OFFICE COPY BULLETIN NO. 44 STATE OF ILLINOIS WILLIAM G. STRATTON, Governor DEPARTMENT OF REGISTRATION AND EDUCATION VERA M. BINKS, Director RAINFALL RELATIONS ON SMALL AREAS IN I L L I N O I S BY F. A. HUFF AND J. C. NEHL STATE WATER SURVEY DIVISION WILLIAM C. ACKERMANN, Chief URBANA 1957 Printed by authority of the State of Illinois TABLE OF CONTENTS Page INTRODUCTION 9 ACKNOWLEDGMENTS 9 RAIN-GAGING FACILITIES........................................................................................................................11 El P a s o Network Panther Creek Network Goose Creek Network E a s t Central Illinois Network Boneyard Creek Network Monticello Network Airport Network R A I N F A L L VARIABILITY Introduction Rainfall Relative Variability R e s u l t s of A n a l y s i s Effect of G a g e D e n s i t y on M a x i m u m R e c o r d e d P o i n t R a i n f a l l F R E Q U E N C Y OF POINT A N D A R E A L M E A N RAINFALL RATES Introduction D a t a Used in F r e q u e n c y of F r e q u e n c y of D i s c u s s i o n of Analysis Point Rainfall Rates A r e a l M e a n Rainfall R a t e s Results A R E A - D E P T H RELATIONS Introduction A n a l y s i s and R e s u l t s VARIATION OF P O I N T R A I N F A L L WITH DISTANCE Introduction A n a l y s i s of A v e r a g e D i f f e r e n c e s Confidence L i m i t s Equation Comparisons C o n s i d e r a t i o n of A d d i t i o n a l V a r i a b l e s A R E A L R E P R E S E N T A T I V E N E S S OF P O I N T R A I N F A L L Introduction A v a i l a b l e Data A c c u r a c y of A r e a l R a i n f a l l E s t i m a t e s F r o m a C e n t e r e d Gage Average E r r o r Confidence L i m i t s A r e a l Rainfall E s t i m a t e s F r o m an Off-Center Gage 11 11 12 12 12 13 13 15 15 15 15 20 21 21 21 22 23 23 25 25 25 31 31 31 31 31 32 35 35 35 35 35 38 39 TABLE OF CONTENTS (continued) Page RELIABILITY OF STORM MEAN RAINFALL ESTIMATES 43 Introduction Data Used Sampling P r o c e d u r e s Random Start Combined Sampling Plan Best-Centered Analytical P r o c e d u r e Results of Analysis on 100-Square Mile Network Random Start Combined Sampling Plan Best-Centered Comparison of Results from Three Sampling Plans Results of Analysis for Areas of Different Size Average E r r o r Confidence Limits EXCESSIVE RAINFALL RELATIONS ON 100-SQUARE MILE AREA Gage Density to Observational Frequency Relations Effect of Gage Density on Observed Maximum P o i n t - A r e a l Mean Relations RELATION BETWEEN POINT AND AREAL RAINFALL FREQUENCIES 43 43 43 43 43 45 46 46 46 46 47 47 47 47 50 51 51 51 52 55 A MICROMETEOROLOGICAL STUDY OF RAINFALL VARIABILITY 57 Introduction Description of Network Analysis of Data 57 57 57 TABLE OF CONTENTS (continued) LIST OF ILLUSTRATIONS Figure Title Page 1 Reference map 2 El Paso network, 280 square miles.........................................................................................11 3 Panther Creek network, 100 square miles 11 4 Goose Creek network, 100 square miles 12 5 East central Illinois network, 400 square miles 12 6 Boneyard Creek network, 8.5 square miles 12 7 Monticello network, 400 acres 13 8 Airport network, 19 acres 13 9 Storm rainfall variability 15 10 Examples of rainfall variability 17 11 One-minute mean rates 18 12 Time variations in rainfall pattern 19 13 Effect of gage density on maximum recorded point rainfall 20 14 Distribution of point rainfall rates in individual storms 21 15 Distribution of point rainfall rates during average season 10 22 16 Time distribution of point rainfall 22 17 Point rainfall time-rate relation 23 18 Distribution of areal mean rainfall rates 23 19 Effect of gage density on isohyetal pattern 26 20 Area-depth relations for heaviest storms, 5.5-square mile area 27 21 Area-depth relations for heaviest storms, 100-square mile area 27 22 Area-depth relations for heaviest storms, 280-square mile area 27 23 Average area-depth relations, 5.5-square mile area, mean rainfall = 1.00 inch. 28 24 Average area-depth relations, 100-square mile area, mean rainfall = 1.00 inch . 28 25 Average area-depth relations, 5.5-square mile area, 6-hour storm duration. . . . 28 26 Average area-depth relations, 100-square mile area, 6-hour storm duration. . . . 28 27 Extreme area-depth relations, 5.5-square mile area, mean rainfall = 1.00 inch . 29 28 Extreme area-depth relations, 100-square mile area, mean rainfall = 1.00 inch. . 29 29 Extreme area-depth curve slopes, 5.5-square mile area, selected areal mean rainfalls 29 TABLE OF CONTENTS (continued) LIST OF ILLUSTRATIONS (continued) Figure 30 Title Page Extreme area-depth curve slopes, 100-square mile area, selected a r e a l mean rainfalls 29 31 Variation of point rainfall with distance 32 32 95 per cent confidence range for variation of point rainfall with distance . . . . 32 33 25, 50 and 100-square mile a r e a s , Goose Creek 1954 35 34 Storm relation between point and a r e a l mean rainfall based on average deviations 36 Weekly relation between point and a r e a l mean rainfall based on average deviations 36 Monthly relation between point and a r e a l mean rainfall based on individual deviations 37 37 Storm relation between point and a r e a l mean rainfall based on standard e r r o r s . 38 38 Weekly relation between point and a r e a l mean rainfall based on standard e r r o r s . . 39 39 95 per cent confidence range for s t o r m rainfall 40 40 95 per cent confidence range for weekly rainfall 41 41 Effect of gage location on single gage estimates of mean rainfall on 100-square mile a r e a 42 Groups of gages from which 3 random s t a r t systematic samples of size 16 were selected 43 43 Combined sampling plan for samples of Size 1, 2, 3, 4, 6 and 8 44 44 B e s t - c e n t e r e d sampling plan for Panther Creek network 45 45 Comparison of s t o r m sampling plans on a 100-square mile a r e a 47 46 Relation between sampling e r r o r , s t o r m size, and gage density on 100-square mile a r e a 48 95 per cent confidence range of s t o r m mean rainfall for various gage densities 49 48 Effect of gage density on maximum observed excessive r a t e s 51 49 Relation between point and a r e a l mean r a t e s under excessive rate conditions. . 52 50 30-minute excessive r a t e s , July 8, 1951 53 51 Excessive rate area-depth relations, July 8, 1951 53 52 Comparison between point and areal mean rainfall at equal frequencies on 25-square mile a r e a 55 Effect of several meteorological factors on relative variability of s t o r m rainfall 60 35 36 42 47 53 TABLE OF CONTENTS (continued) TABLES Table Title Page 1 Storm rainfall variability, 100-square mile a r e a 16 2 S t o r m rainfall variability, 280-square mile area 16 3 Monthly rainfall variability, 100-square mile a r e a 16 4 Frequency of point rainfall rates calculated from different base periods . . . . 22 5 Frequency of a r e a l mean rainfall r a t e s 24 6 Time distribution of a r e a l mean rainfall r a t e s 24 7 Correlation coefficients 30 8 Comparisons between Equations (3) and (4) 31 9 Multiple correlation coefficients 33 Regression constants for storm, weekly and monthly equations on various areas 35 11 Multiple correlation coefficients 37 12 Comparisons between Equations (4) and (8) 38 13 Comparison between storm, weekly and monthly relations 38 14 Storm groups used in standard e r r o r computations 39 15 Regression constants 47 16 Equations for average and standard deviations 48 17 Relation between excessive rainfall frequency and gage density 51 18 Effect of gage density on observed maximum amounts 51 19 Differences between gage p a i r s 57 20 Relative variability trends for 6-foot gage p a i r s 58 21 Variation of point rainfall with distance 58 22 Monthly and seasonal differences between gage pairs 59 23 Relation between a r e a l mean rainfall and central gage point rainfall 10 . . . . . . 59 9 INTRODUCTION During the p e r i o d 1 9 4 8 - 5 5 , the S t a t e W a t e r S u r v e y M e t e o r o l o g y Subdivision o p e r a t e d s e v e r a l c o n c e n t r a t e d r a i n gage n e t w o r k s o n s m a l l a r e a s t o c o l l e c t d e t a i l e d p r e c i p i t a t i o n d a t a which can f u r t h e r our knowledge of the w a t e r r e s o u r c e s of I l l i n o i s . T h e c o l l e c t e d d a t a have b e e n used in a n u m b e r of s t u d i e s to obtain i n f o r m a t i o n on p r e c i p i t a t i o n p e r t i n e n t t o h y d r o l o g i c a n a l y s i s , d e s i g n , and planning. This bulletin p r e s e n t s c u r r e n t r e s u lts of s e v e r a l of t h e s e s t u d i e s . S o m e of the s t u d i e s a r e of a continuing n a t u r e and as a d d i t i o n a l d a t a b e c o m e a v a i l a b l e , r e f i n e m e n t s will b e p u b l i s h e d . H o w e v e r , it is felt that a d e q u a t e a n a l y s i s h a s now b e e n c o m pleted to p r e s e n t r e s u l t s that may be beneficial to h y d r o l o g i s t s and e n g i n e e r s a c t i v e l y e n g a g e d in the field of w a t e r r e s o u r c e s . Although t h e s e s t u d i e s a r e b a s e d o n Illinois d a t a , the r e s u l t s should b e a p p r o x i m a t e l y r e p r e s e n t a t i v e of c o n d i t i o n s in the M i d w e s t and of o t h e r a r e a s having s i m i l a r c l i m a t e and t o p o g r a p h y . T h e s t u d i e s to d a t e h a v e b e e n c o n c e n t r a t e d on the a n a l y s i s of r a i n f a l l d u r i n g the s p r i n g to fall t h u n d e r s t o r m season on relatively small a r e a s ranging f r o m l e s s t h a n one s q u a r e m i l e t o 400 s q u a r e m i l e s . The extreme variability in precipitation experie n c e d d u r i n g the t h u n d e r s t o r m s e a s o n c r e a t e s difficult p r o b l e m s for the h y d r o l o g i s t c o n c e r n e d with s m a l l w a t e r s h e d s , which a r e s u b j e c t t o flash floods and r a p i d l y affected by d r o u g h t c o n d i t i o n s . The m a j o r p o r t i o n of the s u r f a c e - w a t e r s u p p l i e s for m u n i c i p a l i t i e s i n the s t a t e a r e o b t a i n e d f r o m l a k e s having w a t e r s h e d a r e a s u n d e r 400 s q u a r e m i l e s . Included in this b u l l e t i n a r e r e s u l t s of s t u d i e s on: the r e l a t i v e v a r i a b i l i t y of s t o r m and m o n t h l y r a i n f a l l o v e r s m a l l a r e a s : the d i s t r i b u t i o n o f point and a r e a l m e a n r a i n f a l l r a t e s i n s h o w e r - t y p e p r e cipitation; a r e a - d e p t h relations on s m a l l waters h e d s ; the v a r i a t i o n of point r a i n f a l l with d i s t a n c e ; t h e a r e a l r e p r e s e n t a t i v e n e s s of point r a i n f a l l in m e a s u r i n g a r e a l m e a n r a i n f a l l o n a s t o r m , weekly, and m o n t h l y b a s i s ; the c o m b i n e d effect of s t o r m s i z e , a r e a , and n u m b e r o f r a i n g a g e s o n the a c c u racy of s t o r m mean rainfall e s t i m a t e s ; relations d u r i n g p e r i o d s of e x c e s s i v e r a i n f a l l o v e r a 100- s q u a r e m i l e b a s i n ; the r e l a t i o n b e t w e e n point and a r e a l m e a n r a i n f a l l f r e q u e n c i e s ; and m i c r o - m e t e orological variations in storm rainfall. ACKNOW L E D G M E N T S T h i s bulletin w a s p r e p a r e d u n d e r the d i r e c t i o n of W i l l i a m C. A c k e r m a n n , Chief of the Illinois State Water Survey. R e s e a r c h was accomplished u n d e r the g e n e r a l guidance of G l e n n E. Stout, Head, Meteorology Subdivision. The authors a r e indebted to A. M. Buswell, f o r m e r Chief, and H . E . H u d s o n , J r . , f o r m e r Head of the E n g i n e e r i n g S u b d i v i s i o n , for s u g g e s t i o n s and g u i d a n c e in the e a r l y p h a s e s of the r e s e a r c h inc o r p o r a t e d in the b u l l e t i n . Within the M e t e o r o l o g y S u b d i v i s i o n , s p e c i a l c r e d i t i s due D o u g l a s M . A . J o n e s , who s u p e r v i s e d a m a j o r p o r t i o n of the data c o l l e c t i o n and C a r o l V e r s e m a n , who p e r f o r m e d or s u p e r v i s e d a m a j o r p o r t i o n of the r o u t i n e a n a l y s i s . D r a f t i n g of the i l l u s t r a t i o n s and c o v e r w a s done by J o h n Wesselhoff. N u m e r o u s r e s e a r c h a s s i s t a n t s h e l p e d with the ins t a l l a t i o n and s e r v i c i n g of r a i n g a g e s , c o l l e c t i o n and t a b u l a t i o n of d a t a , and c o m p u t a t i o n . C r e d i t is due L e s t e r P f i s t e r , P r e s i d e n t of the P f i s t e r Hybrid C o r n C o m p a n y , the U. S. Soil Cons e r v a t i o n S e r v i c e , and the Civil E n g i n e e r i n g Dep a r t m e n t of the U n i v e r s i t y of I l l i n o i s , who p r o v i d e d s o m e of the r a i n g a g e s for the s t u d i e s O p e r a t i o n of the G o o s e C r e e k n e t w o r k and d a t a c o l l e c t i o n w e r e s p o n s o r e d i n p a r t b y the Signal C o r p s E n g i n e e r i n g L a b o r a t o r i e s , B e l m a r , New J e r s e y u n d e r Contract DA-36-039 SC-42446. The Agricultural E n g i n e e r i n g D e p a r t m e n t of the U n i v e r s i t y of Illinois furnished data from its 4 0 0 - a c r e r a i n - g a g e network. C e r t a i n p h a s e s o f the a n a l y s e s w e r e g r e a t l y exp e d i t e d t h r o u g h u s e of f a c i l i t i e s at the S t a t i s t i c a l S e r v i c e Unit and the Digital C o m p u t e r L a b o r a t o r y at the U n i v e r s i t y of I l l i n o i s . 10 FIGURE 1 REFERENCE MAP 11 RAIN-GAGING F A C I L I T I E S Rainfall data from seven r a i n - g a g e networks l o c a t e d i n c e n t r a l Illinois w e r e a v a i l a b l e for s t u d i e s d e s c r i b e d i n t h i s b u l l e t i n . G e n e r a l l y , the n e t w o r k s w e r e i n full o p e r a t i o n d u r i n g the w a r m s e a s o n f r o m A p r i l t h r o u g h O c t o b e r , after which they w e r e c l o s e d or r e d u c e d to r e l a t i v e l y few g a g e s for the w i n t e r s e a s o n . The n e t w o r k l o c a t i o n s within the s t a t e a r e shown on the r e f e r e n c e m a p in F i g u r e 1. T h e 1948 E l P a s o n e t w o r k which i s not i l l u s t r a t e d w a s a s o u t h w a r d and w e s t w a r d e x t e n s i o n of the P a n t h e r C r e e k n e t w o r k . T h e Goose C r e e k n e t w o r k was l o c a t e d in the s o u t h e a s t e r n p o r t i o n of the p r e s ent e a s t c e n t r a l Illinois n e t w o r k . T h e C r a b O r c h a r d n e t w o r k i n s o u t h e r n Illinois w a s not i n s t a l l e d until the fall of 19 54. D a t a from it h a v e not b e e n a n a l y z e d a d e q u a t e l y to be p r e s e n t e d in t h i s b u l l e t i n . d i f f e r e n c e s e x i s t e d , thus p e r m i t t i n g u t i l i z a t i o n of c o m b i n e d n e t w o r k d a t a for the d e r i v a t i o n of v a r i o u s e m p i r i c a l rainfall r e l a t i o n s . El P a s o Network The first of these rain-gage networks located on an a r e a of 280 s q u a r e m i l e s in the v i c i n i t y of El P a s o , Illinois ( F i g . 2) was e s t a b l i s h e d in the s p r i n g of 1948. D u r i n g 1948 and 1949 a t o t a l of 17 r e c o r d i n g and 3 1 n o n - r e c o r d i n g g a g e s , o r a n a v e r age of one gage p e r 5.8 s q u a r e m i l e s , w a s o p e r a t e d on this a r e a . T h e t e r r a i n within t h e c e n t r a l I l l i n o i s e x p e r i m e n t a l a r e a s i s r e l a t i v e l y flat with n o d i s t i n c t t o p o g r a p h i c f e a t u r e s t o influence s t o r m b e h a v i o r . All g a g e s w e r e l o c a t e d with open e x p o s u r e s . The r e c o r d i n g g a g e s , f r o m which the m a j o r i t y of the analytical data were obtained, were serviced by t r a i n e d t e c h n i c i a n s . The n o n - r e c o r d i n g g a g e s w e r e i n s t a l l e d b y W a t e r S u r v e y t e c h n i c i a n s , and the m e a s u r e m e n t s w e r e t a k e n b y n e a r b y r e s i d e n t s who had b e e n c a r e f u l l y i n s t r u c t e d i n the p r o p e r o p e r a tion of the g a g e s . In m o s t c a s e s , t h e s e c o o p e r a t i v e o b s e r v e r s w e r e f a r m e r s having a l i v e l y i n t e r e s t in the m e a s u r e m e n t of r a i n f a l l . Statistical tests were performed to determine the h o m o g e n e i t y of d a t a obtained f r o m the v a r i o u s n e t w o r k s . T h e s e t e s t s i n d i c a t e d that n o significant FIGURE Panther FIGURE 2 EL PASO NETWORK, 230 SQUARE MILES 3 PANTHER CREEK NETWORK, 100 SQUARE MILES Creek Network T h e n e t w o r k i n the E l P a s o a r e a w a s r e d u c e d in s i z e at the c l o s e of the 1949 t h u n d e r s t o r m s e a son. B e g i n n i n g in the s p r i n g of 1950, a n e t w o r k of 100 s q u a r e m i l e s within the E l P a s o n e t w o r k was c o n t i n u e d o n the P a n t h e r C r e e k w a t e r s h e d . T h i s a r e a had b e e n gaged with 6 r e c o r d i n g and 14 nonr e c o r d i n g g a g e s d u r i n g the 1948 and 1949 s e a s o n s , c o r r e s p o n d i n g to an a v e r a g e of one gage p e r 4.75 s q u a r e m i l e s . E m p l o y i n g both r e c o r d i n g and nonr e c o r d i n g g a g e s , the P a n t h e r C r e e k n e t w o r k w a s e x p a n d e d to 40 g a g e s in 1950. D u r i n g 1 9 5 1 - 5 3 , the n e t w o r k of 25 r e c o r d i n g g a g e s i l l u s t r a t e d in F i g u r e 3 w a s m a i n t a i n e d . In 1954, the P a n t h e r C r e e k n e t w o r k w a s r e d u c e d to 10 r e c o r d i n g g a g e s , s i n c e the g a g e s w e r e n e e d e d e l s e w h e r e and 10 w a s cons i d e r e d a sufficient n u m b e r for the P a n t h e r C r e e k study. 12 one r e v o l u t i o n e v e r y s i x h o u r s . T h e G o o s e C r e e k n e t w o r k w a s e n l a r g e d d u r i n g J u l y 1952 t o i n c l u d e 100 s q u a r e m i l e s ( F i g . 4 ) . A t o t a l of 50 r e c o r d i n g r a i n g a g e s , equipped w i t h the 1 2 . 6 5 - i n c h d i a m e t e r c o l l e c t o r and the 6 - h o u r c h a r t d r i v e , w a s o p e r a t e d o n t h i s a r e a d u r i n g t h e r e m a i n d e r o f t h e 1952 t h u n d e r s t o r m s e a s o n a n d d u r i n g the 1953 t h u n d e r s t o r m season. This network w a s r e o r g a n i z e d s o m e w h a t i n 1954; h o w e v e r , the a r e a o f t h e n e t w o r k w a s m a i n t a i n e d at 100 s q u a r e m i l e s . A t o t a l of 48 r e c o r d i n g gages was u s e d during the 19 54 s e a s o n . E a s t C e n t r a l Illinois N e t w o r k I n o r d e r t o obtain d a t a o v e r a n a r e a l a r g e r t h a n 100 s q u a r e m i l e s , the G o o s e c r e e k n e t w o r k w a s r e o r g a n i z e d and e x p a n d e d n o r t h and w e s t d u r i n g the. s p r i n g of 1955. T h e new n e t w o r k ( F i g . 5) i n c l u d e s an a r e a of 400 s q u a r e m i l e s . A t o t a l of 49 r e c o r d i n g g a g e s was u s e d o n this a r e a d u r i n g the 1955 t h u n d e r s t o r m s e a s o n . FIGURE 4 GOOSE CREEK NETWORK, 100 SQUARE MILES Goose Creek Network D u r i n g the s p r i n g of 19 5 1 , a n e t w o r k w a s i n s t a l l e d o v e r an a r e a of 50 s q u a r e m i l e s on the Goose C r e e k w a t e r s h e d in the vicinity of Deland, I l l i n o i s . T h i s n e t w o r k c o n s i s t e d of 33 r e c o r d i n g r a i n g a g e s which w e r e e q u i p p e d with 1 2 . 6 5 - i n c h d i a m e t e r c o l l e c t o r s and with c h a r t d r u m s m a k i n g FIGURE 6 BONEYARD CREEK NETWORK, 8.5 SQUARE MILES Boneyard Creek Network FIGURE 5 EAST CENTRAL ILLINOIS NETWORK, 400 SQUARE MILES A 1 2 - s t a t i o n n e t w o r k for s a m p l i n g an a r e a of a p p r o x i m a t e l y 8.5 s q u a r e m i l e s o n t h e B o n e y a r d Creek watershed at Champaign-Urbana, Illinois is shown i n F i g u r e 6 . T h i s n e t w o r k h a s b e e n o p e r a t e d s i n c e the fall of 1948 in c o o p e r a t i o n with the C i v i l Engineering Department, University of Illinois. T h e m a j o r i t y o f the r a i n f a l l a n a l y s i s h a s b e e n confined t o d a t a f r o m a n a r e a o f 5.5 s q u a r e m i l e s within the w a t e r s h e d ( c r o s s - h a t c h e d i n F i g . 