Overview • Secondary structure: the conformation of the peptide backbone • • • • • The peptide bond, steric implications • Steric hindrance and sterically allowed conformations. Ramachandran diagrams Side chain conformations Backbone hydrogen bonding Recurring regular structures of the backbone • Alfa helix, other helices • Beta sheet Reccuring irregular structures: Turns The peptide bond Delocalization; double bond character: Resonance structures: O C! Geometry of the trans peptide bond N H C! O C! N C! or O Shorter than ordinary C-N bond + H !" N H !+ Consequences: • Very limited rotation around C-N-bond; O,C,N,H in one plane • Cis-trans isomerism • Permanent dipole; polar + Page 1 cis- och trans peptides Cis, rare (cis-prolin [X-cisPro-]) Trans, common HR H R R H H N N O O H R H Proline Trans-proline Cis-proline Page 2 Two conformational degrees of freedom for each residue For each residue, the backbone conformation can be specified by the torsion angles φ and ψ C Res. nr. i Oi-1 i-1 Cβi R Cαi φ Ni+1 ψ Ni C i Hi Oi Oi φ C Ni i Cαi C φ=0 when Cαi-C i trans to Ni-Hi i Ni Ψ ψ=0 when Cαi-Ni trans to C i-Oi Hi Ni+1 Petsko&Ringe fig. 1.9 Steric hindrance and van der Waals distances Observed distances (Å) Repulsion between electron clouds proportional to (1/r)12; atoms can be regarded as hard spheres Contact H .. H H .. O H .. N H .. C O .. O O .. N O .. C N .. N N .. C C .. C Normal 2.0 2.4 2.4 2.4 2.7 2.7 2.8 2.7 2.9 3.0 Extreme 1.9 2.2 2.2 2.2 2.6 2.6 2.7 2.6 2.8 2.9 Schultz & Schirmer: Principles of Protein Structure Page 3 Steric hindrance and allowed conformation (φ,ψ) for glycine residue φ=0, ψ=80 φ φ=0, ψ=180 φ=0, ψ=90 ψ φ=0, ψ=0 φ=-180, ψ=0 φ=-90, ψ=0 Shultz & Schirmer, Principles of protein structure A β-carbon imposes further restrictions φ ψ Sidechain in all amino acids except glycine φ about 130; On-1 - Cβ ψ about -100; Nn-1,Hn-1 - Cβ φ Efter Shultz & Schirmer, Principles of protein structure Page 4 ψ Energy as function of geometry-a more detailed calculation Potential energy diagram for alanine residie (geometry of peptide bond and bond legnths fixed; Shultz och Schirmer: Principles of Protein Structure) > 0 kcal/mol -1 - 0 kcal/mol -2 - -1 kcal mol -3 - -2 kcal/mol -4 - -3kcal/mol Bridge region; Steric repulsion between Ni och Hi+1 compensated by favourable dipoledipole interaction φ=-90, ψ=0 δ+ δ- δ+ δ- Efter Shultz & Schirmer, Principles of protein structure Experimental φ and ψ: Ramachandran diagrams Ramachandrandiagram for 13 proteins (2500 residues) • Ca 5 % of all residues with βcarbon (≠Gly) in forbidden areas • Realistic calculations need to take into account • Peptide bond torsion: (|Ω| < 12o increses energy < 1 kcal/ mol) • Small variations of bond angles and lengths are OK energywise Efter Shultz och Schirmer: Principles of Protein Structure Page 5 Conformational preferences of residues as Ramachandran diagrams Examples Hovmöller et al; www.fos.su.se/~svenh/ Description of side chain conformation with torsional angles Denoted χ1, χ2.... χ1i χ2i Från Schultz & Schirmer: Principles of Protein Structure Page 6 Nomenclature for side chains Figur av Jon Cooper, PPS Side chain conformations χ1 Most frequent ; Cγ opposite carbonyl carbon Second most common (not Val, Ile) Cα χ2 Oftast som χ1 Med Cγ sp2 (Phe, Tyr, Trp, His...) ± 90 grader (?) H Uncommon; however Ser, Thr (H-bond Oγbackbone) Cβ Figur av Jon Cooper, PPS H Page 7 Exemples of observed rotamerer preferences Val Ile His χ1 χ1 χ2 χ2 Repetition of φ and ψ produces helixes Parameters to describe a helix • Units per turn, n (positive for right-anded; negative for left-handed • Distance along axis per turn, p (pitch) p • Radius d Alternatives • Angle between units; 360/n • Distance along axis per unit , d=p/n r Page 8 Helix structures p p=0 n=5 n=4 p p p n=3 n=2 not chiral n=-3 n does not need to be an integer except when p=0 Figur av Irving Geis, från Voet och voet, Biochemistry Torsional angles and helix parameters Helix parameters d and n for helixes obtained by assigning same torsional angles ψ and φ to residues in a polypeptide chain ψ d n φ Page 9 From Shultz och Schirmer: Principles of Protein Structure Secondary structure • Structure that can be described using only the backbone