Puiseux series computation: avoiding computations over Q 1 Adrien Poteaux Univ. Lille 1 - LIFL, computer algebra team Symbolic Computation seminar, JKU, Linz January 9th, 2011 1 joint work with Marc Rybowicz (University of Limoges) [email protected] Puiseux series 1 / 26 Puiseux series: a generalization of formal power series K = Q(γ) RF x0 a number eld ; F (X , Y ) ∈ K [X , Y ] squarefree. = ResY (F , FY ) ∈K ; solutions of F (X , Y ) above x0 ? RF (x0 ) 6= 0 (regular point): Taylor expansion Yi (X ) = ∞ X k =0 [email protected] αik (X − x0 )k ; Puiseux series 1 ≤ i ≤ dY 1 / 26 Puiseux series: a generalization of formal power series K = Q(γ) RF x0 a number eld ; F (X , Y ) ∈ K [X , Y ] squarefree. = ResY (F , FY ) ∈K ; solutions of F (X , Y ) above x0 ? RF (x0 ) 6= 0 (regular point): Taylor expansion Yi (X ) RF (x0 ) =0 Sij (X ) = ∞ X k =0 αik (X − x0 )k ; 1 ≤ i ≤ dY (critical point): Puiseux expansion = ∞ X k =ni k αik ζejki (X − x0 ) ei ; 1 ≤ j ≤ ei , 1 ≤i ≤s ζei primitive ei -th root of unity, e1 , . . . , es partition of dY (ramication indices). [email protected] Puiseux series 1 / 26 First example: F (X , Y ) = Y 3 − X above x0 6= 0 Y 1 (X ) Y 2 (X ) = −0.215 − 0.373 I + (0.898 + 1.555 I ) (X − 0.08) + · · · = −0.215 + 0.373 I − (0.898 − 1.555 I ) (X − 0.08) + · · · Y 3 (X ) = 0.431 + 1.795 (X − 0.08) + · · · [email protected] Puiseux series 2 / 26 First example: F (X , Y ) = Y 3 − X above x0 = 0 Yj (X ) [email protected] = ζ3j X 1 3 Puiseux series 2 / 26 Long term goal Puiseux series w w Monodromy group w w Eective Abel-Jacobi theorem . & Computer Algebra Physics Integral basis computation.s KP & KdV equations Algebraic solutions of ODEs Dierential Galois theory [email protected] Motivations 3 / 26 Local monodromy and Puiseux series = (Y 3 − X ) ((Y − 1)2 − X ) (Y − 2 − X 2 ) + X 2 Y 5 H (X , Y ) 2 − 3X2 − ⇒ 1 e 1 + ζ2k X ⇒ 1 ζ3k X + 3 2 e 1 6 ⇒ 9 2 X 3 = 1: + 1-cycle. ζ2k X 1 2 =2 + ··· 3 2 + ··· : 2-cycle. X 3 e =3 + 5 12 ζ3k X 10 3 + ··· : 3-cycle. The local monodromy is given by the ramication indices ! [email protected] Motivations 4 / 26 Using Puiseux expansions An evaluation of the Puiseux series gives: the local monodromy, analytic continuation around critical points. We want an exact structure, Numerical approximations of the coecients is good enough. [email protected] Motivations 5 / 26 Other motivations: a fundamental theoretical object Ramication indices =⇒ genus computation (Riemann Hurwitz formula) [email protected] Motivations 6 / 26 Other motivations: a fundamental theoretical object Genus computation Integral basis computation M. van Hoeij 1994, An Algorithm for Computing an Integral Basis in an Algebraic Function Field Determination of parametrizations of genus 0 curves M. van Hoeij 1997, Rational Parametrizations of Algebraic Curves using a Canonical Divisor Integration of algebraic functions B. Trager 