6). Streamflow m e a s u r e m e n t s are made on this a r e a , and the r a i n gage d e n s i t y i s g r e a t e r t h a n o v e r t h e r e m a i n i n g p o r t i o n of the w a t e r s h e d . 13 s i n c e 1949. D a t a f r o m the n e t w o r k w e r e m a d e a v a i l a b l e t o the a u t h o r s for a n a l y s i s and i n c l u s i o n in t h i s b u l l e t i n . FIGURE 8 AIRPORT NETWORK, 19 ACRES FIGURE 7 MONTICELLO NETWORK, 400 ACRES Airport Monticello Network T h e M o n t i c e l l o n e t w o r k ( F i g . 7) c o n s i s t i n g of 400 a c r e s (0.6 s q . m i . ) i s o p e r a t e d b y the A g r i c u l t u r a l Engineering D e p a r t m e n t , University of Illinois. F o r the S u r v e y s t u d i e s s i x r e c o r d i n g g a g e s w e r e u s e d f r o m t h i s n e t w o r k , which h a s b e e n o p e r a t e d Network D u r i n g 1 9 5 3 - 5 5 , a m i c r o - n e t w o r k of 18 nonr e c o r d i n g g a g e s w a s o p e r a t e d a t the U n i v e r s i t y o f I l l i n o i s A i r p o r t , six m i l e s south of C h a m p a i g n U r b a n a . T h i s n e t w o r k c o n s i s t e d of p a i r s of g a g e s s p a c e d six feet a p a r t at e a c h of nine s t a t i o n s . T h e s e s t a t i o n s w e r e l o c a t e d at i n t e r v a l s of 300 feet to f o r m a s q u a r e g r i d p a t t e r n on 19 a c r e s (0.03 s q . mi.) a s shown i n F i g u r e 8 . 15 R A I N F A L L VARIABILITY Introduction T h e g r e a t v a r i a b i l i t y o f t h u n d e r s t o r m and r a i n s h o w e r p r e c i p i t a t i o n within r e l a t i v e l y s h o r t d i s tances is generally recognized by meteorologists and h y d r o l o g i s t s . H o w e v e r , i n f o r m a t i o n c o n c e r n ing the d e g r e e o f this v a r i a b i l i t y i s l i m i t e d , e s p e c i a l l y for s m a l l w a t e r s h e d s . O b v i o u s l y , r a i n f a l l v a r i a b i l i t y i s p e r t i n e n t t o h y d r o l o g i s t s and m e t e o r o l o g i s t s c o n c e r n e d w i t h r a i n gaging of w a t e r s h e d s and the i n t e r p r e t a t i o n of r a i n f a l l d a t a for application to hydrologic analysis. F o r example, the a r e a - d e p t h r e l a t i o n and, c o n s e q u e n t l y , the r a i n f a l l - r u n o f f r e l a t i o n a r e c l o s e l y r e l a t e d t o the v a r i a b i l i t y within a given w a t e r s h e d . b a s i n . C o n s i d e r i n g the m u l t i - c e l l u l a r n a t u r e o f t h u n d e r s t o r m s , i t a p p e a r s l o g i c a l that a n a r e a c o m e s u n d e r the i n f l u e n c e o f m o r e c e l l s with heavy rainfall and, consequently, a tendency exists for g r e a t e r r e l a t i v e u n i f o r m i t y i n the r a i n f a l l p a t t e r n . It was found on the T h u n d e r s t o r m P r o j e c t ( 1 ) that s i n g l e - c e l l e d t h u n d e r s t o r m s w e r e g e n e r a l l y w e a k c o m p a r e d t o the m u l t i - c e l l u l a r s t o r m s . The e x p e c t e d t e n d e n c y for the v a r i a b i l i t y t o i n c r e a s e with a r e a is a p p a r e n t f r o m a c o m p a r i s o n of a v e r a g e v a l u e s in T a b l e s 1 and 2. The m a x i m u m a n d m i n i m u m v a l u e s i n t h e s e t a b l e s a r e the e x t r e m e s o b s e r v e d for i n d i v i d u a l s t o r m s i n e a c h m e a n rainfall c l a s s . D a t a f r o m two c o n c e n t r a t e d n e t w o r k s , the 280s q u a r e m i l e E l P a s o n e t w o r k (Fig.2) and the 100s q u a r e m i l e P a n t h e r C r e e k n e t w o r k ( F i g . 3 ) have b e e n u s e d for a l i m i t e d study on t h u n d e r s h o w e r and r a i n s h o w e r v a r i a b i l i t y . Data for 1948-49 on the El P a s o n e t w o r k and for 1948-53 on the P a n t h e r C r e e k n e t w o r k w e r e used i n the study. Rainfall Relative Variability The r e l a t i v e v a r i a b i l i t y for t h e s e a r e a s w a s o b t a i n e d by c a l c u l a t i n g t h e coefficient of v a r i a t i o n in each s t o r m on each network. T h e r e w e r e 48 g a g e s in the El P a s o n e t w o r k and 20 g a g e s on the P a n t h e r C r e e k n e t w o r k u s e d for c a l c u l a t i o n s . F o r c o n v e n i e n c e , the v a r i a b i l i t y f a c t o r (coefficient of v a r i a t i o n ) w a s e x p r e s s e d i n p e r c e n t and w a s o b t a i n e d f r o m the following equation: w h e r e CV is the coefficient of variation in p e r c e n t , SD is the s t a n d a r d d e v i a t i o n of all the n e t w o r k o b s e r v a t i o n s , and P i s the a r e a l m e a n r a i n f a l l . The v a r i a b i l i t y f a c t o r is a m e a s u r e of the d i s p e r s i o n of point r a i n f a l l v a l u e s about the a r e a l m e a n r a i n f a l l . In a d d i t i o n to the a c t u a l v a r i a t i o n s in the s t o r m r a i n f a l l the v a r i a b i l i t y f a c t o r i n c l u d e s the effects o f i n s t r u m e n t a l o r o b s e r v a t i o n a l e r r o r s and gage n o n - r e s p r e s e n t a t i v e n e s s . H o w e v e r , n o d i s t i n c t t o p o g r a p h i c f e a t u r e s e x i s t e d i n the e x p e r i m e n t a l a r e a , and all g a g e s w e r e l o c a t e d with open e x p o s u r e s . T h e r e f o r e , t h e effect o f g a g e n o n - r e p r e s e n t a t i v e n e s s i s e l i m i n a t e d for all p r a c t i c a l p u r poses. A c l o s e c h e c k was m a i n t a i n e d o n the o p e r a t i o n of the r a i n g a g e s , so the v a r i a b i l i t y d a t a s h o u l d b e r e a s o n a b l y a c c u r a t e and r e p r e s e n t a t i v e . R e s u l t s of A n a l y s i s The d a t a w e r e f i r s t a n a l y z e d t o d e t e r m i n e the g e n e r a l effects o f s t o r m m e a n r a i n f a l l and a r e a on relative variability. The r e s u l t s of this analys i s a r e s u m m a r i z e d in T a b l e s 1 and 2. Both t a b l e s c l e a r l y i n d i c a t e that for a given b a s i n the r e l a t i v e v a r i a b i l i t y t e n d s t o d e c r e a s e with i n c r e a s i n g s t o r m m e a n r a i n f a l l . T h i s t e n d e n c y i s a c c o u n t e d for b y the n a t u r e of s h o w e r - t y p e rainfall and the l o c a t i o n of the h e a v i e r s t o r m c o r e s with r e s p e c t to the FIGURE 9 STORM RAINFALL VARIABILITY T a b l e 3 shows the r e l a t i v e v a r i a b i l i t y c a l c u l a t e d on a m o n t h l y b a s i s for the 1 0 0 - s q u a r e m i l e d r a i n a g e b a s i n . C o m p a r i n g T a b l e s 1 and 3, it is s e e n t h a t the r e l a t i v e v a r i a b i l i t y t e n d s t o d e c r e a s e a s t h e r a i n f a l l i n c r e a s e s and the t o t a l i z i n g p e r i o d is i n c r e a s e d . F i g u r e 9 is a s c a t t e r d i a g r a m for the 1 0 0 - s q u a r e m i l e b a s i n , i l l u s t r a t i n g the r e l a t i o n ship b e t w e e n s t o r m m e a n r a i n f a l l and r e l a t i v e v a r i a b i l i t y b a s e d on 185 c a s e s . The t r e n d for the r e l a t i v e v a r i a b i l i t y t o d e c r e a s e with i n c r e a s i n g m e a n rainfall is apparent. However, a close c o r r e l a t i o n d o e s not e x i s t as shown by the a m o u n t of s c a t t e r o n the d i a g r a m . O t h e r f a c t o r s , s u c h a s s t o r m d u r a t i o n , m o v e m e n t o f s t o r m with r e s p e c t to b a s i n , and the i n t e r n a l s t r u c t u r e of t h u n d e r s t o r m s and r a i n s h o w e r s undoubtedly c o n t r i b u t e d to the observed s c a t t e r . 16 TABLE 1 STORM R A I N F A L L VARIABILITY 100 SQ. MI. A R E A Mean R a i n f a l l (in.) Av. 0.01 0.21 0.51 1.01 Over 72 48 30 25 14 - 0.20 0.50 1.00 2.00 2.00 Coefficient of V a r i a t i o n (% ) Max. 200 133 100 37 20 Min. Number of C a s e s 14 9 7 6 9 75 44 42 18 6 Min. Number of C a s e s 23 16 22 14 17 14 15 5 TABLE 2 STORM R A I N F A L L VARIABILITY 280 SQ. MI. A R E A Mean R a i n f a l l (in.) 0.01 0.21 0.51 1.01 - 0.20 0.50 1.00 3.00 Av. 81 56 42 31 Coefficient of V a r i a t i o n (% ) Max. 127 78 64 47 TABLE 3 MONTHLY R A I N F A L L VARIABILITY 100 SQ. MI. A R E A Mean R a i n f a l l (in.) 0.01 2.01 4.01 6.01 - 2.00 4.00 6.00 8.00 Av. Coefficient of V a r i a t i o n (% ) Max. Min. Number of C a s e s 31 15 18 12 37 19 26 25 16 9 12 8 6 9 4 7 17 FIGURE 10 EXAMPLES OF RAINFALL VARIABILITY The tendency for the relative variability to d e c r e a s e with increasing mean rainfall and with the length of observation period is illustrated in Figure 10. This figure shows the isohyetal maps for storm, weekly, monthly, and seasonal (June- August) rainfall during the summer of 195i on the Panther Creek network. In the illustration, is the mean rainfall and CV is the coefficient of variation. 18 FIGURE 11 ONE-MINUTE MEAN RATES Figure 11 shows some examples of relative variability in thunderstorms when mean rainfall is calculated on a very short time basis. The four isohyetal maps a r e for one-minute periods m e a s ured on the Goose Creek network during 1953, using special recording rain gages (see previous section and Figure 4). Isohyetal values in Figure 11 r e p r e sent one-minute amounts expressed in rainfall rate in inches per hour. P r e p r e s e n t s the mean rainfall rate and CV the coefficient of variation. Since the rainfall values on the maps represent nearly instantaneous values, the isohyetal patterns a r e approximately representative of the instantaneous pattern of rainfall within thunderstorms. The great variability existing in the internal s t r u c t u r e of thunderstorms is apparent and helps explain the great variability observed in total s t o r m rainfall in thunderstorms and the scatter in the coefficient of variation shown in Figure 9. 19 A. 1605-06 CST C. 1613-14 CST B. 1609-10 CST D. 1617-18 CST FIGURE 12 TIME VARIATIONS IN RAINFALL PATTERN F i g u r e 12 is a s e r i e s of o n e - m i n u t e i s o h y e t a l m a p s s p a c e d four m i n u t e s a p a r t i n a n i n t e n s e t h u n d e r s t o r m and i l l u s t r a t e s the r a p i d c h a n g e s which m a y take p l a c e in the i n t e r n a l s t r u c t u r e of thunder-storms. The e f f e c t s of s t o r m rainfall v a r i a b i l i t y will b e d i s c u s s e d i n the s e c t i o n o n a r e a - d e p t h c u r v e s , w h e r e i t s a p p l i c a t i o n t o h y d r o l o g i c a n a l y s i s and d e s i g n will be shown. 20 Effect of G a g e D e n s i t y on M a x i m u m R e c o r d e d Point Rainfall The p e a k r a i n f a l l o c c u r r i n g w i t h i n b a s i n s t o r m s is a useful f a c t o r in h y d r o l o g i c a n a l y s i s . O b v i o u s l y , the m a x i m u m r e c o r d e d r a i n f a l l i n s h o w e r - t y p e s t o r m s is c l o s e l y r e l a t e d to the g a g e d e n s i t y on a given b a s i n . r a t i o o f m a x i m u m r e c o r d e d t o c e n t r a l gage r a i n fall w a s found to i n c r e a s e f r o m 1.15 at a g a g e d e n s i t y of 50 s q u a r e m i l e s p e r g a g e to 1.38, 1.58 and 1.83 at g a g e d e n s i t i e s of 20, 10 and 5 s q u a r e m i l e s per gage, respectively. Using r a i n f a l l d a t a c o l l e c t e d f r o m 70 s t o r m s on the P a n t h e r C r e e k B a s i n d u r i n g 1 9 4 8 - 5 0 , a s t u d y was m a d e of the effect of gage d e n s i t y on the o b s e r v e d m a x i m u m point r a i n f a l l within a n a r e a . T o study t h i s effect, point r a i n f a l l r e c o r d e d a t the m o s t c e n t r a l l y - l o c a t e d s t a t i o n i n the 1 0 0 - s q u a r e m i l e b a s i n w a s c o m p a r e d with the m a x i m u m point r a i n fall o b t a i n e d b y i n c r e a s i n g the n e t w o r k p r o g r e s s ively to 3, 5, 10, and 20 g a g e s . T h e s e n e t w o r k s , c o r r e s p o n d i n g to gage d e n s i t i e s of 3 3 , 20, 10, and 5 s q u a r e m i l e s p e r g a g e , w e r e c h o s e n t o give the m o s t uniform distribution of gages possible. F o r e a c h of the four gage d e n s i t i e s in e a c h s t o r m , the r a t i o n o f n e t w o r k m a x i m u m t o s i n g l e gage a m o u n t was d e t e r m i n e d f r o m the r a i n - g a g e c h a r t s . T h e s e d a t a w e r e t h e n g r o u p e d , b a s e d upon c l a s s i n t e r v a l s for s i n g l e g a g e r a i n f a l l of 0.01 0.20, 0.21 - 0.50, 0.51 - 1.00 and 1.01 - 2.00 i n c h e s . The g r o u p e d d a t a w e r e t h e n u s e d t o o b t a i n a n empirical relation between network m a x i m u m r a i n f a l l , single g a g e r a i n f a l l , and g a g e d e n s i t y . T h e e m p i r i c a l equation obtained is w h e r e R m i s the m a x i m u m r e c o r d e d point r a i n f a l l ( i n . ) , R s is the c e n t r a l g a g e a m o u n t (in.) and G is the g a g e d e n s i t y ( s q . m i . / g a g e ) . T h e d e v e l o p e d r e l a t i o n i s i l l u s t r a t e d i n F i g u r e 13. R e f e r e n c e to F i g u r e 13 s h o w s the e x p e c t e d t r e n d for t h e m a x i m u m r e c o r d e d point r a i n f a l l t o i n c r e a s e s i g n i f i c a n t l y a s the g a g e d e n s i t y d e c r e a s e s ( n u m b e r o f g a g e s i n c r e a s e s ) . The a v e r a g e FIGURE 13 EFFECT OF GAGE DENSITY ON MAXIMUM RECORDED POINT RAINFALL 21 F R E Q U E N C Y OF POINT AND A R E A L MEAN R A I N F A L L RATES Introduction D u r i n g 19 5 2 - 5 3 , one m i n u t e r a i n f a l l t o t a l s for a n u m b e r of s t o r m s w e r e t a b u l a t e d in conjunction with a p r o j e c t c o n c e r n e d with t h e i n v e s t i g a t i o n of the utility o f r a d a r for q u a n t i t a t i v e r a i n f a l l m e a s u r e m e n t s . ( 2 ) Use o f s p e c i a l r e c o r d i n g r a i n g a g e s with 12.6 - i n c h d i a m e t e r o r i f i c e s and s i x - h o u r c h a r t s enabled r e c o r d i n g of o n e - m i n u t e amounts o v e r an a r e a of 100 s q u a r e m i l e s . I n f o r m a t i o n on the d i s t r i b u t i o n o f rainfall r a t e s w i t h i n s t o r m s should be of i n t e r e s t to h y d r o l o g i s t s , e s p e c i a l l y to those concerned with sedimentation. A r e a l d i s t r i b u t i o n s o f o n e - m i n u t e r a t e s , which c l o s e l y a p p r o x i m a t e the a c t u a l p a t t e r n o f r a i n f a l l r a t e s within s t o r m s , a r e p e r t i n e n t i n s t u d y i n g the p h y s i c a l s t r u c t u r e of s t o r m s . Information on s h o r t - p e r i o d r a t e s i s a l s o v a l u a b l e i n e v a l u a t i n g r a d a r for q u a n titative precipitation m e a s u r e m e n t s a n d other meteorological u s e s , since precipitation attenuation is p r o p o r t i o n a l to the r a i n f a l l r a t e s w i t h i n a s t o r m , and a t t e n u a t i o n p r e s e n t s a n o u t s t a n d i n g p r o b l e m in a p p l y i n g r a d a r to the m e a s u r e m e n t of rainfall intensity.(3) Consequently, an analysis w a s m a d e of the f r e q u e n c y of o c c u r r e n c e of point and a r e a l m e a n r a i n f a l l r a t e s . T h e a v a i l a b l e d a t a w e r e restricted to shower-type rainfall occurring d u r i n g the t h u n d e r s t o r m s e a s o n f r o m l a t e s p r i n g t o e a r l y fall. D a t a Used in A n a l y s i s One-minute rainfall amounts f r o m 19 s t o r m s d u r i n g 1 9 5 2 - 5 3 , t a b u l a t e d in c o n j u n c t i o n with the r a d a r - r a i n f a l l project mentioned previously, w e r e u s e d i n the s t u d y . T h e o n e - m i n u t e a m o u n t s w e r e o b t a i n e d f r o m 50 r e c o r d i n g g a g e s l o c a t e d on t h e 100-square mile Goose C r e e k Network(Fig.4).* T h e d i s t r i b u t i o n of g a g e s on the n e t w o r k was a p p r o x i m a t e l y u n i f o r m , the u n i f o r m i t y b e i n g l i m i t e d only b y e x i s t i n g r o a d s y s t e m s and s u i t a b l e e x p o s u r e s . The n e t w o r k t e r r a i n i s r e l a t i v e l y flat with no distinct topographic features to influence s t o r m behavior. Careful a t t e n t i o n w a s given to s y n c h r o n i z i n g the g a g e s s o . t h a t o n e - m i n u t e r a i n f a l l p a t t e r n s and a r e a l m e a n s could b e r e l i a b l y r e p r e s e n t e d . All c l o c k s w e r e c h e c k e d for a c c u r a t e t i m i n g b e f o r e i n s t a l l a tion e a c h s p r i n g . B e f o r e p r o c e e d i n g t o the n e t work to change c h a r t s , o b s e r v e r s synchronized t h e i r w a t c h e s with a m a s t e r c l o c k , which w a s c h e c k e d d a i l y with t i m e s i g n a l s f r o m r a d i o s t a t i o n WWV, the N a t i o n a l B u r e a u of S t a n d a r d s S t a t i o n a t W a s h i n g t o n , D . C . When i n s t a l l i n g and r e m o v i n g c h a r t s f r o m the d r u m , the o b s e r v e r m a d e a v e r t i c l e t i m a c h e c k m a r k with the pen o n the c h a r t and e n t e r e d the e x a c t " o n " o r "off" t i m e f r o m h i s w a t c h . C h a r t s w e r e c h a n g e d a f t e r e a c h s t o r m and t w i c e a w e e k d u r i n g p e r i o d s of no r a i n to m i n i m i z e any c l o c k t i m i n g e r r o r s . When a r a i n - g a g e r e c o r d i n d i c a t e d the g a g e c l o c k had gained or l o s t a s m a l l a m o u n t o f t i m e , the e r r o r was p r o r a t e d o v e r the p e r i o d of r e c o r d . As a f u r t h e r c h e c k , a f t e r i s o h y e t a l m a p s w e r e p l o t t e d for e a c h m i n u t e of a s t o r m , g a g e c h a r t s w e r e r e e x a m i n e d i f doubtful v a l u e s a p p e a r e d at any s t a t i o n s on a o n e - m i n u t e m a p . FIGURE 14 DISTRIBUTION OF POINT RAINFALL RATES IN INDIVIDUAL STORMS * O p e r a t i o n o f t h e n e t w o r k and d a t a r e d u c t i o n w e r e s p o n s o r e d i n p a r t b y the Signal C o r p s E n g i n e e r i n g L a b o r a t o r i e s , B e l m a r , New J e r s e y u n d e r c o n t r a c t D A - 3 6 - 0 3 9 S C - 4 2 4 4 6 22 F r e q u e n c y of P o i n t R a i n f a l l R a t e s The f r e q u e n c y with which v a r i o u s point r a i n f a l l rates o c c u r r e d in each s t o r m was calculated f i r s t , u s i n g the d a t a f r o m all 50 g a g e s . F i g u r e 14 s h o w s c u m u l a t i v e f r e q u e n c y c u r v e s for the ten 1953 s t o r m s . The graph shows cumulative p e r c e n t a g e s plotted a g a i n s t r a i n f a l l r a t e i n i n c h e s p e r h o u r , b a s e d upon o n e - m i n u t e a m o u n t s f r o m all 5 0 g a g e s . F o r e x a m p l e , i n the s t o r m for J u l y 2 , 5 0 p e r c e n t of the r a i n f a l l o c c u r r e d at r a t e s e x c e e d i n g 0.90 inch p e r h o u r , while for the s t o r m of J u n e 25, 50 p e r cent o f the total r a i n f a l l o c c u r r e d a t r a t e s e x c e e d i n g 3.10 i n c h e s p e r h o u r . E x a m i n a t i o n of the 19 s t o r m s i n d i c a t e d that t h e g r o u p s h o u l d be a p p r o x i m a t e l y r e p r e s e n t a t i v e of c o n d i t i o n s e x p e r i e n c e d d u r i n g the w a r m s e a s o n i n the M i d w e s t . C o n s e q u e n t l y , the d a t a w e r e c o m b i n e d to d e t e r m i n e the f r e q u e n c y of point r a i n f a l l r a t e s under a v e r a g e conditions during a w a r m s e a s o n . R e s u l t s of t h i s a n a l y s i s a r e shown in c o l u m n s 1 a n d 2 of T a b l e 4. It will be noted that on the a v e r a g e , b a s e d o n o n e - m i n u t e r a t e s i n the 1 9 - s t o r m s a m p l e , 50 p e r c e n t of the w a r m s e a s o n r a i n f a