60, 1992.
Wang, H.Z., (Chief compiler),Atlas of the
Yin, A., T.M Harrison,R.F. Ryerson,
Palaeogeographyof China (in Chinese
W.S.F. Kidd, P. Copeland,andW.J.
and English),85 pp., Cartographic
Chen,The Gangdesethrustrevealed,
Publishing
House,
Beijing,
1985.
1988.
Eos Trans. AGU 73 (43), 545, 1992.
Wang,X.M., andJ.G. Liou, The large
Zhang,Y.C., Z.L. Wei, W.L. Xu, R.M.
Peltzer,G., P. Tapponnier,
Zh.T. Zhang,
displacementof the Tanlu fault:
Tao, and R.G. Chen, The North
andZh.Q.Xu, NeogeneandQuaternary
Evidence from the distribution of
Jiangsu-South
Yellow seabasin,in
faultingin and alongtheQinling
coesite-bearingeclogitebelt in eastern
Shan,Nature, 317, 500-505, 1985,.
ChineseSedimentary
Basinseditedby
China, Eos Trans. AGU, 70, 1312X. Zhu, pp. 108-124, Elsevier,New
Peltzer,G., P. Tapponnier,andR. Armijo,
1313, 1989.
York, 1989.
Magnitudeof late QuaternaryleftWang, X.M, and Liou, J.G., Regional
lateraldisplacements
alongthe
Zhang,Zh. M., J.G. Liou, and R.G.
ultrahigh-pressure
coesite-bearing
northernedge of Tibet, Science, 246,
Coleman,An outlineof the plate
1285-1289, 1989.
eclogiticterranein centralChina:
tectonics of China, Geol. Soc. Am.
Evidencefrom countryrocks,gneiss,
Bull., 95, 295-312, 1984.
Reedman,
A.J., andS.H. Urn,Geologyof
marble, and metapelite,Geology,19,
Korea,139 pp., KoreanInstituteof
Zhao,X., and R.S. Coe,Palcomagnetic
933-936, 1991.
constraints on the collision and
Energyand Resources,
Seoul,Korea,
1975.
Wang, X.M, J.G. Liou, and H.K. Mao,
rotation of North and South China,
Coesite-bearing
eclogitefrom the
Nature, 327, 141-144, 1987.
Reischmann,
T., U. Altenberger,
A. Kroner,
Dabie Mountains in central China,
G. Zhang,Y. Sun,and Z. Yu,
Mechanism and time of deformation
Geology, 17, 1085-1088, 1989.
Wang,X.M., J.G. Liou, andS. Maruyama,
and metamorphismof mylonitic
S.Y. Nie, Paleogeographic
AtlasProject,
Coesite-bearing
eclogitesfrom the
orthogneisses
from the Shagoushear
Department
of Geophysical
Sciences,
Dabie Mountains, central China:
zone, Qinling belt, China,
Universityof Chicago,Chicago,IL 60637.
Petrogenesis,
P-T
paths,
and
Tectonophysics,185, 91-109, 1990.
A. Yin, Department
of EarthandSpace
implicationsfor regionaltectonics,J.
Rowley,D.B., A.M. Ziegler,andS.Y. Nie,
Sciences,
Universityof California,
Hsuture or Suture? - Comment on
Geol., 100, 231-250, 1992.
Los Angeles,CA 90024-1567.
"Mesozoic overthrust tectonics in
Watson,M.P., A.B. Hayward,D.N.
Parkinson,Zh.M. Zhang, Plate
southChina", Geology, 17, 384-386,
1989.
tectonichistory, basin development
andpetroleumsourcerock deposition
Sengot,A.M.C., Collisionof irregular
onshore China, Mar. Pet. Geol., 4,
continentalmargins:Implicationsfor
(ReceivedAugust25, 1992;
205-225, 1987.
forelanddeformation
of Alpine-type
revisedJanuary26, 1993;
orogens,Geology, 4, 779-782, 1976. Wernicke, B., and P.G. Tilke, Extensional
accepted
February3, 1993.)
Peltzer,G., and P. Tapponnier,Formation
and evolutionof strike-slipfaults,
rifts, and basinsduringthe India-Asia
collision:An experimentalapproach,
J. Geophys.Res., 93, 15,085-15,117,