1984, Integration of Algebraic Functions (PhD) M. Bronstein 1990, Integration of Elementary Functions [email protected] Motivations 6 / 26 Other motivations: a fundamental theoretical object Genus computation Integral basis computation Determination of parametrizations of genus 0 curves Integration of algebraic functions Connectivity queries J. Schwartz & M. Sharir 1983, On the piano movers problem II. General techniques for computing topological properties of real algebraic manifolds [email protected] Motivations 6 / 26 Computing Puiseux series: the singular part Sij (X − x0 ) = = ∞ X k =ni rij X k =ni rij is the regularity index ; ri k αik ζejki (X − x0 ) ei k αik ζejki (X − x0 ) ei + = rij for 1 next terms ≤ j ≤ ei Next terms can be computed using quadratic Newton iterations Kung & Traub 1978, All Algebraic Functions Can Be Computed Fast [email protected] Singular part 7 / 26 Examples above de X = 0 = Y3 − X: F (X , Y ) 0 H (X , Y ) + ζ3k X 1 3 , k = 1, 2, 3 (r = 1) = (Y 3 − X ) ((Y − 1)2 − X ) (Y − 2 − X 2 ) + X 2 Y 5 : 1 + ζ3k X 3 + 1 1 + ζ2k X 2 + 1 0 1 2 6 2 X 3 + ··· , 3 k = 1, 2, 3 (r = 1) ζ2k X 2 + · · · , − 3X2 − [email protected] 9 2 X 3 k = 1, 2 (r = 1) + · · · (r = 0) Singular part 8 / 26 The Newton-Puiseux algorithm: main tools F (X , Y ) = Y 7 + Y 5X − 2 Y 4X + 5 Y 4X 3 + 4 Y 2X 2 + X 6 [email protected] Newton-Puiseux algorithm 9 / 26 Support of a polynomial F (X , Y ) × = Y 7 X 0 +Y 5 X 1 −2 Y 4 X 1 +5 Y 3 X 4 −Y 3 X 2 +4 Y 2 X 2 +Y 0 X 6 Supp(F)= {(i , j ) ∈ N2 | aij 6= 0} 6 4 3 2 1 0 [email protected] 2 3 Newton-Puiseux algorithm 4 5 7 9 / 26 Newton polygon F (X , Y ) = X i aij Y X j i, j × Supp(F)= N (F ): {(i , j ) ∈ N2 | aij 6= 0} 6 N (F ) lower part of the convex hull of Supp(F). 4 3 2 1 0 [email protected] 2 3 Newton-Puiseux algorithm 4 5 7 9 / 26 Generic Newton polygon F (X , Y ) = X i aij Y X j i, j × Supp(F)= {(i , j ) ∈ N2 | aij 6= 0} GN (F ) 6 N (F ): lower part of the convex N (F ) hull of Supp(F). 4 - - GN (F ): slopes of N (F ) ≤ −1. 3 2 1 0 [email protected] 2 3 Newton-Puiseux algorithm 4 5 7 9 / 26 Characteristic polynomial F (X , Y ) = X i aij Y X j i, j × Supp(F)= {(i , j ) ∈ N2 | aij 6= 0} GN (F ) 6 N (F ): lower part of the convex N (F ) hull of Supp(F). 4 - - GN (F ): slopes of N (F ) ≤ −1. Characteristic polynomial: φ∆ (T ) = X aij T i −i0 q (i , j )∈∆ [email protected] 3 2 ∆, pente − mq 1 0 i0 = 2 3 Newton-Puiseux algorithm 4 5 7 9 / 26 Rational Newton-Puiseux Algorithm D. Duval 1989, Rational Puiseux Expansions For each edge φ∆ = s Y ∆ of N (F ) k φM k k =1 For each l q φk v F (X , Y ) ← F (ξk X q ∆, pente − mq , X m (ξku + Y )) Xl with 0 · ξk s.t. · (u , v ) i0 I(F ) φk (ξk ) = 0, such that uq − vm = 1. [email protected] Newton-Puiseux algorithm 10 / 26 Our Newton-Puiseux Algorithm For each edge φ∆ = s Y ∆ of GN (F ) k φM k k =1 For each l q φk v F (X , Y ) ← F (ξk X q ∆, pente − mq , X m (ξku + Y )) Xl with 0 · ξk s.t. · (u , v ) i0 I(F ) φk (ξk ) = 0, such that uq − vm = 1. [email protected] Newton-Puiseux algorithm 10 / 26 Rational Newton-Puiseux Algorithm: rst turn For each edge φ∆ = s Y ∆ of N0 ( F ) k φM k k =1 For each φk v F (X , Y ) ← F (ξk X q , X m (ξku + Y )) Xl with · ξk s.t. · (u , v ) φk (ξk ) = 0, such that uq First turn: initial polygon i0 − vm = 1. ∆, pente − mq dY l q N0 (F ) [email protected] Newton-Puiseux algorithm 10 / 26 Our Newton-Puiseux Algorithm: rst turn For each edge φ∆ = s Y ∆ of EN (F ) k φM k k =1 For each φk v F (X , Y ) ← F (ξk X q , X m (ξku + Y )) Xl with · ξk s.t. · (u , v ) φk (ξk ) = 0, such that uq First turn: exceptional polygon i0 − vm = 1. ∆, pente − mq dY l q EN (F ) (lower part of the convex hull of Supp(F)∪{(0, 0)}). [email protected] Newton-Puiseux algorithm 10 / 26 One example K = F7 F (X , Y ) = Y 7 + Y 5X + 5 Y 4X + 5 Y 4X 3 + 4 Y 2X 2 + X 6 [email protected] Newton-Puiseux algorithm 11 / 26 One example K = F7 F (X , Y ) = Y 7 + Y 5X + 5 Y 4X + 5 Y 4X 3 + 4 Y 2X 2 + X 6 6 Exceptionnal Newton polygon 4 3 2 1 0 [email protected] EN (F ) 2 3 Newton-Puiseux algorithm 4 5 7 11 / 26 One example EN = ((0, 0), (7, 0)) [email protected] Newton-Puiseux algorithm 11 / 26 One example K = F7 F (X , Y ) = Y 7 + Y 5X + 5 Y 4X + 5 Y 4X 3 + 4 Y 2X 2 + X 6 6 Exceptionnal Newton polygon 4 φ∆ (T ) = T 7 . 3 2 1 ∆ 0 [email protected] 2 3 Newton-Puiseux algorithm 4 5 7 11 / 26 One example EN = ((0, 0), (7, 0)) ∆ = ((0, 0), (7, 0)) (7) [email protected] Newton-Puiseux algorithm 11 / 26 One example K = F7 F (X , Y ) = Y 7 + Y 5X + 5 Y 4X + 5 Y 4X 3 + 4 Y 2X 2 + X 6 6 Exceptionnal Newton polygon 4 φ∆ (T ) = T 7 . 3 m = 0, q F (X , Y ) = 1, l = 0, u = 1, v = 1. ← F (X , Y ) 2 1 ∆ 0 [email protected] 2 3 Newton-Puiseux algorithm 4 5 7 11 / 26 One example K = F7 F (X , Y ) = Y 7 + Y 5X + 5 Y 4X + 5 Y 4X 3 + 4 Y 2X 2 + X 6 6 Generic Newton polygon 4 3 2 GN (F ) 1 0 [email protected] 2 3 Newton-Puiseux algorithm 4 5 7 11 / 26 One example EN = ((0, 0), (7, 0)) ∆ = ((0, 0), (7, 0)) (7) (7, 1) GN = ((0, 4), (2, 2), (4, 1), (7, 0)) [email protected] Newton-Puiseux algorithm 11 / 26 One example K = F7 F (X , Y ) = Y 7 + Y 5X + 5 Y 4X + 5 Y 4X 3 + 4 Y 2X 2 + X 6 6 Generic Newton polygon 4 edge ∆1 φ∆i (T ) 4T 2 next pol. Fi 3 ∆1 2 1 0 [email protected] 2 3 Newton-Puiseux algorithm 4 5 7 11 / 26 One example EN = ((0, 0), (7, 0)) ∆ = ((0, 0), (7, 0)) (7) (7, 1) GN = ((0, 4), (2, 2), (4, 1), (7, 0)) ∆1 = ((0, 4), (2, 2)) (2) [email protected] Newton-Puiseux algorithm 11 / 26 One example K = F7 F (X , Y ) = Y 7 + Y 5X + 5 Y 4X + 5 Y 4X 3 + 4 Y 2X 2 + X 6 6 Generic Newton polygon 4 edge ∆1 ∆2 φ∆i (T ) 4T 4 2 next pol. Fi 3 2 + 5T ∆2 1 0 [email protected] 2 3 Newton-Puiseux algorithm 4 5 7 11 / 26 One example K = F7 F (X , Y ) = Y 7 + Y 5X + 5 Y 4X + 5 Y 4X 3 + 4 Y 2X 2 + X 6 6 Generic Newton polygon 4 edge ∆1 ∆2 ∆3 φ∆i (T ) 4T 2 next pol. Fi 3 2 + 5T 5+T 4 1 0 [email protected] ∆3 2 3 Newton-Puiseux algorithm 4 5 7 11 / 26 One example K = F7 F (X , Y ) = Y 7 + Y 5X + 5 Y 4X + 5 Y 4X 3 + 4 Y 2X 2 + X 6 6 Generic Newton polygon 4 edge ∆1 ∆2 ∆3 φ∆i (T ) 4T 2 + 5T 5+T 4 next pol. Fi 3 2 mult. 1 =⇒ End 1 0 [email protected] 2 3 Newton-Puiseux algorithm 4 5 7 11 / 26 One example EN = ((0, 0), (7, 0)) ∆ = ((0, 0), (7, 0)) (7) (7, 1) GN = ((0, 4), (2, 2), (4, 1), (7, 0)) ∆1 = ((0, 4), (2, 2)) (2) ∆2 = ((2, 2), (4, 1)) (1) ∆3 = ((4, 1), (7, 0)) (1) (1, 1) (1, 1) GN = ((0, 1), (1, 0)) GN = ((0, 1), (1, 0)) [email protected] Newton-Puiseux algorithm 11 / 26 One example K = F7 F (X , Y ) = Y 7 + Y 5X + 5 Y 4X + 5 Y 4X 3 + 4 Y 2X 2 + X 6 6 Generic Newton polygon 4 edge ∆1 ∆2 ∆3 φ∆i (T ) 4T 2 + 5T 5+T 4 next pol. Fi F (X ,X Y ) X4 mult. 1 =⇒ 3 2 End 1 0 [email protected] 2 3 Newton-Puiseux algorithm 4 5 7 11 / 26 One example K = F7 F1 (X , Y ) = X 3 Y 7 + X 2 Y 5 + 5 X 3 Y 4 − 2 XY 4 + 4 Y 2 + X 2 φ∆ (T ) = 1 + 4 T 2 Mult. 1 =⇒ irreducible End [email protected] 3 2 1 GN (F ) 0 2 Newton-Puiseux algorithm 4 5 7 11 / 26 Polygon tree EN = ((0, 0), (7, 0)) ∆ = ((0, 0), (7, 0)) (7) (7, 1) GN = ((0, 4), (2, 2), (4, 1), (7, 0)) ∆1 = ((0, 4), (2, 2)) ∆2 = ((2, 2), (4, 1)) (2) (1) (2, 1) ∆3 = ((4, 1), (7, 0)) (1) (1, 1) (1, 1) GN = ((0, 2), (2, 0)) GN = ((0, 1), (1, 0)) GN = ((0, 1), (1, 0)) ∆4 = ((0, 2), (2, 0)) 2 (1 ) (1, 2) GN = ((1, 0), (0, 1)) [email protected] Newton-Puiseux algorithm 11 / 26 A symbolic algorithm → too slow in practice Two main problems: Degree of the extension eld Coecient growth [email protected] Computing the singular part 12 / 26 One example H (X , Y ) = (Y 3 − X ) ((Y − 1)2 − X ) (Y − 2 − X 2 ) + X 2 Y 5 R H (X ) = X 3 P (X ), degX (P ) = 23; β s.t. P (β) Singular parts of Puiseux series of H above ≤ i ≤ 4. Si (X ) = αi ,0 , Si (X ) = αi ,0 + αi ,1 (X − β) 2 , 1 1 5 =0 β: ≤ i ≤ 6. Degree of the extension eld i i = 5, 6: K (αi ,0 ) = K (αi ,1 ) = K (β) → extension of degree 23, = 1, . . . , 4: [K (αi ,0 ) : K (β)] = 4 → extension of degree 92, Coecient growth [email protected] Computing the singular part 12 / 26 One example H (X , Y ) = (Y 3 − X ) ((Y − 1)2 − X ) (Y − 2 − X 2 ) + X 2 Y 5 R H (X ) = X 3 P (X ), degX (P ) = 23; β s.t. P (β) Singular parts of Puiseux series of H above ≤ i ≤ 4. Si (X ) = αi ,0 , Si (X ) = αi ,0 + αi ,1 (X − β) 2 , 1 1 5 =0 β: ≤ i ≤ 6. Degree of the extension eld i i = 5, 6: K (αi ,0 ) = K (αi ,1 ) = K (β) → extension of degree 23, = 1, . . . , 4: [K (αi ,0 ) : K (β)] = 4 → extension of degree 92, Coecient growth αi ,0 → αi ,1 → rational number with 98 digits, rational number with 132 digits. [email protected] Computing the singular part 12 / 26 One example H (X , Y ) = (Y 3 − X ) ((Y − 1)2 − X ) (Y − 2 − X 2 ) + X 2 Y 5 R H (X ) = X 3 P (X ), degX (P ) = 23; β s.t. P (β) Singular parts of Puiseux