l l o c c u r s at r a t e s e x c e e d i n g 1.45 i n c h e s p e r h o u r . H o w e v e r , the m e d i a n r a t e i n i n d i v i d u a l s t o r m s i n the 1 9 - s t o r m s a m p l e w a s highly v a r i a b l e , r a n g i n g f r o m 0.10 t o 3.10 i n c h e s p e r h o u r . F o r c o m p a r i s o n p u r p o s e s , the p e r c e n t o f t o t a l s t o r m rainfall occurring at various rainfall r a t e s when t h e s e r a t e s a r e b a s e d o n 5 - , 1 0 - , 1 5 - , a n d 30-minute summation periods was determined. Obviously, the averaging p r o c e s s s u p p r e s s e s d e t a i l s o f the high r a t e s o c c u r r i n g d u r i n g the a v e r aging p e r i o d . Most s t u d i e s i n the p a s t , such a s t h o s e of Y a r n e l l ( 4 ) and the U . S . W e a t h e r B u r e a u ( 5 ) o n which e n g i n e e r i n g d e s i g n h a s b e e n b a s e d , w e r e c a l c u l a t e d on the b a s i s of p e r i o d s f r o m five m i n u t e s u p w a r d . H y d r o l o g i s t s h a v e found t h a t r a i n f a l l r a t e s for p e r i o d s l e s s than 10 to 15 m i n u t e s s e l d o m h a v e p r a c t i c a l s i g n i f i c a n c e with r e s p e c t to runoff f r o m a drainage a r e a . However, as mentioned previously, s h o r t e r period r a t e s have application in s e d i m e n tation s t u d i e s , in gaining an u n d e r s t a n d i n g of the p h y s i c a l s t r u c t u r e of s t o r m s , and in the e v a l u a t i o n o f r a d a r for m e t e o r o l o g i c a l p u r p o s e s . I n the p r e s e n t study, a n a t t e m p t w a s m a d e t o a s c e r t a i n t h e effect of the a v e r a g i n g p r o c e s s on the o b s e r v e d f r e q u e n c y of r a i n f a l l r a t e s . FIGURE 15 TABLE 4 FREQUENCY OF POINT RAINFALL RATES CALCULATED FROM D I F F E R E N T BASE PERIODS Rainfall Rate ( i n / h r ) Equaled o r Exceeded F o r S e v e r a l Base P e r i o d s (Min.) Cumulative P e r Cent 1 10 5 15 Max. 13.80 7.50 5.72 4.20 2.45 5 5.35 4.10 3.25 2.64 1.62 10 4.20 3.35 2.80 2.34 1.41 20 3.25 2.58 2.13 1.93 1.15 30 2.45 2.02 1.75 1.42 0.88 40 1.90 1.52 1.34 1.07 0.69 50 1.45 1.16 0.97 0.82 0.56 60 1.05 0.83 0.70 0.62 0.44 70 0.68 0.54 0.46 0.41 0.33 80 0.37 0.28 0.25 0.23 0.21 90 0.15 0.12 0.11 0.11 0.10 95 0.08 0.07 0.07 0.07 0.06 P e r Cent of 1-Min. Rate for S e v e r a l P e r i o d s (Min.) Cumulative P e r Cent 5 10 15 30 Max. 54 41 30 18 5 77 61 49 30 10 80 67 56 34 20 79 66 59 35 30 82 71 58 36 40 80 71 56 36 50 80 67 57 39 60 79 67 59 42 70 79 68 60 48 80 76 68 62 57 90 80 73 73 67 95 87 87 87 75 R e s u l t s a r e i l l u s t r a t e d in F i g u r e 1 5 and T a b l e 4. In Table 4 (upper part) it is s e e n that when o n e minute totals a r e used, 50 p e r cent of the rain was f o u n d t o o c c u r a t r a t e s e x c e e d i n g 1.45 i n c h e s p e r hour. When a five-minute b a s e period was used, the 5 0 p e r c e n t v a l u e d r o p p e d t o 1.16 i n c h e s p e r h o u r and then to 0.97 inch p e r h o u r for a 1 0 - m i n u t e b a s e p e r i o d , 0.82 inch p e r hour for a 15-minute b a s e p e r i o d , and 0.56 inch p e r h o u r for a 3 0 - m i n u t e b a s e period. A l s o , in Table 4 note the rapid d e c r e a s e in the m a x i m u m o b s e r v e d rainfall r a t e when this r a t e is based on various averaging p e r i o d s .The averaging effect i s f u r t h e r i l l u s t r a t e d i n the l o w e r p a r t of Table 4, w h e r e the longer period values have b e e n e x p r e s s e d a s p e r c e n t a g e s o f the o n e - m i n u t e values. DISTRIBUTION OF P O I N T R A I N F A L L RATES DURING AVERAGE SEASON 30 FIGURE 16 TIME DISTRIBUTION OF POINT R A I N F A L L 23 T h e t i m e d i s t r i b u t i o n of point r a i n f a l l was s t u d i e d next, c o m b i n i n g d a t a f r o m all 19 s t o r m s . R e s u l t s of this a n a l y s i s a r e shown in F i g u r e 16 w h e r e p e r cent of t o t a l t i m e of r a i n f a l l in the 19 s t o r m s has b e e n plotted a g a i n s t p e r c e n t o f t o t a l r a i n f a l l i n t h e s e s t o r m s . F r o m this c u r v e i t i s s e e n t h a t 10 p e r c e n t of the s e a s o n r a i n f a l l , b a s e d on the 1 9 - s t o r m sample, o c c u r s in approximately one p e r cent of the t i m e it is r a i n i n g , 50 p e r c e n t of the r a i n o c c u r s d u r i n g about 9 p e r c e n t of the t i m e t h a t r a i n is falling, and 90 p e r c e n t of the total r a i n o c c u r s in 50 p e r cent of the t i m e that it is raining. Thus, it is apparent that w a r m season r a i n f a l l t e n d s to o c c u r in s t r o n g b u r s t s within a s t o r m p e r i o d ; that i s , m o s t o f the r a i n t e n d s t o o c c u r in a s m a l l p o r t i o n of the s t o r m . m i l e n e t w o r k was s u b d i v i d e d to give a r e a s of 10, 2 5 , and 5 0 s q u a r e m i l e s for c o m p a r i s o n s with a r e a l m e a n s t o r m rainfall r e l a t i o n s o n the 1 0 0 - s q u a r e mile network. One-minute areal mean rates were c a l c u l a t e d for e a c h m i n u t e i n each s t o r m for e a c h of the a r e a s m e n t i o n e d a b o v e . FIGURE 18 DISTRIBUTION OF AREAL MEAN RAINFALL RATES FIGURE 17 POINT RAINFALL TIME-RATE RELATION F i g u r e 17 shows a t i m e - r a t e r e l a t i o n for point r a i n f a l l d e r i v e d f r o m the c o m b i n e d d a t a f o r the 19 s t o r m s . This g r a p h f u r t h e r e m p h a s i z e s t h e b u r s t n a t u r e of shower-type r a i n f a l l . Reference to F i g u r e 17 shows that r a t e s equalling or e x c e e d i n g 1.45 i n c h e s p e r h o u r , which a c c o u n t e d f o r 50 p e r cent of the t o t a l r a i n f a l l a c c o r d i n g to F i g u r e 15, o c c u r r e d only 9 p e r cent of the t i m e it w a s r a i n i n g . S i m i l a r l y , r a t e s e x c e e d i n g 4.25 i n c h e s p e r h o u r o c c u r r e d only one p e r c e n t of the t i m e r a i n w a s f a l l i n g , while r a t e s e x c e e d i n g 0.14 inch p e r h o u r w e r e r e c o r d e d d u r i n g 50 p e r cent of the t i m e it w a s raining. F r e q u e n c y of A r e a l Mean Rainfall R a t e s T h e foregoing d i s c u s s i o n h a s been c o n c e r n e d with t h e f r e q u e n c y of point r a i n f a l l r a t e s . Often, h y d r o l o g i s t s a r e m o r e c o n c e r n e d with a r e a l than with point r e l a t i o n s h i p s . C o n s e q u e n t l y , d a t a f r o m the 5 0 - g a g e n e t w o r k o n the 1 0 0 - s q u a r e m i l e a r e a w e r e f u r t h e r a n a l y z e d t o obtain a r e a l f r e q u e n c y r e l a t i o n s h i p s . F o r t h i s p u r p o s e , the 1 0 0 - s q u a r e All 19 s t o r m s w e r e c o m b i n e d to o b t a i n a v e r a g e r e l a t i o n s h i p s for the v a r i o u s a r e a s . T h e r e s u l t s a r e s u m m a r i z e d in T a b l e s 5 and 6 and F i g u r e 18. R e f e r e n c e t o T a b l e 5 s h o w s the e x p e c t e d t r e n d . F o r e x a m p l e , 50 p e r c e n t of the point r a i n f a l l w a s found to o c c u r at a r a t e e x c e e d i n g 1.45 i n c h e s p e r h o u r , while 50 p e r c e n t of the a r e a l m e a n r a i n f a l l o c c u r r e d at r a t e s of 1.02, 0.96, 0.78 and 0.66 i n c h e s p e r h o u r , r e s p e c t i v e l y , for the 1 0 - , 2 5 - , 5 0 - , and 1 0 0 - s q u a r e m i l e a r e a s . Table 6 i l l u s t r a t e s the v a r i a t i o n in the t i m e d i s t r i b u t i o n of r a i n f a l l r a t e s a s the a r e a i s i n c r e a s e d . F o r e x a m p l e , 5 0 p e r c e n t of the point r a i n f a l l w a s found to o c c u r d u r i n g 9 p e r c e n t of the t i m e it w a s r a i n i n g . At 25 s q u a r e m i l e s , 50 p e r cent of the a r e a l m e a n r a i n f a l l o c c u r r e d in 11 p e r c e n t of the t i m e , while for 100 s q u a r e m i l e s 50 p e r cent o c c u r r e d in 12 p e r cent of the r a i n t i m e . T h i s t a b l e shows a t e n d e n c y for t h e t i m e d i s t r i b u tion to change only v e r y slowly with i n c r e a s i n g area. D i s c u s s i o n of R e s u l t s Although the r e s u l t s i n this study a r e b a s e d upon a r e l a t i v e l y s m a l l s a m p l e , the v a r i e t y of s t o r m s i n c o r p o r a t e d i n the 1 9 - s t o r m s a m p l e s h o u l d m a k e the r e s u l t s a p p r o x i m a t e l y r e p r e s e n t a t i v e o f a v e r age w a r m s e a s o n c o n d i t i o n s . I t would h a v e b e e n d e s i r a b l e t o have i n c l u d e d m o r e s t o r m s ; h o w e v e r , the g r e a t a m o u n t of h a n d tabulation r e q u i r e d did not p e r m i t it. I t i s hoped t h a t the r e s u l t s w i l l p r o v e useful in e v a l u a t i n g the a c t u a l d i s t r i b u t i o n of r a i n fall r a t e s i n w a r m s e a s o n r a i n f a l l i n I l l i n o i s and the M i d w e s t . A t the p r e s e n t t i m e , m a c h i n e p r o c e s s ing of the r a i n - g a g e c h a r t s is b e i n g i n v e s t i g a t e d , and if it is f e a s i b l e , t h e p r e s e n t i n v e s t i g a t i o n c a n be g r e a t l y expanded s i n c e a l a r g e a m o u n t of unp r o c e s s e d data a r e a v a i l a b l e which w e r e c o l l e c t e d from 1951-54. 24 TABLE 5 F R E Q U E N C Y O F A R E A L M E A N RAINFALL RATES Cumulative P e r Cent of R a i n f a l l Max. 5 10 20 30 40 50 60 70 80 90 95 Point Rainfall Rate ( i n / h r ) Equaled or E x c e e d e d for Given A r e a (Mi. 2 ) 10 25 50 13.80 5.50 4.20 3.25 2.45 1.90 1.45 1.05 0.68 0.37 0.15 0.08 4.08 3.48 3.18 2.28 1.80 1.26 1.02 0.72 0.48 0.25 0.11 0.07 4.02 2.82 2.55 2.22 1.77 1.26 0.96 0.72 0.48 0.26 0.12 0.07 3.18 2.52 2.22 1.74 1.32 1.02 0.78 0.54 0.36 0.18 0.10 0.05 P e r Cent 100 10 2.88 2.40 1.86 1.35 1.11 0.90 0.66 0.48 0.28 0.16 0.08 0.04 30 63 76 70 73 66 70 69 71 68 73 87 TABLE 6 T I M E DISTRIBUTION O F A R E A L MEAN RAINFALL RATES A r e a (Mi. ) Point 10 25 50 100 P e r Cent of Total R a i n Time Accounting for Given P e r Cent of T o t a l R a i n f a l l 10 25 50 75 90 1 1 1 1 1 3 3 4 4 4 9 10 11 12 12 25 26 27 28 30 48 51 53 55 58 of Point Rate 25 50 100 29 51 61 68 72 66 66 69 71 70 80 87 23 46 53 54 54 54 54 51 53 49 67 62 21 44 44 42 45 47 46 46 41 43 53 50 25 AREA-DEPTH RELATIONS Introduction F o r e n g i n e e r i n g d e s i g n p u r p o s e s , a knowledge o f d e t a i l e d a r e a - d e p t h r e l a t i o n s for s m a l l a r e a s i s often e s s e n t i a l . F e w d e t a i l e d d a t a for a r e a l units u n d e r 300 s q u a r e m i l e s h a v e b e e n p u b l i s h e d . R a i n gage n e t w o r k s of sufficient d e n s i t y to define a r e a depth r e l a t i o n s a c c u r a t e l y f r o m i s o h y e t a l m a p s for such s m a l l a r e a s a r e u n c o m m o n . While p u b l i c a t i o n s of the M i a m i C o n s e r v a n c y D i s t r i c t ( 6 ) and t h e U.S. C o r p s of E n g i n e e r s ( 7 ) i n c l u d e d a t a on s m a l l wat e r s h e d s , the d a t a a r e b a s e d o n r e l a t i v e l y s p a r s e spacing of rain g a g e s . The concentrated networks e m p l o y e d in t h i s study w e r e d e s i g n e d for c o l l e c t i n g m o r e precise data. To obtain d e t a i l e d i n f o r m a t i o n on the c h a r a c t e r i s t i c s o f the a r e a - d e p t h c u r v e for s m a l l w a t e r s h e d s , t h u n d e r s t o r m and r a i n s h o w e r d a t a c o l l e c t e d on four d e n s e l y - g a g e d n e t w o r k s in c e n t r a l Illinois have b e e n a n a l y z e d . T h e s e t h r e e n e t w o r k s c o n s i s t o f the 2 8 0 - s q u a r e m i l e E l P a s o n e t w o r k ( F i g . 2 ) , the 1 0 0 - s q u a r e m i l e P a n t h e r C r e e k ( F i g . 3 ) and G o o s e C r e e k ( F i g . 4) n e t w o r k s , and the B o n e y a r d C r e e k n e t w o r k of 5.5 s q u a r e m i l e s ( F i g . 6). The n e c e s s i t y for c o n c e n t r a t e d n e t w o r k s , which can b e u s e d t o obtain d e t a i l e d i s o h y e t a l p a t t e r n s and t h e r e b y m i n i m i z e i n t e r p o l a t i o n e r r o r s i n the c o n s t r u c t i o n of a r e a - d e p t h c u r v e s , is i l l u s t r a t e d by the s e r i e s of i s o h y e t a l m a p s i n F i g u r e 19. T h e s e m a p s w e r e d r a w n f o r the s a m e s t o r m o n the 1 0 0 - s q u a r e m i l e P a n t h e r C r e e k w a t e r s h e d u s i n g the v a r i o u s gage densities indicated. A n a l y s i s and R e s u l t s Most previous investigations of a r e a - d e p t h rel a t i o n s have b e e n c o n c e r n e d with r e l a t i v e l y l a r g e w a t e r s h e d s , e m p l o y i n g l e s s d e n s e n e t w o r k s than t h o s e u t i l i z e d in t h i s s t u d y . It h a s been o b s e r v e d that a r e a - d e p t h c u r v e s d e r i v e d f r o m i s o h y e t a l m a p s s o m e t i m e s a p p r o a c h s t r a i g h t l i n e s o r flat c u r v e s when the l o g a r i t h m o f a r e a i s plotted against average rainfall.(8) T h i s often r e s u l t s f r o m a l i b e r a l e n v e l o p m e n t of p o i n t s . C u r v e d lines w e r e obtained with the I l l i n o i s a r e a - d e p t h d a t a i n m o s t c a s e s b y plotting the d a t a o n s e m i - l o g a r i t h m i c p a p e r with depth on the l i n e a r s c a l e and a r e a on the logarithmic scale. Since a straight-line r e p r e s e n t a t i o n is d e s i r a b l e , s e v e r a l h y p o t h e s e s w e r e i n v e s t i g a t e d i n a n effort to obtain an easily computed straight-line relation. Within the l i m i t s t e s t e d for the four s m a l l a r e a s , i t was found that the data c o n f o r m e d c l o s e l y to the g e n e r a l equation(9) Y = a + b X 1 / 2 ( 1 ) w h e r e Y is a v e r a g e r a i n f a l l depth in i n c h e s , X is the a r e a enveloped in s q u a r e m i l e s , and a and b a r e c o n s t a n t s r e p r e s e n t i n g m a x i m u m s t o r m point r a i n fall and m e a n r a i n f a l l g r a d i e n t , r e s p e c t i v e l y . The a r e a - d e p t h curve is a two-dimensional r e p r e s e n t a t i o n of rainfall distribution o v e r a r e a , in w h i c h v a l u e s of a v e r a g e r a i n f a l l within an i s o h y e t a r e plotted a g a i n s t the a r e a e n v e l o p e d . T h e a r e a - d e p t h c u r v e i s c o n s t r u c t e d a s though the h i g h e s t value of r a i n f a l l o c c u r r e d at one point, and l o w e r v a l u e s a p p e a r e d (in a n i s o h y e t a l r e p r e s e n t a t i o n ) r o u g h l y c o n c e n t r i c a l l y a r o u n d the h i g h e r v a l u e s . Chow ( 1 0 ) h a s p o i n t e d out that E q u a t i o n (1) ind i c a t e s that the t h r e e - d i m e n s i o n a l r e p r e s e n t a t i o n of the r a i n f a l l i s o h y e t s , which he c a l l s the " s t o r m pile," of thunderstorms or rainshowers is very c l o s e to the f o r m of a c o n e . He i n d i c a t e d t h a t a d d i t i o n a l t e r m s of h i g h e r o r d e r s of X' m u s t be cons i d e r e d when the s t r a i g h t - l i n e r e l a t i o n s h i p of the d e p t h plotted a g a i n s t the s q u a r e root of t h e a r e a d o e s not apply t o s t o r m s c o v e r i n g l a r g e r a r e a s , that i s m o r e than 300 s q u a r e m i l e s . Within the " s t o r m p i l e , " point r a i n f a l l i s a l s o l i n e a r l y r e l a t e d to the d i s t a n c e f r o m the c e n t e r of t h e s t o r m a s r e p r e s e n t e d b y the following e q u a t i o n y = A + Br (2) w h e r e y is the point r a i n f a l l at a d i s t a n c e , r, from the c e n t e r of the s t o r m , and for a given s t o r m , A and B a r e c o n s t a n t s , r e p r e s e n t i n g m a x i m u m point r a i n f a l l and point r a i n f a l l g r a d i e n t . Analysis(11) h a s shown that A = a in E q u a t i o n (1) and b = 0 . 3 7 6 B , so that Y = A + 0.376B X 1 / 2 (3) E q u a t i o n s (1) to (3) c a n be u s e d to c o n s t r u c t h y p o t h e t i c a l a r e a - d e p t h c u r v e s for d e s i g n p u r p o s e s o n s m a l l b a s i n s , when t h e m a x i m u m point r a i n f a l l o f the s t o r m c e n t e r c a n b e obtained f r o m f r e q u e n c y data, such as those obtained by Yarnell,(4) provided that the r a i n f a l l g r a d i e n t o r m e a n r a i n f a l l o n the b a s i n can b e e s t i m a t e d f r o m a l o c a l r a i n - g a g e netw o r k . D e v e l o p m e n t of a r e l a t i o n s h i p for r a i n f a l l g r a d i e n t will b e d i s c u s s e d l a t e r . E q u a t i o n (1) w a s t e s t e d o n s t o r m s r a n g i n g f r o m one to 24 h o u r s d u r a t i o n on the four a r e a s . Only s t o r m s i n which the a r e a l m e a n r a i n f a l l e q u a l e d o r e x c e e d e d 0.50 inch w e r e u s e d . T h e s e i n c l u d e d 126 s t o r m s on the two 1 0 0 - s q u a r e m i l e n e t w o r k s , 72 on the 5 . 5 - s q u a r e m i l e a r e a , and 19 on the 280s q u a r e m i l e n e t w o r k . R e s u l t s for the h e a v i e s t s t o r m s i n each a r e a a r e illustrated i n F i g u r e s 20-22. T o m a k e the a r e a - d e p t h r e l a t i o n d e v e l o p e d i n E q u a t i o n (1) m o r e a p p l i c a b l e for e n g i n e e r i n g d e s i g n p u r p o s e s , data f r o m the 5.5- and 1 0 0 - s q u a r e m i l e a r e a s w e r e a n a l y z e d f u r t h e r t o d e t e r m i n e the r e l a t i o n s h i p b e t w e e n t h e c u r v e slope ( r a i n f a l l g r a d ient) and o t h e r s t o r m p a r a m e t e r s . A n a l y s i s w a s not a c c o m p l i s h e d for the 2 8 0 - s q u a r e m i l e a r e a d u e to the l i m i t e d d a t a a v a i l a b l e . E x a m i n a t i o n of the d a t a for the two s m a l l e r a r e a s i n d i c a t e d that the b e s t fit would be obtained with a r e l a t i o n s h i p of the f o r m b = K P1 T m (4) w h e r e b is the m e a n r a i n f a l l g r a d i e n t in E q u a t i o n (1), P is a r e a l m e a n r a i n f a l l , T is s t o r m d u r a t i o n , and K, 1, and m a r e c o n s t a n t s . 26 2.4 sq.mi. per gage 4.75 sq. mi. per gage 9.5 sq.mi. per gage 19.5 sq. mi. per gage U.S. Weather Bureau Climatological Network, 225 sq. mi. per gage. FIGURE 19 EFFECT OF GAGE DENSITY ON ISOHYETAL PATTERN 27 FIGURE 20 AREA-DEPTH RELATIONS FOR HEAVIEST STORMS, 5.S SQUARE MILE AREA FIGURE 21 AREA-DEPTH RELATIONS FOR HEAVIEST STORMS, 100 SQUARE MILE AREA R e s u l t s of this study y i e l d e d E q u a t i o n s (5) and (6) for the 100- and 5 . 5 - s q u a r e m i l e b a s i n s , r e spectively, FIGURE 22 AREA-DEPTH RELATIONS FOR HEAVIEST STORMS, 280 SQUARE MILE AREA b = 0.094 P.83 T-.28 (5) b = 0.169 P.89 T-.15 (6) A s e x p e c t e d , the d a t a i n d i c a t e d c o n s i d e r a b l e v a r i a b i l i t y in the r a i n f a l l g r a d i e n t a m o n g s t o r m s of s i m i l a r m e a n r a i n f a l l and d u r a t i o n . O b v i o u s l y , t h e r e a r e o t h e r f a c t o r s i n addition t o s t o r m s i z e and s t o r m d u r a t i o n , that a r e not e a s i l y r e d u c e d t o m a t h e m a t i c a l e x p r e s s i o n , which affect the c a l c u l a t e d r a i n f a l l g r a d i e n t within s t o r m s . F o r e x a m p l e , the a r e a - d e p t h c u r v e for a given b a s i n will be i n fluenced by the l o c a t i o n of the s t o r m c o r e with r e s p e c t to the b a s i n , m o v e m e n t of the s t o r m w i t h r e s p e c t to the a x i s of the b a s i n , and the i n t e r n a l s t r u c t u r e of the s t o r m . A m u l t i p l e c o r r e l a t i o n c o efficient of 0.65 w a s o b t a i n e d f r o m E q u a t i o n (5) and a coefficient of 0.55 for Equation (6). T h e s e r e l a t i v e l y low coefficients r e f l e c t the high v a r i a n c e of the d a t a . 