torsional angles φ och ψ • No steric hindrance involving backbone or Cβ • Backbone carbonyl and amides involved in hydrogen bonding to backbone Hydrogen bonding possibilitites i! i+1 i+2 27 ribbon i+3 310 helix i+4 α helix i+5 π helix Figur av Irving Geis, hämtad ur Matthews & van Holde, Biochemistry Page 10 Helix structures (Helical parameters for various secondary structures) Table 5-1. Linear Groups Formed by Polypeptide Chains (Schultz och Schirmer, Principles of Protein Structure) Linear group Observed Residues per Rise per turn n and chirality residue d (A) Radius of helix r (A) Planar parallel sheet Rare ±2.0 3.2 1 . 1 Planar antiparallel sheet Rare ±2.0 3.4 0.9 Twisted parallel or Abundant - 2.3 3.3 1.0 antiparallel sheet 3 1 0-Helix Small pieces + 3.0 2.0 1.9 a(R)-Helix (right-handed) Abundant + 3.6 1.5 2.3 a(L)-Helix (left-handed) Hypothetical - 3.6 1.5 2.3 IT-Helix Hypothetical + 4.3 1.1 2.8 Collagen-helix In fibers - 3.3 2.9 1.6 See also Petsko&Ringe fig. 1.14 Alpha helix From top Spacefilling model (CPK) Stick model: Hydrogen bonding i+4 i+3 i+4 i+2 i+2 i+1 i i+1 i • Common; accounts for about 35 % of all structure • Suitable radius for good van der Waals interaction • Side chains point away from each other; minimal steric hindrance Pesko&Ringe fig 1.13 Page 11 3.10 helix Hydrogen bonding Top view CPK-model • Rare ca. 3 % short fragments (1-3 hydrogen bonds) • (φ,ψ)=(-74,-4), borderline • Radius smaller than van der Waals distance • Sidechains not will spaced evenly Dipole moment Addition of permanent dipole moments of peptide bonds produces net dipole moment for alpha helixes; ( about +0.5 i C-terminus och -0.5 i Nterminus) Some preference for negatively charged sidechains at the N-terminus and for positively charged side chains at the C-terminus. Phosphate binding oftan at N-terminus of alpha helix Figur av Doc. Kurt Berndt, Karolinska Institute; se Bränden& Tooze s. 16 Page 12 Amphiphatic alpha helixes Perodicity in sequence (period ov 3-4 residues) can produce) amphiphilic helix. Strongly amphiphilic alpha heices can be recognized by hydrophobic moment: Helical wheel diagram Non<polar N R Take the hydrophobicity of each residue as the length of a vector directed from the helix as the sidechain. The length of the vector sum is called hyrdophobic moment Polar D Charged F C-term S I D L N-term G L G Alcohol dehydrogenase: Ile-Gln-Asp-Gly-Phe-Asp-Leu-Leu-Arg-Ser-Gly Amphiphilic alpha helix in mellitin (bee venom). Efter Gennis, Biomembranes Petsko&Ringe fig. 1.15 β-structure • About 2 residues /turn; planar • One β-strand: • Always together with other strands; carbonyl oxygens and amide nitrogens hydrogen bonded Page 13 Association av β-strands with hydrogen bonds produces a planar structure , β pleated sheet (β-sheet) Almost ideal βstructurer från glutathion reductase From the side β-strands can be parallel or antiparallel Parallell beta structure ! HN! R! O! HN! R! R! O! HN! R! O! R! O! HN! R! R! O! HN! R! O! O! HN! R! O! HN! R! R! R! R! O! HN! R! R! R! R! HN! O! R! HN! R! O! R! O! HN! R! HN! R! O! R! O! HN! HN! R! O! HN! R! O! HN! O! R! O! R! NH! O! HN! Petsko&Ringe fig. 1.17 Page 14 R! O! R! NH! NH! R! O! O! NH! NH! NH! R! O! O! NH! NH! NH! NH! NH! O! NH! O! HN! R! O! O! O! O! HN! HN! NH! R! R! NH! R! R! NH! O! HN! ! HN! O! O! O! NH! R! NH! NH! NH! O! NH! R! O! O! HN! O! NH! NH! NH! R! O! O! NH! HN! Antiparallell beta structure R! Most β-strands are twisted n ≈ -2.3 Strands will form an angle of about 25 degrees β-sheet becomes twisted; propellerlike structure Schultz och schirmer, Principles of Protein Structure Twisted β-structure ( thioredoxin) From top From side Page 15 Turns - Connections between antiparallel beta strands -mostly short (2-5 residues) Type I turn ! (Note that turn nomenclature is not consistent) 1,4 2 G 3 Page 16 Type II turn 1,4 3 2 Liten bit 3.10-helix Petsko&Ringe fig 1.12 Gamma turn: hydrogen bond from O(i) till H(i+2) Som 2.7 ribbon i vätebindningsöversikten. Endast en rest som inte ingår i förbundna betasträngar. stereoisomerer Figurer av Kurt Berndt, Karlinska Institutet (PPS), Page 17 Conformational preferences for residues in turn region Gly (>50 % of turn residues) Page 18 Other
© Copyright 2026 Paperzz