series of H above ≤ i ≤ 4. Si (X ) = αi ,0 , Si (X ) = αi ,0 + αi ,1 (X − β) 2 , 1 1 5 =0 β: ≤ i ≤ 6. Degree of the extension eld i i = 5, 6: K (αi ,0 ) = K (αi ,1 ) = K (β) → extension of degree 23, = 1, . . . , 4: [K (αi ,0 ) : K (β)] = 4 → extension of degree 92, Coecient growth αi ,0 → αi ,1 → rational number with 98 digits, rational number with 132 digits. > t0:=time():algcurves[puiseux](H,X=RootOf(P),Y,0):time()-t0; 13.388 (on a eeePC) [email protected] Computing the singular part 12 / 26 A symbolic algorithm → too slow in practice Degree of the extension eld working over a factor of the resultant: up to dX (2dY factorisations during the algorithm: up to dY . → up to O (D − 1). 3) Coecient growth Walsh: Walsh 2000, 2 kαik k ≤ 2(h + 1)(h(dX + 1)(dY + 1))6dX dY A Polynomial-time Complexity Bound for the Computation of the Singular Part of an Algebraic Function [email protected] Computing the singular part 12 / 26 A symbolic algorithm → too slow in practice Degree of the extension eld working over a factor of the resultant: up to dX (2dY factorisations during the algorithm: up to dY . → up to O (D − 1). 3) Coecient growth Walsh: 2 kαik k ≤ 2(h + 1)(h(dX + 1)(dY + 1))6dX dY Bit complexity ? Chystov: it's polynomial Walsh: O˜(dY Chistov 1986, Walsh 2000, 32 dX 4 ht(F )2 ) ; ht(F ) = log(h) Polynomial complexity of the Newton-Puiseux algorithm A Polynomial-time Complexity Bound for the Computation of the Singular Part of an Algebraic Function [email protected] Computing the singular part 12 / 26 A symbolic algorithm → too slow in practice Degree of the extension eld working over a factor of the resultant: up to dX (2dY factorisations during the algorithm: up to dY . → up to O (D − 1). 3) Coecient growth Walsh: 2 kαik k ≤ 2(h + 1)(h(dX + 1)(dY + 1))6dX dY Bit complexity ? Chystov: it's polynomial Walsh: O˜(dY 32 dX 4 ht(F )2 ) ; ht(F ) = log(h) (symbolic computation over number eld) + (numerical evaluation) = (awfully long computation) + (bad accuracy) [email protected] Computing the singular part 12 / 26 Numerical computations ? Direct computation: almost useless ; one example: H (X , Y ) RH (X ) H̃ = (Y 3 − X ) ((Y − 1)2 − X ) (Y − 2 − X 2 ) + X 2 Y 5 = X 3 P (X ), α̃ = −.5060254677 − .4773219060 I = H (X + α̃, y ) ; series above ; P (α̃) '0 (0, 0.4060249175 + 0.9045013397 I ) : S (X )=0.4060311143+0.9044983677 i −(0.3092659089+0.3655481764 i )X + (0.2648309844+0.08652658304 i )X 2 +··· convergence radius of S (X ) : [email protected] .1649995849 10−6 Computing the singular part 13 / 26 Numerical computations ? Direct computation: almost useless Guessing the structure ? two diculties: Factorising well Finding the correct Newton polygon φ∆ 4 x ? 2 − 2.0 x + 0.9999 2 = (x − 0.99)(x − 1.01) 1 = (x − 1.)2 0 ? 