28 FIGURE 23 AVERAGE AREA-DEPTH RELATIONS, 5.5 SQUARE MILE AREA, MEAN RAINFALL = 1.00 INCH Applying the r e l a t i o n s for the c u r v e s l o p e o r r a i n f a l l g r a d i e n t in E q u a t i o n s (5) and (6) to Equa-. tion (1), a v e r a g e a r e a - d e p t h r e l a t i o n s w e r e d e v e l oped for the two a r e a s and a r e i l l u s t r a t e d i n F i g u r e s 23 to 26. F i g u r e s 23 and 24 show a v e r a g e a r e a - d e p t h r e l a t i o n s for v a r i o u s s t o r m d u r a t i o n s b a s e d on an a r e a l m e a n r a i n f a l l of one i n c h . F i g u r e s 2 5 and 2 6 show a v e r a g e a r e a - d e p t h r e l a t i o n s for s t o r m s o f v a r i o u s m a g n i t u d e ( m e a n rainfall) for a s t o r m d u r a t i o n of six h o u r s . O b v i o u s l y , the d e v e l o p e d e q u a t i o n s can be u s e d in c a l c u l a t i o n s for o t h e r s t o r m s i z e s and d u r a t i o n s . FIGURE 25 AVERAGE AREA-DEPTH RELATIONS, 5.5 SQUARE MILE AREA, 6-HOUR STORM DURATION All d a t a for both a r e a s a r e for s t o r m d u r a t i o n s u p t o 2 4 h o u r s ; c o n s e q u e n t l y , t h e i r c u r v e s should not b e u s e d for l o n g e r p e r i o d s t o r m s . I t should a l s o b e pointed out t h a t the m e a n r a i n f a l l s t e s t e d f o r the 5 . 5 - s q u a r e m i l e a r e a did not e x c e e d 3.5 i n c h e s . E x c e p t for two s t o r m s , a l l s t o r m s o b s e r v e d o n the 1 0 0 - s q u a r e m i l e n e t w o r k s had l e s s than 5-inch m e a n s . Consequently, upper l i m i t s of 3 - i n c h and 4 - i n c h m e a n s have b e e n u s e d i n F i g u r e s 25 and 26. FIGURE 24 AVERAGE AREA-DEPTH RELATIONS, 100 SQUARE MILE FIGURE 26 AVERAGE AREA-DEPTH RELATIONS, 100 SQUARE MILE AREA, MEAN RAINFALL = 1.00 INCH AREA, 6-HOUR STORM DURATION 29 FIGURE 29 EXTREME AREA-DEPTH CURVE SLOPES, 5.5 SQUARE MILE AREA, SELECTED AREAL MEAN RAINFALLS FIGURE 27 EXTREME AREA-DEPTH RELATIONS, 5.5 SQUARE MILE AREA, MEAN RAINFALL = 1.00 INCH FIGURE 28 EXTREME AREA-DEPTH RELATIONS, 100 SQUARE MILE AREA, MEAN RAINFALL = 1.00 INCH The c u r v e s in F i g u r e s 23 to 26, of c o u r s e , a r e for a v e r a g e v a l u e s of rainfall g r a d i e n t ( c u r v e s l o p e ) . F o r both E q u a t i o n s (5) and (6), 9 5 p e r cent confidence bands were determined. The upper 95 p e r cent confidence band i n both c a s e s h a s b e e n u s e d in F i g u r e s 27 and 28 to show e x t r e m e a r e a d e p t h r e l a t i o n s for the two b a s i n s with a m e a n r a i n f a l l of one i n c h . F i g u r e s 29 and 30 show e x t r e m e c u r v e s l o p e s for d u r a t i o n s of 1 to 24 h o u r s and for v a r i o u s m e a n r a i n f a l l s . T h e s e f i g u r e s m a y be u s e d in conjunction with E q u a t i o n (1) to o b t a i n FIGURE 30 EXTREME AREA-DEPTH CURVE SLOPES, 100 SQUARE MILE AREA, SELECTED AREAL MEAN RAINFALLS 30 e x t r e m e a r e a - d e p t h c u r v e s under v a r i o u s condit i o n s . Whether a v e r a g e o r e x t r e m e v a l u e s should be used depends upon the purpose for which a r e a depth r e l a t i o n s a r e to be utilized. Again, the l a r g e d i f f e r e n c e s between the a v e r a g e c u r v e s in F i g u r e s 23-24 and the e x t r e m e c u r v e s in F i g u r e s 27-28 r e sult from the l a r g e v a r i a b i l i t y in rainfall g r a d i e n t s among s t o r m s of s i m i l a r size and d u r a t i o n . In Equations (5) and (6) for the slope of a r e a depth c u r v e s , it is i n t e r e s t i n g to note the r e l a t i v e weight of the two p a r a m e t e r s , m e a n r a i n f a l l and s t o r m d u r a t i o n . The r e l a t i v e i m p o r t a n c e of m e a n rainfall is g r e a t e r in the equations for both b a s i n s as i l l u s t r a t e d by the exponents on P and T. R e s u l t s indicate that, a s the a r e a d e c r e a s e s , s t o r m d u r a tion b e c o m e s l e s s i m p o r t a n t in d e t e r m i n i n g r a i n fall g r a d i e n t s within the b a s i n . C h a r a c t e r i s t i c s of the s t o r m p a s s i n g o v e r the basin a r e p e r h a p s of greatest importance h e r e . The r e l a t i v e weights of P and T in d e t e r m i n i n g the c h a r a c t e r i s t i c of the a r e a - d e p t h c u r v e a r e furt h e r i l l u s t r a t e d in Table 7 where p a r t i a l c o r r e l a tion coefficients between b and P and between b and T a r e given for the two a r e a s . TABLE 7 CORRELATION COEFFICIENTS Type Items Partial Partial Multiple b vs. P b vs. T b vs. P, T Basin Areas 5.5 Sq. Mi. 100 Sq. Mi. 0.45 0.21 0.55 0.60 0.38 0.65 While the r e s u l t s of the a r e a - d e p t h study a r e b a s e d on Illinois d a t a , the relations should be g e n e r a l l y applicable to s h o w e r - t y p e rainfall in the Midwest or other a r e a s having s i m i l a r c l i m a t e and topography. L i m i t e d t e s t s m a d e on published a r e a - d e p t h data for the 8 0 0 0 - s q u a r e m i l e Muskingum Basin ( 8 ) indicated that Equation (1) is not applicable to l a r g e b a s i n s . Chow ( 1 0 ) has suggested that an equation of the form 1/2 Y = a + b X 3/2 + cX + dX +. . . (7) maybe more applicable to larger basins, the number of higher terms depending on the basin size. 31 VARIATION O F POINT R A I N F A L L WITH DISTANCE Introduction Confidence Limits The v a r i a t i o n of r a i n f a l l with d i s t a n c e is an i m p o r t a n t f a c t o r i n h y d r o l o g i c and a g r i c u l t u r a l s t u d i e s w h e r e a n a l y s i s of p r e c i p i t a t i o n effects is r e q u i r e d . Due to the o r d i n a r y s p a c i n g of r a i n g a g e s , e s t i m a t e s of point r a i n f a l l a r e f r e q u e n t l y n e e d e d f o r l o c a t i o n s which m a y b e s e v e r a l m i l e s f r o m the n e a r e s t r a i n g a g e . T h e U.S. W e a t h e r B u r e a u ( 8 ) h a s p r e s e n t e d s o m e l i m i t e d r e s u l t s for d i s t a n c e s u p t o f o u r m i l e s , b a s e d upon d a t a from five s t a t i o n s on L i t t l e Mill C r e e k i n O h i o . O t h e r w i s e , l i t t l e i n f o r m a t i o n on the subject is a v a i l a b l e . F o r practical application, an estimate of s t o r m r a i n f a l l at s o m e point at a d i s t a n c e D f r o m the c o m p a r i s o n gage is m o r e useful if an i n t e r v a l or r a n g e about the e s t i m a t e can b e d e t e r m i n e d with s o m e m e a s u r e o f confidence that the e s t i m a t e i s within t h i s r a n g e . The 9 5 p e r cent confidence b a n d s a r e f r e q u e n t l y used for t h i s p u r p o s e . T o e s t a b l i s h confidence l i m i t s , an e s t i m a t e of the s a m p l i n g s t a n d a r d deviation i s r e q u i r e d . C o n s e q u e n t l y , e x p r e s s i o n s for an e s t i m a t e of the s t a n d a r d d e v i a t i o n s of the d i f f e r e n c e s b e t w e e n the c o m p a r i s o n gage r a i n f a l l and that o c c u r r i n g at v a r i o u s d i s t a n c e s f r o m the c o m p a r i s o n gage w e r e o b t a i n e d f r o m the s a m e data u s e d i n d e r i v i n g E q u a t i o n s (3) and (4). The e x p r e s s i o n s o b t a i n e d a r e As a p a r t i a l s o l u t i o n to the p r o b l e m of d e t e r m i n i n g rainfall v a r i a b i l i t y with d i s t a n c e , a study w a s u n d e r t a k e n , u s i n g s t o r m data c o l l e c t e d o n two concentrated rain-gage networks. Data from 25 g a g e s o n the 1 0 0 - s q u a r e m i l e P a n t h e r C r e e k n e t w o r k ( F i g . 3) for 1950-54 and f r o m 50 g a g e s on the 100 s q u a r e m i l e G o o s e C r e e k n e t w o r k ( F i g . 4) for 1952-54 w e r e u s e d in the study. T h e s e n e t w o r k s p r o v i d e d d a t a for d i s t a n c e s up to 1 1 m i l e s f r o m a total of 186 s t o r m s having point r a i n f a l l a m o u n t s r a n g i n g f r o m 0.01 inch to 9.15 i n c h e s and a r e a l m e a n r a i n f a l l s v a r y i n g from a t r a c e to 7.21 i n c h e s . A n a l y s i s was confined t o w a r m s e a s o n o r s h o w e r - t y p e r a i n f a l l o c c u r r i n g from s p r i n g t o fall. A n a l y s i s of A v e r a g e D i f f e r e n c e s The r a i n gage n e a r e s t the c e n t e r of the a r e a i n e a c h n e t w o r k was d e s i g n a t e d a s the c o m p a r i s o n gage. For each s t o r m on each network, differences w e r e c a l c u l a t e d b e t w e e n the total s t o r m r a i n f a l l at the c o m p a r i s o n gage and that r e c o r d e d at e a c h of the o t h e r n e t w o r k g a g e s . The d a t a w e r e f i r s t g r o u p e d a c c o r d i n g t o d i s t a n c e from the c o m p a r i s o n g a g e . A t e a c h d i s t a n c e , the d i f f e r e n c e s b e t w e e n the v a r i o u s n e t w o r k g a g e s and the c o m p a r i s o n gage were further grouped in class intervals a c c o r d i n g to point r a i n f a l l a m o u n t s ( s t o r m size) at the c o m p a r i s o n g a g e . G r a p h i c a l p l o t s of the grouped d a t a i n d i c a t e d o n e of the two following g e n e r a l e q u a t i o n s would p r o v i d e the b e s t data fit: Log E = k + 1 Log P + m Log D (1) Log E = k + 1 P n + m Log D (2) In E q u a t i o n s (1) and (2), E r e p r e s e n t s the a v e r a g e d i f f e r e n c e b e t w e e n the t o t a l s t o r m r a i n f a l l at the c o m p a r i s o n gage and at points l o c a t e d at d i s t a n c e D f r o m the c o m p a r i s o n g a g e , when t h e point r a i n fall r e c o r d e d a t the c o m p a r i s o n g a g e i s P . The r e g r e s s i o n c o n s t a n t s a r e r e p r e s e n t e d by k, 1, m and n. The data f r o m both n e t w o r k s w e r e then c o m b i n e d t o obtain the e m p i r i c a l e x p r e s s i o n s : Log E = - 0 . 7 9 6 + 0.49 L o g P + 0 . 3 2 Log D Log E = -1.359 + 0.51 P where E 0 5 (3) + 0.31 Log D(4) and P a r e in i n c h e s and D is in m i l e s . Log s = - 0 . 3 9 8 + 0.49 Log P + 0.32 Log D Log s = -0.961 + 0.51 P 0.5 + 0.31 Log D (5) (6) T h e 9 5 p e r cent confidence b a n d s for P w e r e e s t i m a t e d b y taking two t i m e s the s t a n d a r d d e v i a t i o n and adding and s u b t r a c t i n g f r o m the c o r r e s p o n d i n g v a l u e of P. Equation Comparisons Multiple c o r r e l a t i o n c o e f f i c i e n t s of 0.74 and 0.78 w e r e obtained f r o m E q u a t i o n s (3) and (4), r e s p e c t i v e l y . T h e s e c o r r e l a t i o n coefficients indic a t e t h e r e is l i t t l e d i f f e r e n c e in the g o o d n e s s of fit p r o v i d e d by t h e s e two e q u a t i o n s . G r a p h i c a l p l o t s of the g r o u p e d d a t a i n d i c a t e d t h a t E q u a t i o n (4) g i v e s a s o m e w h a t b e t t e r fit at high and low v a l u e s of P, while E q u a t i o n (3) fits b e s t at the int e r m e d i a t e v a l u e s of P. A c o m p a r i s o n is given in T a b l e 8 of the E v a l u e s o b t a i n e d for v a r i o u s P v a l u e s at a d i s t a n c e (D) of five m i l e s . Only s m a l l d i f f e r e n c e s in E a r e obt a i n e d f r o m the two e m p i r i c a l e q u a t i o n s below P v a l u e s o f t h r e e i n c h e s . Above t h r e e i n c h e s , E q u a tion (4) p r o d u c e s a p p r e c i a b l y h i g h e r v a l u e s of E t h a n E q u a t i o n (3). H o w e v e r , only a s m a l l p o r t i o n of the point r a i n f a l l o b s e r v a t i o n s f r o m which the e m p i r i c a l equations were derived exceeded three inches. TABLE 8 COMPARISONS BETWEEN EQUATIONS (3) AND (4) P 0.10 0.25 0.50 1.00 2.00 3.00 5.00 (in.) E (in.) at 5 Mi. Eq. (3) Eq. (4) 0.08 0.14 0.19 0.27 0.38 0.45 0.59 0.10 0.13 0 17 0.23 0 38 0.55 1.00 F r o m the h y d r o l o g i c s t a n d p o i n t , a t l e a s t , the v a r i a t i o n of rainfall with d i s t a n c e in h e a v y s t o r m s is usually of g r e a t e r interest than rainfall v a r i a t i o n s in light s t o r m s . Since E q u a t i o n s (3) and (4) p r e d i c t s i g n i f i c a n t l y different v a l u e s of E above P v a l u e s of t h r e e i n c h e s , an effort was m a d e to d e - 32 t e r m i n e which e q u a t i o n a p p e a r s m o s t a p p l i c a b l e at high v a l u e s of P. Although the data u s e d in the study i n d i c a t e d E q u a t i o n (4) p r o v i d e d a b e t t e r fit at the high P v a l u e s , it was d e s i r e d to f u r t h e r t e s t the r e l a t i o n with i n d e p e n d e n t d a t a . F o r t h i s p u r p o s e , data w e r e used f r o m two u n u s u a l l y heavy I l l i n o i s s t o r m s : the J u l y 9 , 1951 s t o r m i n North C e n t r a l Illinois,(12) a n d the J u l y 1 8 - 1 9 , 1952 s t o r m in R o c k f o r d and v i c i n i t y . ( 1 3 ) The W a t e r S u r v e y conducted e x t e n s i v e field s u r v e y s following t h e s e s t o r m s which p r o v i d e d a d e q u a t e r a i n f a l l data for c o n s t r u c t i n g d e t a i l e d i s o h y e t a l m a p s . A r e c t a n g u l a r g r i d o v e r l a y was u s e d with the i s o h y e t a l m a p s f r o m t h e s e two s t o r m s t o obtain d a t a o n r a i n f a l l v a r i a t i o n s with d i s t a n c e . E a c h 3 - m i l e i n t e r v a l o n the g r i d o v e r l a y was c o n s i d e r e d a n o b s e r v a t i o n point and rainfall d i f f e r e n c e s w e r e o b t a i n e d f r o m the u n d e r l y i n g i s o h y e t a l m a p at d i s t a n c e s of t h r e e , s i x , and nine m i l e s f r o m e a c h o b s e r v a t i o n point in e a c h of four d i r e c t i o n s n o r t h , e a s t , south and w e s t . T h i s method p r o d u c e d a total of 760 o b s e r v a t i o n s in the two s t o r m s . P o i n t rainfall v a l u e s a t the o b s e r v a t i o n p o i n t s r a n g e d f r o m 2.0 to 10.6 i n c h e s . E q u a t i o n s ( 3 ) and (4) w e r e then t e s t e d by d e t e r m i n i n g how m a n y of the 760 o b s e r v a t i o n s fell within the 95 p e r cent confidence b a n d s for e a c h e q u a t i o n . It was found that 94 p e r cent of t h e s e o b s e r v a t i o n s fell within the 95 p e r cent confidence b a n d s of E q u a t i o n (4) c o m p a r e d to 80 p e r cent for E q u a t i o n (3). T h e s e r e s u l t s i n d i c a t e that E q u a t i o n (4) i s m o r e r e l i a b l e for p r e d i c t i n g d i f f e r e n c e s in point r a i n f a l l with d i s t a n c e i n heavy s t o r m s , a s s u g g e s t e d e a r l i e r b y g r a p h i c a l p l o t s of the o r i g i n a l d a t a upon which the two e m p i r i c a l e q u a t i o n s w e r e b a s e d . FIGURE 32 95 PER CENT CONFIDENCE RANGE FOR VARIATION OF POINT RAINFALL WITH DISTANCE A g r a p h d e r i v e d f r o m E q u a t i o n (4) for p r e d i c t i n g the a v e r a g e d i f f e r e n c e i n s t o r m r a i n f a l l b e t w e e n points a t v a r i o u s d i s t a n c e s i s given i n F i g u r e 3 1 . The 9 5 p e r cent c o n f i d e n c e b a n d s , b a s e d upon E q u a t i o n (6), for s e l e c t e d v a l u e s of D a r e p r e s e n t e d i n F i g u r e 32. The g r e a t v a r i a b i l i t y i n s h o w e r type r a i n f a l l i s well i l l u s t r a t e d i n F i g u r e 32. F o r e x a m p l e , within a d i s t a n c e of one m i l e f r o m a gage r e c o r d i n g a rainfall of one i n c h , d i f f e r e n c e s up to 0.35 inch or 35 p e r c e n t a r e i n d i c a t e d by the 95 p e r cent l i m i t s ; at five m i l e s , d i f f e r e n c e s up to 0.55 inch o c c u r ; and at 10 m i l e s , d i f f e r e n c e s r e a c h 0.70 i n c h . C o n s i d e r a t i o n of Additional V a r i a b l e s In an e a r l i e r , l i m i t e d study u s i n g data for 33 s t o r m s o v e r the G o o s e C r e e k n e t w o r k d u r i n g 1 9 5 3 ( 1 4 ) a n a l y s i s was p e r f o r m e d to d e t e r m i n e if a m o r e efficient equation m i g h t b e o b t a i n e d b y s u b s t i t u t i n g o t h e r i n d e p e n d e n t v a r i a b l e s into E q u a t i o n (1) in a d d i t i o n to P and D. The d a t a had not b e e n fitted to E q u a t i o n (2) at the t i m e of this a n a l y s i s . FIGURE 31 VARIATION OF POINT RAINFALL WITH DISTANCE The only p r a c t i c a l v a r i a b l e s which can b e u s e d in an e x p r e s s i o n s u c h as E q u a t i o n (1) a r e t h o s e which can b e r e a d f r o m the r a i n - g a g e c h a r t a t the o b s e r v a t i o n g a g e . I t w a s r e a s o n e d that c o n s i d e r a tion of s t o r m d u r a t i o n ( T ) , m e a n r a t e of r a i n f a l l ( R a ) , and m a x i m u m r a t e of r a i n f a l l (Rm) m i g h t 33 improve the prediction efficiency of expressions such as (3) and (5) which utilize only P and D. The maximum 5-minute rainfall rate for each storm was used to represent the maximum storm rate. Multiple correlation coefficients between standard deviation (s) and various combinations of P, D, T, R a , and Rm were computed to determine whether the correlation would improve from consideration of the three additional variables. The various coefficients are shown in Table 9. The squares of the coefficients, expressed in per cent, are also shown. These values indicate the relative efficiency of the various combinations of independent variables. C o n s i d e r i n g the r e l a t i v e l y s m a l l i m p r o v e m e n t , in efficiency shown by the m o r e complex e x p r e s sions and the additional w o r k involved in getting d a t a t o u s e w i t h t h e m , E x p r e s s i o n s (3) t o (6) a p p e a r m o r e p r a c t i c a l for p r e d i c t i o n p u r p o s e s . Undoubtedly t h e r e a r e o t h e r f a c t o r s which would be useful in i n c r e a s i n g t h e e f f i c i e n c y o f E q u a t i o n s (3) t o ( 6 ) . An i m p o r t a n t factor, for i n s t a n c e , is the s t o r m path with r e f e r e n c e to the location of the m e a s u r e ment gage. However, it is impossible to estimate the s t o r m path f r o m a single gage, and only f a c t o r s which could be obtained f r o m a single r e c o r d i n g gage w e r e investigated in this study. TABLE 9 M U L T I P L E CORRELATION COEFFICIENTS The results presented in Table 9 indicate that the three additional variables are about equal in efficiency. Since the product of R a a n d T i s equivalent to P, their use as variables in an expression already containing P appeared doubtful. However, to more thoroughly explore the problem, tests involving these two variables in conjunction with P were made. Table 9 shows that including Ra and T with P increased the efficiency by only eight per cent (42 to 50). The same efficiency was obtained by using Ra and T without P (last line of Table 9). Using T, Ra and R m i n c o n j u n c t i o n w i t h P a n d D i n c r e a s e d the p r e d i c t i o n efficiency by only 10 per cent. Independent Variables Multiple C o r r e l a t i o n (C) C 2 (% ) PD 0.65 42 PDRm PDT 0.71 0.70 50 49 PDR a PDR m T 0.70 0.71 49 50 PDR m R a PDTRa 0.71 0.71 50 50 PDR m T R a 0.72 DTR 0.71 a 52 50 35 AREAL REPRESENTATIVENESS OF POINT R A I N F A L L Introduction The a c c u r a c y with which a point r a i n f a l l m e a s u r e m e n t r e p r e s e n t s t h e m e a n r a i n f a l l for a r e a s o f v a r y i n g s i z e s in the vicinity of the point o b s e r v a tion is p e r t i n e n t to the d e s i g n of r a i n - g a g e n e t w o r k s for v a r i o u s p u r p o s e s and in the i n t e r p r e t a t i o n of data from existing networks. Information regarding the r e l a t i o n b e t w e e n point rainfall and a r e a l m e a n s t o r m rainfall i s e s p e c i a l l y a p p l i c a b l e t o h y d r o l o gic p r o b l e m s . The lack of concentrated r a i n - g a g e networks o v e r a r e a s o f v a r i o u s s i z e , which a r e n e c e s s a r y for d e r i v i n g p o i n t - a r e a l m e a n r e l a t i o n s , has i n the past limited development of e m p i r i c a l relations. S o m e l i m i t e d d a t a for a r e a s of 375, 1500 and 8000 s q u a r e m i l e s h a v e b e e n p r o v i d e d b y the U.S. Weather Bureau.(8) As a p a r t i a l s o l u t i o n to the a b o v e p r o b l e m , rainfall data collected on several concentrated n e t w o r k s i n c e n t r a l I l l i n o i s have b e e n u t i l i z e d t o d e r i v e e m p i r i c a l r e l a t i o n s b e t w e e n point and a r e a l m e a n r a i n f a l l for a r e a s ranging f r o m 0.03 t o 400 s q u a r e m i l e s . P o i n t r a i n f a l l was m e a s u r e d a t the c e n t e r o f e a c h a r e a and e m p i r i c a l e q u a t i o n s d e v e l oped for s t o r m , w e e k l y , and m o n t h l y p e r i o d s . In a d d i t i o n , s t o r m d a t a for a r e a s of 10 to 100 s q u a r e m i l e s w e r e u s e d t o obtain a n e m p i r i c a l r e l a t i o n b e t w e e n point and a r e a l m e a n r a i n f a l l for c o n d i t i o n s when the point r a i n f a l l is m e a s u r e d at a gage d i s p l a c e d f r o m the a r e a l c e n t e r b y v a r i o u s d i s t a n c e s . Available Data Data u s e d in t h i s study w e r e c o l l e c t e d on the networks illustrated in Figures 2-8, comprising a r e a s r a n g i n g f r o m 0.03 t o 400 s q u a r e m i l e s . I n a d d i t i o n , the G o o s e C r e e k and P a n t h e r C r e e k networks a r e a s of networks which a available sampling the 1954 w e r e subdivided t o p r o v i d e d a t a for 10, 2 5 , and 50 s q u a r e m i l e s . T h e v a r i o u s p r o v i d e d d a t a for nine a r e a l s i z e s f r o m t o t a l of 1900 s t o r m o b s e r v a t i o n s w e r e for d e r i v a t i o n of e m p i r i c a l r e l a t i o n s . T h e s c h e m e i s i l l u s t r a t e d i n F i g u r e 33, u s i n g Goose C r e e k n e t w o r k . All d a t a used in the study w e r e c o l l e c t e d d u r i n g s p r i n g , s u m m e r , a n d e a r l y fall; c o n s e q u e n t l y , the developed relations a r e most applicable to showertype r a i n f a l l . While the r e s u l t s a r e b a s e d o n I l l i n o i s d a t a , they should b e a p p r o x i m a t e l y r e p r e s e n t a t i v e for the M i d w e s t , in g e n e r a l , and for o t h e r a r e a s having s i m i l a r c l i m a t e and t o p o g r a p h y . A c c u r a c y o f A r e a l Rainfall E s t i m a t e s F r o m a C e n t e r e d Gage Average E r r o r . Various graphical plots were m a d e o f data for e a c h a r e a l s i z e , r e l a t i n g point r a i n f a l l at the c e n t e r of each a r e a to the d i f f e r e n c e b e t w e e n the point o b s e r v a t i o n and the a r e a l m e a n r a i n f a l l a s m e a s u r e d b y all g a g e s within t h a t p a r t i c u l a r a r e a . Inspection of these graphical plots i n d i c a t e d that one of the following g e n e r a l e q u a t i o n s would fit the data b e s t : Log E = k + 1 Log P Log E = k + 1 P (1) m (2) In t h e s e e x p r e s s i o n s , P is the point r a i n f a l l for e i t h e r the s t o r m , w e e k l y , o r m o n t h l y o b s e r v a t i o n at the c e n t e r of a given a r e a ; E r e p r e s e n t s the d i f f e r e n c e b e t w e e n point and a r e a l m e a n r a i n f a l l in t h e given a r e a ; and k, 1 and m a r e r e g r e s s i o n c o n s t a n t s . V a l u e s for k and 1 for s t o r m , w e e k l y , and m o n t h l y r a i n f a l l a r e shown in T a b l e 10 for e a c h n e t w o r k b a s e d o n E q u a t i o n (1). TABLE 10 REGRESSION CONSTANTS FOR STORM, WEEKLY AND MONTHLY EQUATIONS ON VARIOUS AREAS Area (sq. mi.) 0.03 0.60 4 10 25 50 100 280 400 Storm k 1 -2.155 -1.538 -1.377 -1.377 -1.222 -1.167 -1.131 -0.914 -0.932 0.46 0.46 0.47 0.36 0.52 0.51 0.50 0.45 0.53 Weekly k J -2.097 -1.469 -1.260 -1.229 -1.051 -1.060 -1.065 -0.783 0.61 0.61 0.73 0.62 0.68 0.78 0.66 0.69 Monthly k 1 -2.301 -1.347 -1.252 -1.268 -1.252 -1.174 -1.131 0.72 0.38 0.86 0.84 0.78 0.80 0.74 The v a l u e s of 1 v a r y at r a n d o m , w h e r e a s the k v a l u e s show an i n c r e a s i n g t r e n d with a r e a . Cons e q u e n t l y , it w a s felt that the d a t a f r o m a l l n e t w o r k s could be c o m b i n e d into a s i n g l e e x p r e s s i o n of the form: Log E = k1 + l1 Log P + n Log A FIGURE 33 25, 50 AND 100 SQUARE MILE AREAS, GOOSE CREEK 1954 (3) r e l a t i n g the m e a s u r e m e n t e r r o r o f a r e a l m e a n r a i n f a l l t o the p o i n t r a i n f a l l ( P ) r e c o r d e d a t the 36 FIGURE 34 STORM RELATION BETWEEN POINT AND AREAL MEAN RAINFALL BASED ON AVERAGE DEVIATIONS FIGURE 35 WEEKLY RELATION BETWEEN POINT AND AREAL MEAN RAINFALL BASED ON AVERAGE DEVIATIONS 37 FIGURE 36 MONTHLY RELATION BETWEEN POINT AND AREAL MEAN RAINFALL BASED ON INDIVIDUAL DEVIATIONS c e n t e r of the a r e a and to t h e s i z e of t h e a r e a (A). T h e c o n s t a n t s k 1 , 1 1 , and n w e r e d e t e r m i n e d by t h e m e t h o d o f l e a s t s q u a r e s , a n d the following e m p i r i c a l e q u a t i o n s for s t o r m , w e e k l y , and m o n t h l y r a i n fall w e r e o b t a i n e d . L o g E = - 1 . 3 4 1 + 0.50 L o g P + 0 . 2 9 L o g A (Storm) L o g E = - 1 . 2 8 5 + 0.58 L o g P + 0.20 L o g A (Weekly) L o g E = - 1 . 5 5 9 + 0.71 L o g P + 0 . 2 6 L o g A (Monthly) (4) (5) (6) F o r c o m p a r i s o n p u r p o s e s , the d a t a w e r e next fitted to an e x p r e s s i o n of t h e f o r m : Log E = k 2 + 1 2 P m + n1 L o g A (7) i n w h i c h E , P , and A r e p r e s e n t the s a m e q u a n t i t i e s a s i n E q u a t i o n (3), and k 2 , l 2 , m , and n 1 a r e a g a i n regression constants. The resulting empirical equations are: L o g E = - 2 . 0 1 1 + 0.54 0.5 P L o g E = - 1 . 8 5 3 + 0.51 P0.5 Log E = -1.889 + 0.37 P0.5 (10) a n d a r e p r e s e n t e d i n T a b l e 1 1 . T h e s e c o r r e lation coefficients indicate there is no significant d i f f e r e n c e i n t h e g o o d n e s s o f fit p r o v i d e d b y E q u a t i o n s (3) a n d ( 7 ) . T h e s m a l l e r c o r r e l a t i o n c o e f f i c i e n t o b t a i n e d with the m o n t h l y data is due p r i m a r i l y to the fact that a n a l y s i s w a s p e r f o r m e d on u n g r o u p e d data, w h e r e a s the s t o r m and weekly a n a l y s e s w e r e p e r f o r m e d on grouped data. The n u m b e r of individual m o n t h l y o b s e r v a t i o n s did not p e r m i t g r o u p i n g . T h e r e w e r e only 255 m o n t h l y v a l u e s c o m p a r e d t o 663 w e e k l y t o t a l s and 1900 s t o r m o b s e r v a t i o n s . Graphical plots of the grouped data used in E q u a t i o n s ( 4 ) , ( 5 ) , ( 8 ) , a n d (9) i n d i c a t e d t h a t E q u a t i o n s ( 8 ) a n d (9) p r o v i d e a s o m e w h a t b e t t e r fit a t high and low v a l u e s of P. A s i m i l a r o c c u r r e n c e was noted b e t w e e n t h e s e two g e n e r a l t y p e s of equations in the study of the v a r i a t i o n of point rainfall with d i s t a n c e d i s c u s s e d in the p r e v i o u s s e c t i o n of this bulletin. TABLE 11 MULTIPLE CORRELATION COEFFICIENTS + 0.29 Log A (Storm) (8) + 0.18 Log A (Weekly) (9) + 0.25 Log A (Monthly) (10) Multiple correlation coefficients were then d e t e r m i n e d for E q u a t i o n s (4), (5), ( 6 ) , (8), ( 9 ) , and Equation Number Correlation Coefficient Rainfall Type (4) (8) (5) (9) (6) (10) 0.89 0.90 0.85 0.85 0.62 0.60 Storm Storm Weekly Weekly Monthly Monthly 38 A c o m p a r i s o n of t h e E v a l u e s obtained for v a r i ous P v a l u e s f r o m E q u a t i o n s (4) and (8) for s t o r m r a i n f a l l on an a r e a of 100 s q u a r e m i l e s is p r e s e n t e d in T a b l e 12. Only s m a l l d i f f e r e n c e s in E a r e o b t a i n e d f r o m the two e m p i r i c a l e q u a t i o n s b e l o w P v a l u e s o f t h r e e i n c h e s . Above t h r e e i n c h e s , E q u a tion (8) p r o d u c e s a p p r e c i a b l y h i g h e r v a l u e s of E than E q u a t i o n (4). A s m e n t i o n e d p r e v i o u s l y , i n d i c a t i o n s a r e that e m p i r i c a l equations d e r i v e d f r o m E x p r e s s i o n (7) fit h e a v y rainfall d a t a b e t t e r . Since h e a v y r a i n f a l l is of p r i m e i n t e r e s t to the h y d r o l o g i s t , f u r t h e r a n a l y t i c a l efforts h a v e b e e n c o n c e n t r a t e d on t h i s f o r m of equation. E q u a t i o n s (8), (9) and (10) a r e r e p r e s e n t e d g r a p h i c a l l y in F i g u r e s 34, 35, and 36. s e n t e d b y s t o r m , w e e k l y and m o n t h l y v a l u e s . T h i s t r e n d b e c o m e s m o r e p r o n o u n c e d a s the point r a i n fall a t the a r e a l c e n t e r i n c r e a s e s . I t would a p p e a r , t h e r e f o r e , that a c e n t e r e d gage m e a s u r e s a r e a l m e a n r a i n f a l l with a n i n c r e a s i n g d e g r e e o f a c c u r a cy as the s a m p l i n g p e r i o d i n c r e a s e s . Such a t r e n d i s t o b e e x p e c t e d . The w e e k l y r a i n f a l l i s u s u a l l y the r e s u l t o f s e v e r a l s t o r m s and the m o n t h l y t o t a l o r d i n a r i l y c o n t a i n s m o r e s t o r m s than t h e w e e k l y t o t a l . In the a b s e n c e of significant t o p o g r a p h i c or c l i m a t i c f e a t u r e s , the a r e a l d i s t r i b u t i o n o f r a i n fall will t e n d t o b e c o m e m o r e u n i f o r m a s the n u m b e r of s t o r m s i n c r e a s e s , because individual s t o r m s tend to t r a v e l in v a r i o u s p a t h s a c r o s s a g i v e n area. TABLE 13 TABLE 12 COMPARISON BETWEEN STORM, WEEKLY AND MONTHLY RELATIONS COMPARISONS BETWEEN EQUATIONS (4) AND (8) P (i".) E (in.) for 100 Square Mile Area Eq. (4) Eg. (8) 0.10 0.04 0.06 0.25 0.07 0.07 0.50 0.10 0.09 1.00 0.14 0.13 2.00 0.20 0.22 3.00 0.25 0.32 5.00 0.32 0.60 A c o m p a r i s o n of E v a l u e s obtained f r o m the s t o r m , w e e k l y and m o n t h l y e q u a t i o n s is shown in T a b l e 13. A s e x p e c t e d , all t h r e e e q u a t i o n s show that t h e a v e r a g e d i f f e r e n c e b e t w e e n point and a r e a l m e a n r a i n f a l l (E) i n c r e a s e s a s the s t o r m s i z e , r e p r e s e n t e d b y the point m e a s u r e m e n t a t t h e a r e a l c e n t e r , i n c r e a s e s . F o r a point rainfall m e a s u r e m e n t of a given m a g n i t u d e , a t r e n d e x i s t s for E to d e c r e a s e with i n c r e a s i n g s a m p l i n g t i m e a s r e p r e - Av. Difference (in.) Between Point and Point Mean Rainfall for 100-Square Mile Area Rainfall (in.) Storm Weekly Monthly 0.25 0.07 0.06 0.06 1.00 0.13 0.10 0.10 2.00 0.22 0.17 0.14 4.00 0.45 0.34 0.22 Confidence L i m i t s . An e s t i m a t e , P, of the a r e a l m e a n rainfall b e c o m e s m o r e meaningful when s o m e m e a s u r e i s m a d e o f the p o s s i b l e e r r o r in the e s t i m a t e . It is d e s i r a b l e to d e t e r m i n e an i n t e r v a l a b o u t P with s o m e m e a s u r e of c o n f i d e n c e that the a r e a l m e a n i s i n that i n t e r v a l . T o e s t a b l i s h c o n f i d e n c e l i m i t s , an e s t i m a t e of the s a m p l i n g standard e r r o r was r e q u i r e d . This was m a d e from 14 g r o u p s of s t o r m s having about the s a m e P values. These classes, expressed in inches, a r e shown in T a b l e 14 A s t a n d a r d d e v i a t i o n w a s c o m puted for e a c h of the c l a s s i n t e r v a l s in T a b l e 14. The c o n s t a n t s k, 1, m and n w e r e a g a i n d e t e r - FIGURE 37 STORM RELATION BETWEEN POINT AND AREAL MEAN RAINFALL BASED ON STANDARD ERRORS 39 FIGURE 38 WEEKLY RELATION BETWEEN POINT AND AREAL MEAN RAINFALL BASED ON STANDARD ERRORS m i n e d for e q u a t i o n s of t h e f o r m r e p r e s e n t e d by E x p r e s s i o n (7). The r e s u l t i n g e q u a t i o n s for s t o r m and w e e k l y rainfall a r e : Log s = - 1 . 8 4 3 + 0.48 P 0.5 Log s = - 1 . 7 3 1 + 0.46 P 0.5 + 0.27 Log A (Storm) + 0.19 Log A (Weekly) (11) (12) In t h e s e e q u a t i o n s , s ( i n c h e s ) r e p r e s e n t s the b e s t e s t i m a t e of the s t a n d a r d e r r o r , P ( i n c h e s ) r e p r e s e n t s the' m i d - p o i n t o f the c l a s s i n t e r v a l s , and A r e p r e s e n t s the a r e a i n s q u a r e m i l e s . M u l t i ple c o r r e l a t i o n coefficients for E q u a t i o n s (11) and (12) w e r e 0.85 and 0.82, r e s p e c t i v e l y . F i g u r e s 37 and 38 show a g r a p h i c a l r e l a t i o n b e t w e e n A and s for s e v e r a l P v a l u e s for s t o r m and w e e k l y r a i n f a l l . An insufficient n u m b e r of m o n t h l y t o t a l s p r e v e n t e d the d e t e r m i n a t i o n of a m o n t h l y r e l a t i o n s h i p . T h e 9 5 p e r cent c o n f i d e n c e l i m i t s for s t o r m and weekly a r e a l m e a n rainfall w e r e e s t i m a t e d b y c o m puting p ± 2 s f r o m E q u a t i o n s (11) and (12). T h e r e s u l t i n g l i m i t s a r e p r e s e n t e d for s e v e r a l v a l u e s of A in F i g u r e s 39 and 40. O t h e r confidence l i m i t s m a y b e d e t e r m i n e d i f d e s i r e d . F o r e x a m p l e 70, 80, 90 and 99 p e r cent c o n f i d e n c e l i m i t s for s t o r m TABLE 14 STORM GROUPS (IN.) USED IN STANDARD ERROR COMPUTATIONS 0.01-0.10 0.11-0.20 0.21-0.30 0.31-0.40 0.41-0.50 0.51-0.60 0.61-0.70 0.71-0.80 0.81-0.90 0.91-1.00 1.01-1.50 1.51-2.00 2.01-3.00 3.01-4.00 and w e e k l y a r e a l m e a n r a i n f a l l m a y b e e s t i m a t e d by m u l t i p l y i n g s f r o m E q u a t i o n s (11) and (12) by 1.05, 1.30, 1.67 and 2 . 6 6 , r e s p e c t i v e l y , and adding and s u b t r a c t i n g f r o m P . A r e a l R a i n f a l l E s t i m a t e s f r o m a n OffC e n t e r Gage F r e q u e n t l y , r a i n g a g e s a r e not l o c a t e d a t o r n e a r the c e n t e r of the a r e a of i n t e r e s t . The n e a r e s t gage m a y even be o u t s i d e the b o u n d a r y of the a r e a . It is logical to expect t h a t a r a i n gage which is l o c a t e d at a d i s t a n c e f r o m the a r e a l c e n t e r will on the a v e r a g e give a l e s s a c c u r a t e e s t i m a t e o f t h e a r e a l m e a n than a gage l o c a t e d at the c e n t e r . The following p a r a g r a p h s s u m m a r i z e a n a n a l y s i s t o d e t e r m i n e the a c c u r a c y o f s t o r m a r e a l m e a n r a i n fall e s t i m a t e s f r o m g a g e s l o c a t e d a t v a r i o u s d i s t a n c e s f r o m the c e n t e r of s e v e r a l a r e a s of d i f f e r ent s i z e s . Data f r o m a r e a s of 10, 2 5 , 50, and 100 s q u a r e miles w e r e analyzed. Analysis techniques were s i m i l a r to those used in c o m p a r i n g a r e a l m e a n r a i n f a l l with the r a i n f a l l a m o u n t obtained f r o m a c e n t r a l l y - l o c a t e d g a g e . An e x a m i n a t i o n of g r a p h i cal plots of the d a t a i n d i c a t e d that an e x p r e s s i o n of the f o r m Log E = a + b P c + d Log A + e Log D (13) followed t h e t r e n d of t h e d a t a s a t i s f a c t o r i l y . In t h i s e x p r e s s i o n , E r e p r e s e n t s the a v e r a g e of the d i f f e r e n c e s , A is the n e t w o r k a r e a , D is d i s t a n c e f r o m the a r e a l c e n t e r , ' P r e p r e s e n t s r a i n f a l l a m o u n t s a t 40 FIGURE 39 95 PER CENT CONFIDENCE RANGE FOR STORM RAINFALL 41 FIGURE 40 95 PER CENT CONFIDENCE RANGE FOR WEEKLY RAINFALL the observation gage; a, b, c, d, and e a r e r e g r e s sion constants. The equation obtained by fitting Expression (13) to the data is: Log E = -1.411 + 0.51 P 0 . 5 -0.01 Log A + 0.37 Log D (14) In this equation E and P a r e in inches, A is in square miles and D is in miles. The relation is illustrated for an a r e a of 100 square miles in Figure 41. Within the limits of the data used, the magnitude of the coefficient of Log A suggests that a r e a was not an important variable in the analysis. This 42 r e s u l t i s r a t h e r difficult t o r a t i o n a l i z e . H o w e v e r , it m a y be due to the fact t h a t a gage l o c a t e d at any given d i s t a n c e f r o m t h e c e n t e r of two a r e a s of diff e r e n t s i z e i s r e l a t i v e l y c l o s e r t o the c e n t e r o f the l a r g e r a r e a . C o n s e q u e n t l y , the gage m a y b e i n a n e q u a l l y good p o s i t i o n for s a m p l i n g the m e a n r a i n fall i n b o t h a r e a s . A n e m p i r i c a l e q u a t i o n f o r the s t a n d a r d d e v i a tion w a s d e t e r m i n e d for u s e i n e s t i m a t i n g c o n f i d e n c e limits. This equation is: Log s = -1.179 + 0.41 P 0.5 - 0.01 Log A + 0.30 Log D (15) w h e r e s is in i n c h e s and P, A, and D h a v e the s a m e d e f i n i t i o n and u n i t s of m e a s u r e m e n t as they h a d in E q u a t i o n (14). T h e 9 5 p e r c e n t confidence l i m i t s for v a r i o u s v a l u e s of P, A, and D m a y be c o m puted f r o m P ± Z s. FIGURE 41 EFFECT OF GAGE LOCATION ON SINGLE GAGE ESTIMATES OF MEAN RAINFALL ON 100 SQUARE MILE AREA Since A c o n t r i b u t e s v e r y l i t t l e to the value of E and s in E q u a t i o n s (14) and (15), the a r e a v a r i a b l e could b e o m i t t e d without s i g n i f i c a n t e r r o r w i t h i n the l i m i t s o f a r e a t e s t e d i n t h i s study. T h e s e e q u a t i o n s would t h e n be of the s a m e f o r m as E q u a t i o n s (4) and (6) in t h e v a r i a t i o n of r a i n f a l l w i t h d i s t a n c e study d i s c u s s e d in the p r e v i o u s s e c t i o n of t h i s b u l l e t i n . The coefficient of P 0 . 5 is the s a m e and the coefficient of Log D n e a r l y equal in both s t u d i e s . T h e s e r e s u l t s s u g g e s t that the e s t i m a t o r s P and D give p r a c t i c a l l y t h e s a m e m e a s u r e m e n t e r r o r in both a n a l y s e s . 