2 4 [email protected] 7 =⇒ Multiplicity structure ? Computing the singular part 13 / 26 Numerical computations ? Direct computation: almost useless Guessing the structure ? two diculties: Factorising well Finding the correct Newton polygon φ∆ 4 x 2 ? − 2.0 x + 0.9999 2 = (x − 0.99)(x − 1.01) 1 = (x − 1.)2 0 ? 2 4 =⇒ 7 =⇒ Multiplicity structure ? We need the polygon tree ! [email protected] Computing the singular part 13 / 26 A new symbolic-numeric algorithm: 1 Compute the singular part of Puiseux series modulo a well chosen prime number p This give us the polygon tree T (F ), i.e.: Generic Newton polygons, Multiplicity structures of the 2 φ∆ . Use this information to conduct a numerical computation of the Puiseux series coecients. [email protected] A modular-numeric approach 14 / 26 Good p-reduction We denote: o the ring of algebraic integers of K , p be a prime number, p a prime ideal of o dividing p. Dénition F has F p local (at X = 0) good p-reduction if: ∈ op [X , Y ], > dY , tc(RF ) 6≡ 0 mod p. [email protected] Modular part 15 / 26 Main results If F has a good p reduction, then Theorem 1: we can reduce Puiseux series modulo Theorem 2: T (F ) = T (F mod [email protected] p) P dividing p (not true with classical polygons) Modular part 16 / 26 Other results Bounds for the prime number p: size logarithmic in the input with probabilistic algorithms. sizes Improved complexity bounds for the rational Newton-Puiseux algorithm above nite elds from O (D Bit complexity to compute 8 ) to O˜(D 5 ) T (F ): ' O˜(D 5 ) using a small p Details [email protected] Modular part 17 / 26 Following T (F ): one example Puiseux series of F : S1 (X ) S2 (X ) S3 (X ) S4 (X ) S5 (X ) S6 (X ) S7 (X ) dY = X + ··· 1 7 2 8 = 4X + X + · · · 1 = 2X + 2X + · · · 2 1 7 2 6 = 2X + X + X + · · · 1 5 2 4 = X + 2X + X + · · · 1 = X + X + ··· 2 1 = X + 4X + · · · 2 = 25, dX = 26 ; 1 ≤ coecients [email protected] ≤ 1013 ; Digits Numerical part = 20. 18 / 26 First Newton polygon 13 12 1, (1) 1/2, (4,4,4) 1 25 [email protected] Numerical part 19 / 26 First Newton polygon 13 12 1, 0.16777216 · 108 (T − 1.)1 1/2, (T − 1.)4 (T − 4.)4 (T − 16.)4 1 25 1 S1 (x) = 1.x 2 ZOOM [email protected] Numerical part 19 / 26 Sorting polynomials according to their Newton polygons Gi (X , Y ) ← F (X 2 / 1 2 , X (Y + ξi X )) , ξ1 = 1. ξ2 = 4. ξ3 = 16. {G1 , G2 , G3} 4 4 3 4 4 polynomial 4 coecient in X 3 G1 0. G2 0. G3 −17199267840000.0 [email protected] Numerical part 20 / 26 Sorting polynomials according to their Newton polygons {G1 , G2 } G3 4 4 3 (2,1,1) 4 (3,1) 4 4 φ3 = 17199267840000.0(T − 1.)1 1 7 S2 (x) = 4.x 2 + 1.x 8 Sorting polynomials according to multiplicity structures [email protected] Numerical part 20 / 26 Sorting polynomials according to multiplicity structures Multiplicity structures: (2, 1, 1) ⇒ deg(pgcd (φ, φ0 )) = 1 (3, 1) ⇒ deg(pgcd (φ, φ0 )) = 2 [email protected] Numerical part 21 / 26 Sorting polynomials according to multiplicity structures Multiplicity structures: (2, 1, 1) ⇒ deg(pgcd (φ, φ0 )) = 1 (3, 1) ⇒ deg(pgcd (φ, φ0 )) = 2 Characteristic polynomials: φ1 = 1049760000.0 − 2361960000.0 T + 1837080000.0 T 2 − 590490000.0 T 3 + 65610000.0 T 4 φ2 = 1719926784.0 − 6019743744.0 T + 7739670528.0 T 2 − 4299816960.0 T 3 + 859963392.0 T 4 ← Syl (φi , φ0i ) 1 Si 2 Compute singular values of the Si [email protected] Numerical part 21 / 26 Sorting polynomials according to multiplicity structures Singular values associated to φ1 : [710694508.4327095884, 5827385163.0346368216, 3038236185.2953794346, 1140210769.8445335036, 40759543.641844042087, 1882790.0681572535369, 3.8263754075532025314 Singular values associated to ·10−11 ] φ2 : [37445022322.189717034, 24644791488.066781055, 12101920587.793187214, 3915075466.8959244453, 31534726.725839766232,0.00000000074101187358617089031,0.00000000027761147770454585021] G1 G2 4 4 (2,1,1) (3,1) 4 [email protected] 4 Numerical part 22 / 26 Results mypuiseux(F,x,y,x,0); [[[x = T , y = 1.0 T ], [x = T 2 , y = 1.0000000000000046423 T + 1.0000000000000014628 T ], [x = T , y = 4.0000000000000002662 T + 1.0000000000000014628 T ], [x = T , y = 0.99999999999999869303 T + 2.0000000000000040470 T + 1.0000000000000014628 T ], [x = T , y = 1.9999999999993502275 T + 2.0000000000000757425 T ], [x = T , y = 1.0000000000036976678 T + 1.0000000000047325425 T + 2.0000000000000757425 T ], [x = T , y = 0.99999999999483964356 T + 4.0000000000009297336 T ]]] 2 2 2 4 5 4 2 2 2 6 7 6 3 7 [email protected] 8 4 Numerical part 23 / 26 A good practical numerical behaviour: one example Ma,d F (x , y ) coecient in x = x d − 2(ax − 1)2 = (y 3 − M10,6 (x ))(y 3 − M10,3 (x )) + y 2 x 5 / 1 2 of the Puiseux series above 0: Digits numerical evaluation 10 0 4 20 0 15 30 5 29 [email protected] our algorithm Numerical part 24 / 26 Conclusion Reduction criterion: We can compute T (F ) Probabilistic algorithms Use T (F ) → small p to guide oating point computations: Two stage lter Use SVD =⇒ Puiseux series may be used in practice ! [email protected] A modular-numeric approach 25 / 26 Perspectives 1 Certied implementation ? Error bounds on the coecients, analyze accuracy Error bounds for SVD sucient ? Other method ? [email protected] And now ? 26 / 26 Perspectives 1 Certied implementation ? 2 A better second lter ? Context: - We consider: {φi } - We know: {dj } i ≤s 1≤ j ≤s 1≤ a set of approximate polynomials. the set of multiplicity structures. - We want: 1. Connections between the two sets, 2. Root approximations with correct multiplicities. Idea: connection part → Sum Of Squares ? (certies that there is no close polynomial with a given multiplicity), root approximation → Newton-like method. [email protected] And now ? 26 / 26 Perspectives 1 Certied implementation ? 2 A better second lter ? 3 Computing real Puiseux series ? SOS may help. . . [email protected] And now ? 26 / 26 Perspectives 1 Certied implementation ? 