43 R E L I A B I L I T Y O F S T O R M MEAN RAINFALL ESTIMATES Introduction In the p r e v i o u s s e c t i o n , the a c c u r a c y of a r e a l r a i n f a l l e s t i m a t e s o b t a i n e d f r o m a single gage at o r n e a r t h e c e n t e r o f a n a r e a was i n v e s t i g a t e d . H o w e v e r , a n e s t i m a t e o f a v e r a g e rainfall m a y b e r e q u i r e d f o r a n a r e a o n which m o r e than one g a g e o c c u r s . C o n s e q u e n t l y , a n a n a l y s i s was m a d e t o d e t e r m i n e a n e s t i m a t e o f both the a v e r a g e e r r o r and the s t a n d a r d e r r o r involved i n m e a s u r i n g a r e a l m e a n r a i n f a l l b y m e a n s o f v a r i o u s gage d e n s i t i e s within s e v e r a l a r e a s o f d i f f e r e n t s i z e . D a t a Used Data f r o m the P a n t h e r C r e e k , Goose C r e e k , E l P a s o and e a s t c e n t r a l I l l i n o i s n e t w o r k s w e r e i n cluded in the a n a l y s i s . Only s h o w e r and t h u n d e r s t o r m r a i n f a l l w e r e c o n s i d e r e d . The 1 0 0 - s q u a r e m i l e G o o s e C r e e k n e t w o r k w a s subdivided i n t o n e t w o r k s c o m p r i s i n g 25 and 50 s q u a r e m i l e s f o r the 1952, 1953, and 1954 s e a s o n s . Two 2 0 0 - s q u a r e m i l e n e t w o r k s w e r e c h o s e n ; one from the 2 8 0 square m i l e El P a s o network (Fig. 2) operated in 1948 and 1949, and the o t h e r f r o m the 4 0 0 - s q u a r e mile east central Illinois network (Fig. 5) o p e r a t e d in 1955 and 1956. T h e s e d a t a p e r m i t t e d an a n a l y s i s f o r a r e a s o f 2 5 , 50, 100, 200, a n d 400 square m i l e s . Sampling P r o c e d u r e s More t h a n one s a m p l i n g plan was c o n s i d e r e d t o a s c e r t a i n the m o s t a p p l i c a b l e plan for s a m p l i n g a r e a l m e a n rainfall. T h r e e sampling plans w e r e t r i e d on a 1 0 0 - s q u a r e m i l e n e t w o r k . T h e s e i n cluded the r a n d o m s t a r t , a p l a n which c o m b i n e d c e n t r a l l y l o c a t e d s a m p l e s with r a n d o m s t a r t s a m p l e s , and a s i n g l e b e s t - c e n t e r e d s a m p l i n g p l a n . A r a n d o m s a m p l i n g p r o c e d u r e (not u s e d in t h i s study) a l l o w s the s e l e c t i o n of g a g e s in each s a m p l e to be d e t e r m i n e d e n t i r e l y by c h a n c e . A s t r a t i f i e d r a n d o m s a m p l i n g plan p r o v i d e s a m o r e c o n s i s t e n t ly u n i f o r m d i s t r i b u t i o n of g a g e s in e a c h s a m p l e than that obtained by a p u r e l y r a n d o m plan, but a l l o w s the s e l e c t i o n of g a g e s to be d e t e r m i n e d m o r e b y c h a n c e than d o e s a r a n d o m s t a r t s a m p ling p l a n , for e x a m p l e . S a m p l i n g p l a n s which i n volve the s e l e c t i o n of c e n t r a l l y l o c a t e d g a g e s in c o n t i g u o u s a r e a s r e q u i r e the o m i s s i o n of a c o n s i d e r a b l e n u m b e r o f o b s e r v a t i o n s from the a n a l y s i s . A random start systematic sampling procedure p r o v i d e s a plan for s p r e a d i n g the s a m p l e o b s e r v a t i o n s o v e r the n e t w o r k , and a t the s a m e t i m e , p e r m i t s t h e u s e o f d a t a f r o m all g a g e s . R a n d o m S t a r t . T h e s a m p l i n g p r o c e d u r e for the r a n d o m s t a r t s y s t e m a t i c s a m p l i n g plan can b e i l l u s t r a t e d by r e f e r e n c e to F i g u r e 42. When t h e total n u m b e r of g a g e s in a n e t w o r k is 48 and it is d e s i r e d to t a k e s a m p l e s of 3 g a g e s , the 48 g a g e s a r e divided into 16 c o n t i g u o u s g r o u p s of 3 g a g e s e a c h . A c c o r d i n g t o the r a n d o m s t a r t plan, a s t a r t ing p o s i t i o n is s e l e c t e d in one g r o u p of g a g e s . One gage i n a p p r o x i m a t e l y the s a m e l o c a t i o n i s a u t o m a t i c a l l y d e s i g n a t e d in e a c h of the o t h e r g r o u p s to c o m p l e t e the o b s e r v a t i o n s in e a c h s a m p l e . In a FIGURE 42 GROUPS OF GAGES FROM WHICH 3 RANDOM START SYSTEMATIC SAMPLES OF SIZE 16 WERE SELECTED network of 48 gages, there a r e three possible s a m p l e s of 16 which a r e t r e a t e d as h a v i n g e q u a l p r o b a b i l i t y of b e i n g an a c t u a l s a m p l e of 16 g a g e s . Other s a m p l e sizes may be designated in a s i m i l a r manner. C o m b i n e d S a m p l i n g P l a n . The r a n d o m s t a r t s a m p l i n g p l a n d o e s not p r o v i d e for a s i n g l e g a g e s a m p l e . When the s a m p l e s i z e i s d e c r e a s e d t o one g a g e , the r a n d o m s t a r t plan of dividing the n e t w o r k into g r o u p s o f c o n t i g u o u s g a g e s b e c o m e s t h e s a m e a s s e l e c t i n g one o b s e r v a t i o n a t r a n d o m . T h e v a r i a n c e of t h e s e e s t i m a t e s would be e q u i v a l e n t t o the p u r e l y r a n d o m s a m p l i n g v a r i a n c e for s i n g l e g a g e s a m p l e s . T h e r e i s a l s o a t e n d e n c y for the r a n d o m s t a r t s y s t e m a t i c s a m p l i n g plan t o a p p r o a c h r a n d o m s a m p l i n g for o t h e r s m a l l s a m p l e s , b e c a u s e the s p r e a d of o b s e r v a t i o n s in each s a m p l e b e c o m e s l e s s u n i f o r m o v e r the a r e a s a s the s a m p l e s i z e d e c r e a s e s . T h i s f e a t u r e o f the r a n d o m s t a r t plan a l lows s a m p l i n g e r r o r s for the s m a l l s a m p l e s i z e s which a r e s o m e w h a t l a r g e r t h a n would b e o b s e r v e d n o r m a l l y i n a c t u a l p r a c t i c e , for the r e a s o n t h a t gages in an operating network usually approach a uniform distribution. When one is d e s i g n i n g a n e t w o r k , e a c h r a i n gage would l o g i c a l l y be p l a c e d r e l a t i v e l y c l o s e to the c e n t e r of the a r e a to be gaged. A c e n t r a l l y l o c a t e d gaging plan should p e r m i t s a m p l i n g e r r o r s of a m a g n i t u d e l e s s than a p l a n in which g a g e l o c a t i o n s w e r e left p a r t i a l l y o r wholly t o c h a n c e . T h i s a r g u m e n t m a y b e a d v a n c e d for r a n d o m s t a r t s y s t e m a t i c s a m p l e s i z e s of 2, 3, 4, and p o s s i b l y 6 and 8 g a g e s in 100 s q u a r e m i l e s . C o n s e q u e n t l y , a s a m p ling plan w a s t r i e d which involved s a m p l e s i z e s of 1, 2, 3, 4, 6, and 8 which w e r e o b t a i n e d f r o m a c e n t r a l l y l o c a t e d plan a s i l l u s t r a t e d i n F i g u r e s 43-A through 4 3 - F . 44 FIGURE 43 COMBINED SAMPLING PLAN FOR SAMPLES OF SIZE 1, 2, 3, 4, 6 AND 8 45 FIGURE 44 BEST-CENTERED SAMPLING PLAN FOR PANTHER CREEK NETWORK F o r s a m p l e s o f s i z e 1 , five g a g e s w e r e s e l e c t e d within 1 - 1 / 4 m i l e s of t h e g e o g r a p h i c c e n t e r of the n e t w o r k t o r e p r e s e n t t h e p o s s i b l e s a m p l e s for t h i s s i z e . F o r s a m p l e s of s i z e 2, 3, 4, 6, and 8 the n e t w o r k w a s divided into 2, 3, 4, 6, and 8 s e c t i o n s , r e s p e c t i v e l y . G a g e s l o c a t e d n e a r the c e n t e r s o f these sections were designated as observation s t a t i o n s . A s the s a m p l e s i z e i n c r e a s e d beyond eight, i t b e c a m e i m p o s s i b l e t o s e l e c t s a m p l e s which w o u l d b e m o r e c e n t r a l l y l o c a t e d than the r a n d o m s t a r t s a m p l e s . C o n s e q u e n t l y , the r a n d o m s t a r t s y s t e m a t i c p l a n w a s u s e d for d e s i g n a t i n g s a m p l e s h a v i n g m o r e t h a n eight g a g e s . B e s t - C e n t e r e d . T h e t h i r d s a m p l i n g plan w h i c h w a s s e l e c t e d was t h a t defined a s the one b e s t s u b - s a m p l e f o r e a c h gage d e n s i t y , t h a t i s , a p p r o x i m a t e l y a u n i f o r m grid o r c e n t e r e d s y s t e m a t i c s a m p l e . T h i s s a m p l i n g p l a n h a s one a d v a n t a g e o v e r e i t h e r of the o t h e r two d e s c r i b e d , b e c a u s e it m o r e c l o s e l y a p p r o a c h e s the p r a c t i c a l n e t w o r k d e s i g n . T h e b e s t - c e n t e r e d plan h a s the a d v a n t a g e of p r o v i d i n g d a t a t h a t a l l o w for e a s y c a l c u l a t i o n of e i t h e r the a v e r a g e o r the s t a n d a r d e r r o r o f m e a n r a i n f a l l . H o w e v e r it h a s t h e d i s a d v a n t a g e of b e i n g d e p e n d e n t on a s i n g l e s u b j e c t i v e s e l e c t i o n of a b e s t s a m p l e . T h i s plan d o e s not u t i l i z e i n f o r m a t i o n t h a t w a s g a t h e r e d at all the o t h e r g a g e s of the n e t work except in the estimation of the network a v e r a g e . Gage l o c a t i o n s u s e d for t h i s s a m p l i n g p l a n a r e shown in F i g u r e s 44A t h r o u g h 44D. 45 Analytical Procedure T h e m a i n p r o b l e m i n the a n l y s i s w a s the e s t i m a t i o n of the t r u e v a r i a n c e of the e s t i m a t e d a v e r a g e p r e c i p i t a t i o n , P , about the t r u e a v e r a g e p r e c i p i t a t i o n for the n e t w o r k a r e a u n d e r c o n s i d e r a t i o n . An e s t i m a t e of t h i s v a r i a n c e l e a d s to an e x p e c t e d m e a s u r e o f the e r r o r involved i n s a m p l i n g with e a c h d i f f e r e n t gage d e n s i t y . The c o m p u t a t i o n cons i s t e d m a i n l y o f two s t e p s . T h e f i r s t s t e p w a s the d e t e r m i n a t i o n of the d e v i a t i o n s f r o m the n e t w o r k m e a n by the following f o r m u l a v a r i a t i o n in the d i s t r i b u t i o n of r a i n f a l l o v e r the network among s t o r m s of s i m i l a r m e a n rainfall. A p r a c t i c a l q u a n t i t a t i v e m e a s u r e of a r e a l rainfall d i s t r i b u t i o n which c a n b e i n c l u d e d i n E x p r e s s i o n (2) is difficult to o b t a i n . It was t h o u g h t that the d u r a t i o n o f r a i n f a l l m i g h t p a r t i a l l y r e f l e c t the a r e a l d i s t r i b u t i o n , s i n c e t h e d i s t r i b u t i o n of point r a i n f a l l a m o u n t s m a y d e p e n d upon the s t o r m d u r a t i o n f a c t o r . C o n s e q u e n t l y , the d u r a t i o n f a c t o r , T , w a s a d d e d to E x p r e s s i o n (2) and the g o o d n e s s of fit of an e x p r e s s i o n of t h e f o r m L o g s = a1 + b1 L o g P + c1 Log N + e1 Log T w h e r e d r e p r e s e n t s the a b s o l u t e v a l u e of the d i f f e r e n c e b e t w e e n P , the s a m p l e m e a n r a i n f a l l f r o m a s a m p l e of N g a g e s , and the a r e a l m e a n r a i n f a l l b a s e d on the total n u m b e r of g a g e s in the n e t w o r k . T h e s e c o n d s t e p in d e t e r m i n i n g an e s t i m a t e of the e r r o r involved t h e fitting of a r e g r e s s i o n s y s t e m t o the d e v i a t i o n s . The r e g r e s s i o n l i n e s p r o v i d e v a l u e s which a r e d e s i g n a t e d a s the e s t i m a t e o f the e r r o r of P about A d i s c u s s i o n of the r e g r e s s i o n s y s t e m follows. F r o m g r a p h i c a l plots o f the d a t a i t w a s o b s e r v e d , in g e n e r a l , t h a t the d e v i a t i o n of the s a m p l e estimate from increased as P i n c r e a s e d , although t h e r e was c o n s i d e r a b l e fluctuation i n t h i s u p w a r d t r e n d . A l s o , the d e v i a t i o n s g e n e r a l l y inc r e a s e d a s the n u m b e r o f o b s e r v a t i o n s ( r a i n g a g e s ) i n the s a m p l e d e c r e a s e d . U n d o u b t e d l y , t h e r e a r e m a n y o t h e r f a c t o r s which c o n t r i b u t e t o the v a r i a bility of these deviations from s t o r m to s t o r m , s u c h a s the (1) m e t e o r o l o g i c a l f a c t o r s c a u s i n g the s t o r m , (2) location o f the s t o r m c o r e with r e s p e c t to the c e n t e r of the n e t w o r k , (3) d u r a t i o n of the s t o r m , and (4) r a t e of r a i n f a l l . H o w e v e r , it is difficult to e x p r e s s (1) and (2) q u a n t i t a t i v e l y and P is a function of (3) and (4). G r a p h i c a l plots i n d i c a t e d that the a v e r a g e m a g n i t u d e of the d e v i a t i o n s was a l s o a function of N. M a t h e m a t i c a l e x p r e s s i o n s of the f o r m Log s = a + b Log P + c Log N (2) and Log s = a + b P m + c Log N (3) a p p e a r e d to p r o v i d e t h e b e s t fit to the d a t a . In t h e s e e x p r e s s i o n s , s r e p r e s e n t s the s t a n d a r d d e v i a t i o n of the a b s o l u t e v a l u e s of d f r o m E x p r e s s i o n (1). T h e g o o d n e s s of fit of E x p r e s s i o n (2) was d e t e r mined in preliminary analyses. R e s u l t s of A n a l y s i s on 1 0 0 - S q u a r e Mile N e t w o r k R a n d o m S t a r t . When E x p r e s s i o n (2) w a s fitted t o the d e v i a t i o n s o b t a i n e d b y the r a n d o m s t a r t s y s t e m a t i c s a m p l i n g p l a n , the m u l t i p l e c o r r e l a t i o n coefficient was 0 . 5 2 . Although this c o r r e l a t i o n i s s i g n i f i c a n t , a c o r r e l a t i o n of g r e a t e r d e g r e e is d e s i r a b l e for p r e d i c t i n g the e x p e c t e d d e v i a t i o n b e t w e e n the s a m p l e and the a r e a l m e a n r a i n f a l l . It w a s felt that a p a r t of the v a r i a t i o n not a c counted for by the r e g r e s s i o n s y s t e m w a s d u e to (4) w a s d e t e r m i n e d . F i t t i n g E x p r e s s i o n (4) t o the d a t a r e s u l t e d in a m u l t i p l e c o r r e l a t i o n of 0 . 5 3 . It is e v i d e n t that the d u r a t i o n v a r i a b l e did not signific a n t l y i n c r e a s e t h e efficiency i n p r e d i c t i n g the e x p e c t e d d e v i a t i o n . C o n s e q u e n t l y , it w a s felt that a d d i n g the d u r a t i o n f a c t o r t o the r e g r e s s i o n s y s t e m did not w a r r a n t the e x t r a w o r k i n v o l v e d . C o m b i n e d S a m p l i n g P l a n . When E x p r e s s i o n (2) w a s fitted to the d a t a for the d e v i a t i o n s obtained f r o m the c o m b i n e d s a m p l i n g p l a n , t h e r e s u l t i n g m u l t i p l e c o r r e l a t i o n coefficient w a s 0 . 7 0 . This i n c r e a s e i n t h e c o r r e l a t i o n coefficient f r o m 0.52 for the random start plan apparently reflects a general i n c r e a s e i n s t a b i l i t y o f the s a m p l e e s t i m a t e s f r o m t h e m o r e u n i f o r m d i s t r i b u t i o n of g a g e s for the small sample sizes. Another independent variable was then introd u c e d into the p r e v i o u s r e g r e s s i o n s y s t e m i n o r d e r to e x a m i n e m o r e t h o r o u g h l y the e s t i m a t e of the s a m p l i n g v a r i a t i o n . An e x p r e s s i o n of t h e following form w a s fitted to the d a t a , w h e r e s is t h e s t a n d a r d d e v i a t i o n of the e n t i r e n e t w o r k of g a g e r e a d i n g s , e is a c o n s t a n t , and the o t h e r s y m b o l s r e p r e s e n t t h e s a m e q u a n t i t i e s a s t h e y did i n p r e v i o u s d i s c u s s i o n s . T h e s variable r e p r e s e n t s the best availa b l e e s t i m a t e o f v a r i a t i o n i n the a r e a l p r e c i p i t a t i o n p a t t e r n . T h e s a m p l i n g e r r o r for v a r i o u s s a m p l e s i z e s should d e p e n d c o n s i d e r a b l y upon the v a r i a b i l i t y of the p r e c i p i t a t i o n p a t t e r n . When E x p r e s s i o n (5) was fitted to the d a t a the m u l t i p l e c o r r e l a t i o n w a s i n c r e a s e d f r o m 0.70 t o 0.84. T h e s i m p l e c o r r e l a t i o n c o e f f i c i e n t s b e t w e e n log s and log P , log N , and l o g w e r e 0.40, 0 . 5 8 and 0 . 6 5 , respectively. F r o m the p r e c e d i n g c o r r e l a t i o n c o e f f i c i e n t s i t i s evident that the e x p e c t e d s a m p l i n g e r r o r i s h i g h l y d e p e n d e n t upon the v a r i a t i o n in r a i n f a l l , as m e a s u r e d by the s t a n d a r d d e v i a t i o n of a r e l a t i v e l y d e n s e network of r a i n g a g e s . It is a l s o evident, as would be e x p e c t e d , t h a t the s a m p l i n g e r r o r has a h i g h e r d e g r e e of c o r r e l a t i o n with v a r i a t i o n of r a i n fall than with e i t h e r m e a n r a i n f a l l o r g a g e d e n s i t y . It should be noted that the i n s e r t i o n of the s t a n d a r d d e v i a t i o n o f point r a i n f a l l t o t a l s f r o m all g a g e s i n t o the e q u a t i o n p r o d u c e s a n e s t i m a t e that i s not p r a c t i c a l f r o m the h y d r o l o g i c s t a n d p o i n t . D e n s e n e t w o r k s o f r a i n g a g e s a r e s e l d o m u s e d except i n r e s e a r c h . The hydrologist frequently n e e d s a means o f e s t i m a t i n g the s a m p l i n g e r r o r for m e a n rainfall 47 a m o u n t s which have b e e n obtained f r o m a s p a r s e n e t w o r k of g a g e s . C o n s e q u e n t l y , the s t a n d a r d d e v i a t i o n , sp of point r a i n f a l l a m o u n t s i n c l u d e d in e a c h s a m p l e was i n s e r t e d into E x p r e s s i o n ( 5) in p l a c e of F o r e x a m p l e , if five g a g e s w e r e i n c l u d e d in a s a m p l e , sp would be the s t a n d a r d d e v i a t i o n of the five point r a i n f a l l a m o u n t s . The m a g n i t u d e of s P is a m e a s u r e of the p r e c i s i o n of a s a m p l e m e a n r a i n fall v a l u e . T h i s v a r i a b l e should have a n influence upon e s t i m a t e s o f the s a m p l i n g e r r o r for a r e a l m e a n r a i n f a l l v a l u e s . I n s e r t i n g this v a r i a b l e into the e x p r e s s i o n r e s u l t e d in a m u l t i p l e c o r r e l a t i o n of 0 . 7 1 . T h i s is a v e r y s m a l l i n c r e a s e o v e r the 0.70 coefficient which w a s o b t a i n e d f r o m E x p r e s s i o n (5). C o n s e q u e n t l y , i t m u s t b e concluded that the s p v a r i a b l e is not useful as a t h i r d i n d e p e n d e n t v a r i a b l e . The inefficacy of s P p r o b a b l y r e f l e c t s the fact t h a t the v a r i a t i o n of s a m p l e s t a n d a r d d e v i a t i o n s w i t h i n s t o r m s a p p r o x i m a t e d the v a r i a t i o n i n the s t a n d a r d d e v i a t i o n s of a p a r t i c u l a r s e t of gage readings from s t o r m to s t o r m . Effectiveness of the s a m p l e s t a n d a r d d e v i a t i o n v a r i a b l e i n c r e a s e d a s s a m p l e s i z e i n c r e a s e d . H o w e v e r , the l a r g e r v a r i a t i o n a s s o c i a t e d with s m a l l s a m p l e s i z e s offs e t m o s t of the effect of t h e s t a n d a r d d e v i a t i o n s f o r l a r g e r s a m p l e s i z e s . T h e efficiency o f s t a n d a r d deviation as a third independent variable r e a c h e d a m a x i m u m when all g a g e s w e r e i n c l u d e d , a s w a s the c a s e when the v a r i a b l e was u s e d . B e s t - C e n t e r e d . A s t a n d a r d d e v i a t i o n of d v a l u e s f r o m E x p r e s s i o n (1) w a s o b t a i n e d b y a n a d j u s t m e n t s i m i l a r t o t h a t u s e d b y L i n s l e y and K o h l e r i n t h e i r a n a l y s i s of d a t a f r o m a c o n c e n t r a t e d n e t w o r k n e a r Wilmington, Ohio.(15) S t o r m d a t a w e r e grouped i n t o c l a s s e s o n the b a s i s o f s a m p l e m e a n r a i n f a l l as m e a s u r e d by a s a m p l e of N g a g e s . A s t a n d a r d d e v i a t i o n w a s c o m p u t e d for e a c h c l a s s . E x p r e s s i o n (2) w a s t h e n fitted to the d a t a , using t h e s t a n d a r d d e v i a t i o n for e a c h c l a s s a s the d e p e n d e n t v a r i a b l e . T h e s a m p l e s i z e and the m i d - p o i n t of the rainfall for e a c h c l a s s w e r e the independent v a r i a b l e s . A m u l t i p l e c o r r e l a t i o n coefficient of 0.86 was o b t a i n e d with t h i s r e g r e s s i o n s y s t e m . C o m p a r i s o n of R e s u l t s from T h r e e Sampling P l a n s A c o m p a r i s o n of sampling e r r o r equations for the t h r e e sampling plans can be made by r e f e r e n c e to F i g u r e 45. It is evident that the random s t a r t plan will predict considerably higher sampling e r r o r s than either of the other p l a n s . The other two sampling plans resulted in e r r o r s which a r e v e r y s i m i l a r in magnitude within the range of data used. The a and c values for the b e s t - c e n t e r e d and the combination plan a r e a l m o s t identical. The differences between the b values could be attributed to s a m p l i n g v a r i a t i o n . R e s u l t s of Analysis for Areas of Different Size Average E r r o r . The b e s t - c e n t e r e d sampling plan a p p r o a c h e s the p r a c t i c a l situation which hyd r o l o g i s t s must contend with in using the r e s u l t s of sampling e r r o r a n a l y s e s . In addition, this plan ranked well in the c o m p a r i s o n with other sampling plans which were considered. Consequently, the b e s t - c e n t e r e d s a m p l i n g plan was chosen for a m o r e complete a n a l y s i s of data involving a r e a s of 25, 50, 100, 200, and 400 s q u a r e m i l e s . As noted p r e v i o u s l y in the s e c t i o n s on variation of point rainfall with distance and a r e a l r e p r e s e n t a t i v e n e s s of point rainfall, graphical plots of the data indicated that an equation for a v e r a g e e r r o r , E, of the form Log E = a 3 + b 3 P0.5 + c 3 Log N (6) would provide a b e t t e r fit to the data at high and low values of P than an e x p r e s s i o n of the form given in (2). Consequently, an e x p r e s s i o n of the f o r m shown in (6) was applied to data for all five a r e a s . The values of a 3 , b 3 , and c 3 a r e tabulated in Table 15. TABLE 15 REGRESSION CONSTANTS Area (Sq. M i . ) 25 50 100 200 400 Log E a3 -1.720 -1.597 -1.439 -1.305 -1.356 b3 0.65 0.56 0.59 0.49 0.54 Log S c3 -0.73 -0.55 -0.65 -0.56 -0.48 a4 -1.556 -1.421 -1.275 -1.220 -1.198 b4 0.60 0.53 0.49 0.50 0.50 c4 -0.63 -0.60 -0.63 -0.58 -0.54 More data should be added to the a n a l y s i s to s u b s t a n t i a t e the t r e n d s in b 3 and c 3 The Water Survey has rain-gage networks in operation which will furnish these data. Since gage density is a more commonly used variable than the sample size variable, the constants a3 and c3 presented in Table 15 were adjusted to express the sample size factor in terms of gage density by the substitution Log N = Log A - Log G (7) where G is in square miles per gage. Equations for Log E with the adjusted constants are shown in Table 16. FIGURE 45 COMPARISON OF STORM SAMPLING PLANS ON A 100 SQUARE MILE AREA Although the computed E tends generally to increase with area, the individual equations permit 48 T A B L E 16 EQUATIONS F O R A V E R A G E AND STANDARD DEVIATIONS Area (Sq. Mi.) Log E = a5 25 50 100 200 400 = = = = = -2.740 -2.531 -2.739 -2.594 -2.605 Combined = Log s = -2.642 a + = = = = = -2.395 -2.440 -2.535 -2.555 -2.603 Combined = -2.506 p0.5 4 + 0.65 0.56 0.59 0.49 0.54 + A-.07 5 P P0.5 + 0 . 5 + 0.60 0.53 0.49 0.50 0.50 + c5 Log G 0.73 0.55 0.65 0.56 0.48 0.794 + b 6 25 50 100 200 400 b 0.692 0.966 c 6 A-.12 Log Log G G 0.63 0.60 0.63 0.58 0.54 A-.06 P0.5 + 0.746 A-.05 FIGURE 46 RELATION BETWEEN SAMPLING ERROR, STORM SIZE, AND GAGE DENSITY ON 100 SQUARE MILE AREA Log G 49 FIGURE 47 95 PER CENT CONFIDENCE RANGE OF STORM MEAN RAINFALL FOR VARIOUS GAGE DENSITIES 50 r a n d o m f l u c t u a t i o n s in t h i s t r e n d . A c o m b i n e d e q u a tion which would r e p r e s e n t all five a r e a s w a s d e s i r e d for the p u r p o s e of s m o o t h i n g and f o r int e r p o l a t i n g b e t w e e n a r e a s . Since the c o n s t a n t s r e p r e s e n t e d by a 5 v a r y at r a n d o m , an a v e r a g e of t h e s e v a l u e s m a y be used in a c o m b i n e d e q u a t i o n . As p r e v i o u s l y n o t e d , t h e r e is a t e n d e n c y for the v a l u e s of b 4 a n d C 5 to d e c r e a s e in m a g n i t u d e as the a r e a i n c r e a s e s . C o n s e q u e n t l y , the v a l u e s o f the b 4 a n d c r w e r e e x p r e s s e d a s a function o f a r e a by e x p r e s s i o n of the following f o r m : b 4 = k A1 (8) and c5 = k1A1 (9) T h e c o m b i n e d e q u a t i o n f o r L o g E which r e p r e s e n t s all five a r e a s in the a n a l y s i s is shown in T a b l e 16. R e l a t i o n s for a 1 0 0 - s q u a r e m i l e a r e a o b t a i n e d f r o m the c o m b i n e d e q u a t i o n a r e p r e s e n t e d i n F i g u r e 46. Confidence L i m i t s . T o e s t a b l i s h c o n f i d e n c e l i m i t s , a n e s t i m a t e o f the s a m p l i n g s t a n d a r d d e v i a tion was r e q u i r e d . T h i s e s t i m a t e w a s obtained b y r e p l a c i n g Log E in E x p r e s s i o n (6) of Log s and fitting the r e s u l t i n g e x p r e s s i o n t o the d a t a , a s w a s done for L o g E. S t a n d a r d d e v i a t i o n s w e r e c o m p u t e d for the s a m e c l a s s i n t e r v a l s u s e d i n d e t e r m i n i n g Log E . T h e c o n s t a n t v a l u e s a r e shown i n T a b l e 15. The v a l u e s of a 4 and c 4 w e r e a d j u s t e d for the gage d e n s i t y f a c t o r a n d the r e s u l t i n g e q u a t i o n s for i n d i v i d u a l a r e a s and for all a r e a s c o m b i n e d a r e shown i n T a b l e 16. The c o m b i n e d a r e a l e q u a t i o n for Log s c a n b e u s e d t o e s t a b l i s h c o n f i d e n c e l i m i t s for a r e a l m e a n r a i n f a l l . T h e 95 p e r cent confidence l i m i t s f o r P w e r e e s t i m a t e d s i m p l y b y t a k i n g 2 s and a d d i n g and s u b t r a c t i n g f r o m the c o r r e s p o n d i n g value o f P . T h e r e s u l t i n g b a n d s a r e r e p r e s e n t e d for s e l e c t e d v a l u e s o f G for the 1 0 0 - s q u a r e m i l e a r e a i n Figure 47. 51 EXCESSIVE RAINFALL RELATIONS ON 100-SQUARE MILE AREA Data collected from 20 recording rain gages d u r i n g 19 5 0 - 5 3 on the 1 0 0 - s q u a r e m i l e P a n t h e r C r e e k w a t e r s h e d (Fig. 3) w e r e used in a limited a n a l y s i s of e x c e s s i v e rainfall relations. The following e x c e s s i v e rainfall definition of the U . S . W e a t h er B u r e a u w a s used in the s t u d y R = T + 20 (1) w h e r e R is the rainfall depth in inches and T is the period of observation in minutes. Excessive rates f o r p e r i o d s o f 3 0 , 6 0 , a n d 120 m i n u t e s w e r e i n v e s t i gated. The above definition gives lower limits of 0 . 5 0 , 0 . 8 0 , a n d 1.40 i n c h e s f o r t h e 3 0 - , 6 0 - , a n d 120-minute periods, respectively. In addition to the P a n t h e r C r e e k data, data f r o m 48 g a g e s on the 100-square mile Goose C r e e k network (Fig. 4) w e r e available for 19 53-54, and these have been utilized to a l i m i t e d extent in the a n a l y s i s . Gage Density to Observational Frequency Relations T h e effect of gage d e n s i t y upon the f r e q u e n c y of o b s e r v a t i o n of e x c e s s i v e rainfall values in a 100s q u a r e m i l e a r e a was e x a m i n e d first. F o r this p u r p o s e , the P a n t h e r C r e e k network was subdivided into n e t w o r k s of 10, 5, 2, a n d 1 g a g e s , k e e p i n g t h e distribution in each set as uniform as p o s s i b l e . S i m i l a r l y , on the Goose C r e e k a r e a , n e t w o r k s of 24, 12, 6, 3, and 1 gages w e r e s e l e c t e d . T h e n u m b e r of e x c e s s i v e amounts r e c o r d e d by one o r m o r e g a g e s for e a c h of the v a r i o u s n e t w o r k s within b o t h a r e a s was then tabulated. Use of special recording rain gages having 12.6-inch d i a m e t e r orifices and 6-hour charts enabled recording of 15-minute excessive a m o u n t s o n the G o o s e C r e e k a r e a , i n addition to t h o s e for the 3 0 - , 6 0 - , and 1 2 0 - m i n u t e periods. i n d i c a t e s that the o p t i m u m gage d e n s i t y for a 100s q u a r e m i l e a r e a , considering all f a c t o r s , is p r o b ably b e t w e e n 20 and 30 g a g e s . It a p p e a r s that s t o r m s of adequate intensity to provide e x c e s s i v e v a l u e s for the t i m e p e r i o d s i n v e s t i g a t e d a r e o f sufficient a r e a l extent and of sufficient d u r a t i o n to be a l m o s t always o b s e r v e d by a n e t w o r k of 20 to 30 g a g e s . Effect of Gage Density on Observed Maximum The effect o f gage d e n s i t y o n the m a x i m u m o b s e r v e d excessive a m o u n t s within a 1 0 0 - s q u a r e m i l e a r e a was investigated next, using the 1950-53 data for P a n t h e r C r e e k . F o r this p u r p o s e , n e t w o r k s o f 2 0 , 1 0 , 5 , a n d 2 g a g e s w i t h i n t h e 100 square m i l e s w e r e used. F o r each s t o r m , a ratio of the m a x i m u m amount o b s e r v e d on the n e t w o r k to the amount observed at the central gage in the n e t w o r k w a s c o m p u t e d . T h i s w a s done for e a c h n e t w o r k and for 3 0 - , 6 0 - , and 1 2 0 - m i n u t e p e r i o d s w h e n e v e r e x c e s s i v e values w e r e r e c o r d e d by one or m o r e of the 20 gages m a k i n g up the n e t w o r k of m a x i m u m density. Average ratios were then calculated for e a c h of the s e v e r a l n e t w o r k s within the 100s q u a r e m i l e a r e a . The r e s u l t s of this study a r e s u m m a r i z e d in Table 18 w h e r e the a v e r a g e r a t i o s for each network within the 1 0 0 - s q u a r e m i l e a r e a a r e p r e s e n t e d for 3 0 - , 6 0 - , and 1 2 0 - m i n u t e p e r i o d s . The relation is further illustrated in F i g u r e 48. R e s u l t s of this first p h a s e of the study a r e s h o w n i n T a b l e 17. T h e e x p e c t e d t r e n d for the o b servational frequency of excessive amounts to i n c r e a s e with increasing gage density is apparent. Of p a r t i c u l a r i n t e r e s t a r e the data for 24 and 48 gages in the Goose C r e e k network. The v e r y slight i n c r e a s e in frequency in going from 24 to 48 g a g e s TABLE 17 RELATION BETWEEN EXCESSIVE RAINFALL FREQUENCY AND GAGE DENSITY Number of Gages 15 Number of C a s e s for Given T i m e P e r i o d (Min.) 30 60 120 Total FIGURE 48 EFFECT OF GAGE DENSITY ON MAXIMUM OBSERVED EXCESSIVE RATES Goose C r e e k Network. 100 Sq. Mi.. 1953-54 1 3 14 22 14 19 5 14 2 3 35 58 6 24 22 14 3 63 12 28 25 18 5 76 24 48 33 34 28 28 21 22 6 7 88 91 P a n t h e r Creek. 100 Sq. Mi.. 1950-53 1 2 5 10 20 ------ 21 34 41 49 52 14 17 25 31 33 5 10 14 15 18 40 61 80 95 103 TABLE 18 E F F E C T OF GAGE DENSITY ON OBSERVED MAXIMUM AMOUNTS Number of Gages 20 10 5 2 Av. Ratio, Maximum O b s e r v e d / C e n t r a l Gage Amount for Given Time P e r i o d s (Min.) 30 60 120 1.89 1.70 1.50 1.27 1.75 1.62 1.43 1.21 1.52 1.40 1.30 1.13 52 A s e x p e c t e d the r a t i o t e n d s t o i n c r e a s e with inc r e a s i n g gage d e n s i t y . T h e r a t i o a p p e a r s t o b e s t i l l i n c r e a s i n g a t a n a p p r e c i a b l e r a t e when the m a x i m u m network of 20 gages is reached. P o i n t - A r e a l Mean R e l a t i o n s N e x t , the r e l a t i o n b e t w e e n point e x c e s s i v e and a r e a l m e a n e x c e s s i v e a m o u n t s was i n v e s t i g a t e d . The a r e a l mean w a s obtained in each s t o r m by a v e r a g i n g the h e a v i e s t a m o u n t o b s e r v e d a t e a c h o f the 20 r a i n - g a g e s t a t i o n s f o r the p e r i o d s of 30, 60, and 120 m i n u t e s . T h a t i s , the i n d i v i d u a l a m o u n t s m a k i n g u p the m e a n m a y h a v e o c c u r r e d a t different t i m e s a t the v a r i o u s n e t w o r k s t a t i o n s a l t h o u g h a l l o c c u r r e d i n the s a m e s t o r m p e r i o d . T h i s definition of the mean was c o n s i d e r e d m o r e d e s i r a b l e than that o b t a i n e d by c a l c u l a t i n g m e a n s at a given t i m e d u r i n g the s t o r m f o r all g a g e s . T h e c o r e o f h e a v y rainfall, especially in t h u n d e r s t o r m s , frequently c o v e r s a r e l a t i v e l y s m a l l a r e a ; c o n s e q u e n t l y , the heaviest s t o r m r a t e s o c c u r at different t i m e s in m o v i n g a c r o s s a n a r e a o f 100 s q u a r e m i l e s . Since s u c h f a c t o r s a s s o i l e r o s i o n and s e d i m e n t a t i o n a p p e a r t o b e c l o s e l y r e l a t e d t o the s h o r t - p e r i o d , h e a v y r a i n f a l l r a t e s e x p e r i e n c e d i n s t o r m s , the m e t h o d u s e d for c a l c u l a t i n g the m e a n s w a s c o n s i d e r e d t o h a v e the m o s t p r a c t i c a l a p p l i c a t i o n . i s c o n s i d e r e d . F o r e x a m p l e , a s s u m e two t h u n d e r s t o r m s o f the s a m e s i z e and s a m e i n t e n s i t y , one p a s s i n g o v e r the n e t w o r k with i t s c o r e p a s s i n g t h r o u g h the c e n t e r o f the n e t w o r k , w h i l e the c o r e o f the o t h e r s t o r m p a s s e s a l o n g o r n e a r t h e b o r d e r o f the n e t w o r k . O b v i o u s l y , the h e a v i e s t r a t e s will b e o b s e r v e d a t the c e n t r a l g a g e when a given s t o r m p a s s e s t h r o u g h o r n e a r the c e n t e r o f t h e n e t w o r k a n d t h e s e s t o r m s w i l l a l s o p r o v i d e the m o s t f r e quent a r e a l m e a n e x c e s s i v e r a t e s . A c o r r e l a t i o n c o e f f i c i e n t of 0.96 w a s obtained b e t w e e n t h e 20g a g e m e a n and the c e n t r a l - g a g e point r a i n f a l l . O b s e r v a t i o n s u s e d in the p r e c e d i n g a n a l y s i s of p o i n t - a r e a l m e a n r e l a t i o n s included a c o n s i d e r a b l e n u m b e r i n which n e i t h e r the c e n t r a l - g a g e a m o u n t n o r the a r e a l m e a n rainfall r e p r e s e n t e d an exc e s s i v e a m o u n t , s i n c e only one e x c e s s i v e value among the 20 gages w a s required for inclusion in the a n a l y s i s . To d e t e r m i n e whether the inclusion of v a l u e s b e l o w t h e e x c e s s i v e l e v e l m a t e r i a l l y affected the p o i n t - a r e a l relation, another analysis was made i n which only t h o s e c a s e s with a n excessive a m o u n t a t the c e n t r a l gage w e r e i n c l u d e d . T h i s a n a l y s i s r e s u l t e d in d e v e l o p m e n t of a r e g r e s s i o n e q u a t i o n given b y Y = 0.11 + 0.78 X (2) w h e r e Y is the a r e a l m e a n r a i n f a l l in i n c h e s and X i s the c e n t r a l g a g e a m o u n t i n i n c h e s . T h i s e q u a t i o n i s i n s i g n i f i c a n t l y d i f f e r e n t f r o m the o n e i l l u s t r a t e d in F i g u r e 49. A c o r r e l a t i o n coefficient of 0.97 w a s o b t a i n e d c o m p a r e d t o 0.96 for the c u r v e i n F i g u r e 4 9 . R e s u l t s i n d i c a t e t h a t F i g u r e 4 9 c a n b e u s e d for e s t i m a t i n g the a r e a l m e a n m a x i m u m o r a r e a l m e a n e x c e s s i v e r a i n f a l l o n a 1 0 0 - s q u a r e m i l e b a s i n for s h o r t p e r i o d s within s t o r m s , when a point r a i n f a l l o b s e r v a t i o n i s a v a i l a b l e a t o r n e a r the c e n t e r o f the a r e a . FIGURE 49 RELATION BETWEEN POINT AND AREAL MEAN RATES UNDER EXCESSIVE RATE CONDITIONS F i g u r e 4 9 i l l u s t r a t e s t h e r e l a t i o n s b e t w e e n the point r a i n f a l l o b s e r v e d a t the c e n t r a l gage and a r e a l m e a n r a i n f a l l for 3 0 - , 6 0 - , and 1 2 0 - m i n u t e p e r i o d s . T h e t h r e e p e r i o d s w e r e c o m b i n e d into one relation after s e p a r a t e graphical plots indicated i n s i g n i f i c a n t d i f f e r e n c e s a m o n g the r e l a t i o n s for individual p e r i o d s . Points in F i g u r e 49 include all c a s e s i n which a n e x c e s s i v e a m o u n t w a s r e c o r d e d b y one o r m o r e g a g e s i n t h e 2 0 - g a g e n e t w o r k . T h e r e g r e s s i o n e q u a t i o n i n d i c a t e s that the p o i n t rainfall o b s e r v e d a t the c e n t e r o f a 1 0 0 - s q u a r e m i l e a r e a i s s l i g h t l y a b o v e t h e a r e a l m e a n r a i n f a l l when e x c e s s i v e a m o u n t s a r e e x p e r i e n c e d (above 0.50 i n c h ) . T h i s t r e n d i s t o b e e x p e c t e d when s t o r m m o v e m e n t A s t u d y of t h e d a t a i n d i c a t e d the c e n t r a l gage g i v e s a v e r y good m e a s u r e of the f r e q u e n c y of e x cessive areal mean rainfall. F o r example, on Pant h e r C r e e k d u r i n g 1 9 5 0 - 5 3 the n u m b e r o f a r e a l m e a n e x c e s s i v e values was practically the s a m e as t h e n u m b e r o b s e r v e d a t the c e n t r a l g a g e . F o r a 30-minute period, 21 excessive amounts w e r e obs e r v e d o n both a p o i n t and a r e a l b a s i s . F o r a 6 0 m i n u t e p e r i o d t h e r e w e r e 1 4 point e x c e s s i v e a m o u n t s and 1 3 a r e a l e x c e s s i v e a m o u n t s , w h i l e for a 120-minute period t h e r e w e r e 5 e x c e s s i v e values f o r both c a s e s . C o m b i n i n g a l l t h r e e p e r i o d s , t h e r e w e r e 40 excessive amounts observed at the central gage c o m p a r e d to 39 c a s e s of excessive a r e a l m e a n r a i n f a l l . H o w e v e r , t h i s d o e s not m e a n t h a t the point a n d a r e a l m e a n r a t e s all o c c u r r e d i n the s a m e s t o r m s . B y c o m p a r i s o n , i t w a s found t h a t e x c e s s i v e a r e a l m e a n s o c c u r r e d 17 out of the 21 t i m e s that e x c e s s i v e amounts w e r e observed at the central g a g e . S i m i l a r l y , 11 out of 14 point e x c e s s i v e a m o u n t s o c c u r r e d i n c o n j u n c t i o n with e x c e s s i v e a r e a l m e a n v a l u e s f o r the 6 0 - m i n u t e p e r i o d , w h i l e a l l five of t h e point and a r e a l e x c e s s i v e a m o u n t s c o i n c i d e d f o r the 1 2 0 - m i n u t e p e r i o d . F i g u r e 50 is an i l l u s t r a t i o n of t h e o c c u r r e n c e of excessive rainfall amounts over the network d u r i n g a n e x c e p t i o n a l l y h e a v y s t o r m d u r i n g the e v e n i n g of J u n e 8, 1 9 5 1 . H e a v y e x c e s s i v e a m o u n t s w e r e o b s e r v e d a t a l l s t a t i o n s within t h e n e t w o r k 53 during the storm period. An a r e a l average of 7.21 inches fell during the entire s t o r m which lasted about four hours. Figure 51 illustrates the d i s t r i bution of excessive rainfall in the area by means of area-depth curves. It is interesting to note that the square-root relation for total storm rainfall discussed in the section on area-depth relations provides a good fit in these cases of unusually heavy short-period amounts within a storm. FIGLRE SO 30-MINUTE EXCESSIVE RATES, JULY 8, 1951 FIGURE 51 EXCESSIVE RATE AREA-DEPTH RELATIONS, JULY 8, 1951 55 RELATION B E T W E E N POINT AND AREAL RAINFALL FREQUENCIES Although m u c h i n f o r m a t i o n has b e e n p u b l i s h e d o n point r a i n f a l l f r e q u e n c i e s , little d a t a a r e p r e s e n t l y a v a i l a b l e i n the l i t e r a t u r e o n a r e a l r a i n f a l l f r e q u e n c i e s . The following p r e s e n t s l i m i t e d i n f o r m a t i o n on the s u b j e c t , o b t a i n e d f r o m a 2 0 - g a g e n e t w o r k o n the 1 0 0 - s q u a r e m i l e P a n t h e r C r e e k w a t e r s h e d d u r i n g the p e r i o d 1 9 4 8 - 5 3 . of 25 and 50 s q u a r e m i l e s within the 1 0 0 - s q u a r e m i l e n e t w o r k . B e c a u s e of m i n o r c h a n g e s in s o m e of the g a g e l o c a t i o n s f r o m y e a r t o y e a r , i t w a s not p o s s i b l e to obtain a 6 - y e a r c o m p a r i s o n for the 100s q u a r e m i l e a r e a . H o w e v e r , d a t a w e r e a v a i l a b l e for a 3 - y e a r c o m p a r i s o n and t h e s e r e s u l t s a r e a l s o given. U s i n g d a t a f r o m this n e t w o r k , c o m p a r i s o n s h a v e b e e n m a d e b e t w e e n point a n d a r e a l m e a n r a i n f a l l f r e q u e n c i e s for the above 6 - y e a r p e r i o d for a r e a s Within e a c h a r e a , the point r a i n f a l l f r e q u e n c i e s w e r e o b t a i n e d f r o m t h e r a i n gage in the c e n t e r of the a r e a . A r e a l m e a n r a i n f a l l was c a l c u l a t e d f r o m FIGURE 52 COMPARISON BETWEEN POINT AND AREAL MEAN RAINFALL AT EQUAL FREQUENCIES ON 25 SQUARE MILE AREA 56 the a r i t h m e t i c a l a v e r a g e o f all gage o b s e r v a t i o n s . Within the 2 5 - and 5 0 - s q u a r e m i l e a r e a s s t u d i e d , t h e r e w e r e 6 and 12 g a g e s , r e s p e c t i v e l y . To obtain c o m p a r i s o n s b e t w e e n point and a r e a l f r e q u e n c i e s , all s t o r m s for e a c h a r e a w e r e r a n k e d b y m e a n r a i n f a l l . S i m i l a r l y , s t o r m point r a i n f a l l t o t a l s a t the center of each a r e a w e r e ranked. The rankings t h e n p r o v i d e d a f r e q u e n c y d i s t r i b u t i o n of point and a r e a l m e a n r a i n f a l l within a 6 - y e a r p e r i o d for the 2 5 - and 5 0 - s q u a r e m i l e a r e a s and w i t h i n a 3 - y e a r p e r i o d for the 1 0 0 - s q u a r e m i l e a r e a . R e g r e s s i o n e q u a t i o n s and c o r r e l a t i o n c o e f f i c i e n t s w e r e o b t a i n e d b e t w e e n point and a r e a l m e a n r a i n f a l l f r e q u e n c i e s for e a c h a r e a , t r e a t i n g equal p o s i t i o n s o f r a n k a s p a i r s o f o b s e r v a t i o n s . T o i l l u s t r a t e the p a i r i n g p r o c e d u r e , the h i g h e s t point r a