2 A better second lter ? 3 Computing real Puiseux series ? 4 A (purely) numerical algorithm ? =⇒ denition of a Puiseux series ? similar to agcd ? something else ? [email protected] And now ? 26 / 26 Perspectives 1 Certied implementation ? 2 A better second lter ? 3 Computing real Puiseux series ? 4 A (purely) numerical algorithm ? 5 Factorisation during the algorithm ? Abhyankar 2007, Newton's theorem: Factorisation of F during the Newton-Puiseux algorithm → avoid to make substitutions in the whole polynomial ? Factorisation à la Hensel, We have bounds for the degree in X . [email protected] And now ? 26 / 26 Perspectives 1 Certied implementation ? 2 A better second lter ? 3 Computing real Puiseux series ? 4 A (purely) numerical algorithm ? 5 Factorisation during the algorithm ? 6 A fast algorithm ? Additional ideas: → multi-evaluation factorisation → D5 No substitution No of the series in F , FY .... Relax computations. O˜(D [email protected] ω+5 2 ) ? And now ? 26 / 26 Perspectives 1 Certied implementation ? 2 A better second lter ? 3 Computing real Puiseux series ? 4 A (purely) numerical algorithm ? 5 Factorisation during the algorithm ? 6 A fast algorithm ? Merci de votre attention ! [email protected] And now ? 26 / 26 Choice of the prime number p K = Q(γ), ht(Q ) = ht(p ) w = [K : Q], Mγ the minimal polynomial of γ log kQ k∞ where Q is a multivariate polynomial. belongs to O (wdY (w ht(Mγ ) + ht(F ) + log(wdX dY ))) Deterministic strategy O (log(dY w log dX ) + log(ht(F )) + log(ht(Mγ )) + log(−1 )) Monte-Carlo strategy with probability of error O (log(dY w log dX ) ≤ + log(ht(F )) + log(ht(Mγ ))) Las-Vegas strategy with an average of 2 iterations. back [email protected] Modular part: details 26 / 26 Complexity of RNP : substitution N +l q N +l n q m i+ l q m i+ m i+ ∆ qj = N n qj qj = = N + l n l l 0 DY δF = 0 DY P i DY 0 F ′(X, Y ) = F (ξ v X q , X mY ) F (X, Y ) ′ +ξ u) F ′′(X, Y ) = H (X,Y Xl ri fi . Lemme δ +1 All computations can be made modulo x F One substitution = N shifts [email protected] ⊂ O (NM (dY )) Modular part: details eld operations. 26 / 26 Complexity of RNP over L = Fpt0 2 Substitutions → O˜(δF dY ) Factorisations → O˜(δF [dY Total → O˜(δF dY [δF 2 + dY t0 log p ]) + dY + t0 log p ]) Lemme δF ≤ vX (∆F ) ≤ dX (2dY − 2) Théorème (Number of operations in L) → T (F ) → T (F ) 3 2 above 0 : O˜(dY dX + dY2 dX t0 log p ) 3 2 above all critical points : O˜(dY dX t0 log p ) ( 6 2 D. Duval 89, Rational Puiseux Expansions : O dY dX [email protected] Modular part: details ) 26 / 26 Bit Complexity for the Monte-Carlo algorithm F K w ∈ K [X , Y ] = Q(γ) = [K : Q] Mγ the minimal polynomial of γ Théorème There exists a Monte-Carlo algorithm which compute 3 2 O˜(dY dX w 2 log 2 T (F ) in −1 [ht(Mγ ) + ht(F )]) bit operations with a probability of error ≤ . back [email protected] Modular part: details 26 / 26
© Copyright 2025 Paperzz