i n f a l l o b s e r v e d a t the c e n t e r o f the 2 5 - s q u a r e m i l e a r e a , 8.22 i n c h e s , w a s p a i r e d with the h i g h e s t m e a n r a i n fall for t h i s a r e a d u r i n g the 6 - y e a r c o m p a r i s o n p e r i o d , which w a s 8.16 i n c h e s . O b v i o u s l y , the paired observations in many cases occurred in d i f f e r e n t s t o r m s , s i n c e the d a t a w e r e p a i r e d o n a frequency distribution b a s i s . R e l a t i o n s w e r e d e v e l o p e d for s t o r m r a i n f a l l , i n which a s i n g l e s t o r m w a s defined a s a l l r a i n f a l l u n s e p a r a t e d by a b r e a k in p r e c i p i t a t i o n of six h o u r s or more. Consequently, several showers were f r e q u e n t l y i n c l u d e d in a s t o r m as d e f i n e d in t h i s s t u d y . The r e s u l t s a r e p e r h a p s a l s o i n d i c a t i v e o f d a i l y r a i n f a l l . T h e study w a s confined t o s h o w e r t y p e r a i n f a l l , the t y p e of s t o r m f r o m which flash floods o n s m a l l a r e a s o c c u r . T h e r e s u l t s a r e c o n - s i d e r e d i n d i c a t i v e a n d not definitive of p o i n t - a r e a l frequency relations. The r e g r e s s i o n e q u a t i o n s o b t a i n e d for the 2 5 and 5 0 - s q u a r e m i l e a r e a s w e r e Y = 0.96X and Y = 0.94X, r e s p e c t i v e l y . The 6 - y e a r p o i n t - a r e a l c o m p a r i s o n for the 2 5 - s q u a r e m i l e a r e a i s i l l u s t r a t e d i n F i g u r e 52. R e s u l t s of the s t u d y i n d i c a t e t h a t an e x c e l l e n t r e l a t i o n s h i p e x i s t s b e t w e e n point and a r e a l r a i n f a l l f r e q u e n c i e s . A c o r r e l a t i o n coefficient of 0.99 was o b t a i n e d b e t w e e n p o i n t and a r e a l r a i n f a l l for both t h e 2 5 - and 5 0 - s q u a r e m i l e a r e a s . F o r t h e 100s q u a r e m i l e a r e a , a c o r r e l a t i o n coefficient of 0.99 w a s o b t a i n e d and t h e r e g r e s s i o n e q u a t i o n was Y = 0.97X, v e r y c l o s e to the e q u a t i o n s o b t a i n e d for the 2 5 - and 5 0 - s q u a r e m i l e a r e a s . I n d i c a t i o n s a r e that a r e a l m e a n r a i n f a l l f r e q u e n c i e s a r e c l o s e to, but s l i g h t l y l e s s t h a n , equivalent point r a i n f a l l f r e q u e n c i e s for s m a l l a r e a s . A 3 - y e a r c o m p a r i s o n for a n o t h e r s e t of 2 5 - and 5 0 - s q u a r e m i l e a r e a s within the 1 0 0 - s q u a r e m i l e w a t e r s h e d p r o d u c e d r e g r e s s i o n s of Y = 0.97X for b o t h a r e a s , a g r e e i n g c l o s e l y with the 6 - y e a r c o m p a r i s o n s . A 3-year frequency c o m p a r i s o n was also m a d e u s i n g d a t a o n l y for e x c e s s i v e r a i n f a l l r a t e s , b a s e d on the d e f i n i t i o n of e x c e s s i v e r a i n f a l l given in the p r e v i o u s s e c t i o n of this b u l l e t i n . C o m b i n i n g d a t a for e x c e s s i v e 3 0 - and 6 0 - m i n u t e a m o u n t s , a r e g r e s s i o n e q u a t i o n , Y = 0.92X, w a s o b t a i n e d . 57 A M I C R O M E T E O R O L O G I C A L STUDY OF R A I N F A L L VARIABILITY Introduction Analyses of rainfall data from s e v e r a l concent r a t e d r a i n - g a g e networks in central Illinois during r e c e n t y e a r s have r e v e a l e d the f r e q u e n t p r e s e n c e of r a i n f a l l g r a d i e n t s e x c e e d i n g 0.25 i n c h p e r m i l e in shower-type rainfall. The relation between rainfall v a r i a b i l i t y and e i t h e r d i s t a n c e o r a r e a i s p e r tinent in the d e t e r m i n a t i o n of gage d e n s i t y r e q u i r e m e n t s for s p e c i f i c p u r p o s e s , such a s : the c o l l e c t i o n of s m a l l scale climatological data, hydrologic p r o j e c t s involving runoff and s e d i m e n t a t i o n i n v e s t i g a t i o n s , a g r i c u l t u r a l r e s e a r c h , and s t u d i e s c o n c e r n e d with e s t a b l i s h i n g the u t i l i t y of r a d a r for q u a n t i t a t i v e p r e c i p i t a t i o n m e a s u r e m e n t s . A l s o , the m a g n i t u d e of r a i n f a l l v a r i a b i l i t y with d i s t a n c e should be cons i d e r e d i n d e t e r m i n i n g the s e n s i t i v i t y and c a l i b r a tion a c c u r a c y r e q u i r e d for r e c o r d i n g r a i n g a g e s , especially those employed in routine observational p r o g r a m s w h e r e c o n c e n t r a t e d n e t w o r k s a r e not feasible. As p a r t of a p r o g r a m to i n v e s t i g a t e the q u a n t i tative relations existingbetween rainfall variability and d i s t a n c e , a m i c r o - n e t w o r k of r a i n g a g e s w a s e s t a b l i s h e d i n 1953. S i n c e the g r e a t e s t v a r i a t i o n i n r a i n f a l l with d i s t a n c e n o r m a l l y o c c u r s with s h o w e r type r a i n f a l l , data w e r e c o l l e c t e d d u r i n g the s p r i n g , s u m m e r and fall s e a s o n s of 19 5 3 - 5 4 . S i m i l a r o b servations on a m e s o m e t e o r o l o g i c a l scale w e r e a v a i l a b l e for c o m p a r i s o n p u r p o s e s f r o m o t h e r n e t w o r k s d e s c r i b e d i n the s e c t i o n o n r a i n - g a g i n g facilities. D e s c r i p t i o n of N e t w o r k A m i c r o - n e t w o r k of 18 g a g e s w a s e s t a b l i s h e d on l e v e l m e a d o w l a n d at the U n i v e r s i t y of Illinois A i r p o r t . Its d e s i g n w a s b a s e d upon a v a i l a b l e i n f o r - mation concerning rainfall gradients obtained from rainfall studies on several concentrated watershed n e t w o r k s d u r i n g 1 9 4 8 - 5 2 . The n e t w o r k c o n s i s t e d o f p a i r s o f 8 - i n c h n o n - r e c o r d i n g g a g e s s p a c e d six feet a p a r t a t e a c h o f n i n e s t a t i o n s w h i c h w e r e l o c a t e d at i n t e r v a l s of 300 feet to f o r m a s q u a r e g r i d p a t t e r n ( F i g . 8). I n f o r m a t i o n o n s t o r m d u r a t i o n a n d . r a i n f a l l i n t e n s i t y w a s obtained from a r e c o r d i n g r a i n gage i n s t a l l e d a d j a c e n t t o the m i c r o - n e t w o r k . Wind d a t a w e r e o b t a i n e d f r o m a n A e r o v a n e s y s t e m l o c a t e d about 0.5 m i l e f r o m the n e t w o r k . T h e c a l i b r a t i o n o f e a c h gage w a s c h e c k e d b e f o r e i n s t a l l a t i o n . T h e level of e a c h gage w a s c h e c k e d p e r i o d i c a l l y and the g a g e s k e p t as f r e e of d i r t , i n s e c t s and o t h e r f o r e i g n m a t e r i a l a s p o s s i b l e . M e a s u r e m e n t s o f r a i n f a l l w e r e m a d e for e a c h o c c u r r e n c e of precipitation. These m e a s u r e m e n t s w e r e m a d e a s soon a s p o s s i b l e a f t e r the end o f each s t o r m to minimize evaporation effects. C a r e ful a t t e n t i o n w a s given t o gage e x p o s u r e s , m a i n t e n a n c e , and o b s e r v a t i o n a l t e c h n i q u e s . T o m i n i m i z e the r e a d i n g e r r o r , e x p e r i e n c e d o b s e r v e r s r e a d the r a i n - g a g e a m o u n t s t o the n e a r e s t .001 i n c h . A n a l y s i s of D a t a Data w e r e collected from 93 s t o r m s from March t o N o v e m b e r , d u r i n g 1953 and 1954. F o r e a c h s t o r m , average precipitation differences were calculated f o r the v a r i o u s s e t s of gages l o c a t e d 6, 300, and 600 feet a p a r t on the g r i d p a t t e r n . R e s u l t s of t h i s a n a l y s i s , c l a s s e d b y s t o r m s i z e , a r e shown i n T a b l e 19. T h e m e a n m a x i m u m d i f f e r e n c e s shown in T a b l e 19 a r e t h e a v e r a g e s for the h i g h e s t d i f f e r e n c e o b s e r v e d i n e a c h s t o r m . The a b s o l u t e m a x i m u m i s the h i g h e s t r e a d i n g o b t a i n e d d u r i n g the 1953-54 t e s t p e r i o d for e a c h c l a s s o f s t o r m s i z e , a s m e a s u r e d b y the n e t w o r k m e a n r a i n f a l l . T A B L E 19 D I F F E R E N C E S B E T W E E N GAGE P A I R S D i f f e r e n c e s (in.) for G i v e n S t o r m S i z e s (in.) 0.01-0.19 0.20-0.49 6-Foot Average Mean Maximum Absolute Maximum N u m b e r of S t o r m s 0.003 0.009 0.015 46 0.005 0.013 0.046 19 300-Foot Average Mean Maximum Absolute Maximum N u m b e r of S t o r m s 0.005 0.013 0.026 46 0.009 0.025 0.049 19 600-Foot Average Mean Maximum Absolute Maximum N u m b e r of S t o r m s 0.006 0.015 0.034 46 0.012 0.027 0.047 19 0.50-0.99 1.00-1.99 Pairs 0.009 0.022 0.041 15 0.020 0.047 0.110 13 Pairs 0.013 0.034 0.048 15 0.027 0.079 0.165 13 Pairs 0.016 0.034 0.070 15 0.038 0.087 0.231 13 58 R e f e r e n c e to T a b l e 19 s h o w s that a v e r a g e 6foot d i f f e r e n c e s for s t o r m s h a v i n g m e a n r a i n f a l l u p t o 0.50 inch a r e r a t h e r i n s i g n i f i c a n t . H o w e v e r , appreciable differences were usually observed with the h e a v i e r s t o r m s and o c c a s i o n a l l y with light s t o r m s . Since the d i f f e r e n c e s h a v e a d e f i n i t e t e n d e n c y t o i n c r e a s e with s t o r m s i z e , they c a n n o t be attributed solely to reading e r r o r . Another fact o r which m a y h a v e c o n t r i b u t e d t o the d i f f e r e n c e s o b s e r v e d b e t w e e n the 6-foot p a i r s i s the t u r b u l e n c e c r e a t e d i n the wind flow about t h e g a g e s . T h e r e w a s no way in which to s e p a r a t e t h e effects of r e a d i n g and t u r b u l e n c e e r r o r s f r o m t h e r e a l d i f f e r e n c e s o c c u r r i n g i n the s u r f a c e r a i n f a l l p a t t e r n . C o n s i d e r i n g the c a r e f u l a t t e n t i o n which w a s g i v e n t o gage e x p o s u r e s , gage m a i n t e n a n c e , and o b s e r v a tional t e c h n i q u e s , i t i s b e l i e v e d that the d i f f e r e n c e s which w e r e obtained b e t w e e n the 6-foot p a i r s r e p r e sent the m i n i m u m t o b e e x p e c t e d i n s h o w e r - t y p e r a i n f a l l . F o r the 6-foot p a i r s a c o r r e l a t i o n c o e f f i c i e n t of 0.79 w a s o b t a i n e d b e t w e e n a v e r a g e s t o r m d i f f e r e n c e s and s t o r m s i z e . The t r e n d for the a v e r a g e d i f f e r e n c e t o inc r e a s e with i n c r e a s i n g s t o r m s i z e a n d with d i s t a n c e i s f u r t h e r i l l u s t r a t e d b y the s u m m a r i z e d d a t a f o r the 300-foot and 600-foot p a i r s in T a b l e 19. A c o r r e l a t i o n coefficient of 0.80 w a s o b t a i n e d b e t w e e n a v e r a g e d i f f e r e n c e and m e a n r a i n f a l l for the 300foot p a i r s . S i m i l a r l y , a c o r r e l a t i o n c o e f f i c i e n t of 0.72 was obtained with the 600-foot p a i r s . The d a t a w e r e f u r t h e r e x a m i n e d for d i f f e r e n c e s b e t w e e n 6-foot g a g e p a i r s a r i s i n g f r o m m e t e o r ological factors other than m e a n rainfall. T h e s e factors include s t o r m duration, m e a n rainfall r a t e , and wind. R e s u l t s of t h i s p h a s e of the s t u d y a r e p r e s e n t e d i n T a b l e 20, w h e r e t h e r e l a t i v e v a r i a b i l i t y o f the a v e r a g e d i f f e r e n c e s h a s b e e n r e l a t e d t o e a c h m e t e o r o l o g i c a l f a c t o r . The v a r i a b i l i t y f a c t o r w a s obtained for e a c h s t o r m b y d i v i d i n g the a v e r a g e d i f f e r e n c e for p a i r s a t a given d i s t a n c e b y the a r e a l m e a n r a i n f a l l and m u l t i p l y i n g b y 100 t o c o n v e r t the f a c t o r t o p e r c e n t . TABLE 20 RELATIVE VARIABILITY TRENDS FOR 6-FOOT GAGE PAIRS Av. Variability (%) for Given Size of Event Mean Rainfall, in. 0.01-0.09 0.10-0.19 0.20-0.49 0.50-0.99 1.00-1.99 6.1 2.5 1.9 1.4 1.3 Storm Durations, h r s . 0.1-2.0 2.1-4.0 4.1-6.0 6.1-12.0 12.1-24.0 5.8 1.9 2.1 1.9 2.0 Mean Rainfall Rate, in/hr E x a m i n a t i o n of T a b l e 20 shows t h a t the r e l a tive v a r i a b i l i t y t e n d s t o d e c r e a s e with i n c r e a s i n g m e a n r a i n f a l l , this t r e n d being m o r e p r o n o u n c e d for the light s t o r m s . A s i m i l a r t r e n d w a s o b s e r v e d for s t o r m d u r a t i o n u p t o four h o u r s , a f t e r w h i c h , t h e r e a p p e a r e d to be no s i g n i f i c a n t c h a n g e in the a v e r a g e r e l a t i v e v a r i a b i l i t y with i n c r e a s i n g s t o r m d u r a t i o n . M e a n r a i n f a l l r a t e p r o d u c e d its g r e a t e s t effect upon the r e l a t i v e v a r i a b i l i t y at low v a l u e s . A s l i g h t t r e n d was o b s e r v e d for the r e l a t i v e v a r i a b i l i t y to d e c r e a s e with i n c r e a s i n g m a g n i t u d e of wind s p e e d , the a v e r a g e r e l a t i v e v a r i a b i l i t y t e n d i n g to l e v e l off with high v a l u e s of wind s p e e d . B e c a u s e of the m a g n i t u d e of the c o m p u t a t i o n s i n v o l v e d , n o a t t e m p t was m a d e t o c o m b i n e a l l the p o s s i b l e v a r i a b l e s into a m u l t i p l e r e g r e s s i o n e q u a t i o n , e s p e c i a l l y s i n c e a r e l a t i v e l y high c o r r e l a t i o n w a s o b t a i n e d b e t w e e n the v a r i o u s d i f f e r e n c e s and storm size of mean rainfall. Scatter d i a g r a m s r e l a t i n g the 6-foot r e l a t i v e v a r i a b i l i t y t o m e a n r a i n f a l l , wind s p e e d , s t o r m d u r a t i o n , and m e a n r a i n f a l l r a t e a r e i l l u s t r a t e d i n F i g u r e 53. F o r c o m p a r i s o n with the s m a l l s c a l e d i f f e r e n c e s i n T a b l e 19, s o m e r e s u l t s f r o m the s t u d y d i s c u s s e d in the s e c t i o n on t h e v a r i a t i o n of point r a i n fall with d i s t a n c e a r e s u m m a r i z e d i n T a b l e 2 1 . T h e r e l a t i o n s shown i n t h i s t a b l e w e r e o b t a i n e d from observations in shower-type rainfall collected o n the P a n t h e r C r e e k and G o o s e C r e e k n e t w o r k s shown in F i g u r e s 3 and 4. T h e m a g n i t u d e of the v a r i a b i l i t y b e t w e e n 6-foot 300-foot and 600-foot p a i r s on a m o n t h l y and s e a s o n a l b a s i s i s i l l u s t r a t e d i n T a b l e 22. A t r e n d for a v e r a g e d i f f e r e n c e s b e t w e e n gage p a i r s t o i n c r e a s e with d i s t a n c e and with a r e a l m e a n r a i n f a l l w a s found for both m o n t h l y and s e a s o n a l p r e c i p i t a t i o n . T h i s t r e n d w a s l e s s p r o n o u n c e d t h a n that found b e t w e e n a v e r a g e d i f f e r e n c e s and s t o r m m e a n r a i n f a l l . C o r r e l a t i o n c o e f f i c i e n t s of 0 . 6 0 , 0 . 5 8 , and 0.48 w e r e o b t a i n e d b e t w e e n m o n t h l y r a i n f a l l and a v e r a g e d i f f e r e n c e s of 6-foot, 300-foot and 600-foot p a i r s , r e s p e c t i v e l y . Although a m a x i m u m monthly d i f f e r e n c e of 0.27 inch w a s o b s e r v e d b e t w e e n 600foot p a i r s o n one o c c a s i o n , a v e r a g e m o n t h l y d i f f e r e n c e s w e r e g e n e r a l l y l e s s t h a n 0.05 i n c h . C o m p u t a t i o n s w e r e m a d e o f the a c c u r a c y with which the c e n t r a l gage w i t h i n the g r i d p a t t e r n m e a s u r e d the s t o r m m e a n r a i n f a l l for the e n t i r e area. Results are summarized in Table 23 where t h e a v e r a g e , s t a n d a r d and m a x i m u m e r r o r s h a v e b e e n r e l a t e d t o s t o r m s i z e . Mean r a i n f a l l w a s o b t a i n e d f r o m t h e a r i t h m e t i c a l a v e r a g e o f all g a g e s . T h e e r r o r s w e r e found t o i n c r e a s e with i n c r e a s i n g s t o r m s i z e , although remaining relatively s m a l l . TABLE 21 VARIATION OF POINT RAINFALL WITH DISTANCE Storm Size (in.) 0.01-0.05 0.06-0.10 0.11-0.20 0.21-0.30 Over 0.30 5.8 2.7 2.3 2.2 1.8 Wind Speed, mph 0-5 6-10 11-15 16-20 21-30 3.6 3.7 2.8 2.8 2.4 Av. Difference (in.) at Given Distance At Given Point 1 Mile 3 Miles 0.10 0.25 0.50 1.00 1.50 2.00 0.06 0.08 0.10 0.14 0.18 0.23 0.09 0.11 0.14 0.20 0.26 0.33 59 TABLE 22 MONTHLY AND SEASONAL DIFFERENCES BETWEEN GAGE PAIRS 1953 Mean Rainfall, in. Difference (in.) for Given Distance 6-Ft 300-Ft 600-Ft Av. Max. Av. Max. Av. Max. April May June July Aug. Sept. Oct. 1954 1.30 1.53 3.39 3.15 0.59 0.41 1.74 0.022 0.022 0.016 0.036 0.012 0.006 0.028 0.067 0.047 0.034 0.057 0.032 0.016 0.061 0.023 0.028 0.032 0.032 0.016 0.008 0.039 0.054 0.078 0.100 0.080 0.036 0.031 0.120 0.032 0.028 0.039 0.036 0.021 0.014 0.055 0.094 0.059 0.079 0.066 0.040 0.039 0.123 March April May June July Aug. Sept. Oct. 1953 1.18 4.61 4.34 2.59 2.79 4.51 0.30 4.51 0.013 0.043 0.026 0.050 0.020 0.028 0.007 0.032 0.034 0.083 0.053 0.112 0.036 0.055 0.014 0.057 0.023 0.083 0.025 0.044 0.037 0.027 0.013 0.028 0.060 0.234 0.081 0.122 0.090 0.088 0.032 0.076 0.023 0.145 0.029 0.055 0.054 0.025 0.025 0.044 0.044 0.270 0.074 0.102 0.125 0.083 0.036 0.110 12.11 0.053 0.092 0.102 0.234 0.167 0.327 24.83 0.113 0.219 0.175 0.429 0.200 0.482 Apr.-Oct. 1954 Mar.-Oct. TABLE 23 RELATION BETWEEN AREAL MEAN RAINFALL AND CENTRAL GAGE POINT RAINFALL Storm Mean Rainfall, in. Average E r r o r Standard E r r o r Maximum E r r o r Number of Storms 0.01-0.09 0.10-0.19 0.003 0.004 0.013 28 0.003 0.004 0.011 18 0.20-0.49 0.005 0.007 0.017 19 0.50-0.99 0.007 0.009 0.025 15 1.00-1.99 0.013 0.017 0.044 13 60 FIGURE 53 EFFECT OF SEVERAL METEOROLOGICAL FACTORS ON RELATIVE VARIABILITY OF STORM RAINFALL 61 REFERENCES 1. The Thunderstorm, Report of the Thunderstorm Project (Joint Project of Air F o r c e , Navy, NACA, Weather Bureau), U. S. Dept. of Commerce, Weather Bureau, Washington, D. C, June 1949. 2. Neill, J. C, Analysis of 19 52 Radar and Rain Gage Data, Report of Investigation No. 21, State Water Survey Division, Urbana, Illinois, July 1953. 3. Huff, F. A., Neill, J. C, and Spock, M., Evaluation of Low-Powered 3-cm Radar for Quantitative Rainfall Measurements. Research Report No. 4 under U. S. Army Signal Corps Contract DA-36-039 SC-64723 (State Water Survey Division Report of Investigation No. 29), Urbana, Illinois, 1956. 4. Yarnell, D. L., Rainfall Intensity-Frequency Data, U. S. Dept of Agriculture, Misc. Pub. No. 204, Washington, D. C, August 1935. 5. Rainfall Intensity-Duration-Frequency Curves, Tech. Paper No. 25, U. S. Dept. of Commerce, Weather Bureau, Washington, D. C, December 1955. 6. Storm Rainfall of Eastern United States, Miami Conservancy District, Dayton, Ohio, 1936. 7. Storm Rainfall in the United States, Depth-Area-Duration Data, U. S. Corps of Engineers, Office of Chief of Engineers, Washington, D. C, 1945. 8. Thunderstorm Rainfall. Hydromet. Washington, D. C, 1947. 9. Huff, F. A., and Stout, G. E., "Area-Depth Studies for Thunderstorm Rainfall in Illinois," T r a n s . AGU, 33, 4, (State Water Survey Division Circular No. 39) August 1952. 10. Chow, V. T., Discussion of "Area-Depth Studies for Thunderstorm Rainfall in Illinois," T r a n s . AGU, 34, 4, August 1953. 11. Hudson, H. E. J r . , Stout, G. E., and Huff, F. A., "Rainfall Studies Using Rain Gage Networks and Radar," Proc. ASCE, Sep. 178, March 1953. 12. The Storm of July 8, 19 51 in North Central Illinois. Report of Investigation No. 14, State Water Survey Division, Urbana, Illinois, 19 52. 13. Larson, B. O., Hiser, H. W., and Daniels, W. S., The Storm of July 18-19, 1952 in Rockford, Illinois and Vicinity, Report of Investigation No. 24, State Water Survey Division, Urbana, Illinois, 19 55. 14. Huff, F. A., and Neill, J. C, "Variation of Point Rainfall With Distance", P r o c . ASCE, 82, SA1, Feb. 1956. 15. Linsley, R. K. and Kohler, M. A., "Variations in Storm Rainfall Over Small A r e a s , " T r a n s . AGU, 32, 2, April 1951. Report No. 5, U. S. Dept. of Commerce, Weather Bureau,
© Copyright 2026 Paperzz