Evolution of an axisymmetric magnetic field in a differentially rotating radiative zone M. Gaurat, L. Jouve, F. Lignières IRAP-OMP Toulouse MHD Days 3 december 2014 Potsdam M. Gaurat, L. Jouve, F. Lignières Evolution of an axisymmetric magnetic field in a differentially rotating radiative zone 1 / 10 Introduction Interaction axisymmetric magnetic field/differential rotation with a density gradient but no meridional flows → 2D MHD numerical simulations Previous numerical works on this subject Explain the solid body rotation of the Sun’s radiative zone : Charbonneau & MacGregor (1992,1993), Rüdiger & Kitchatinov (1996), Spada et al. (2010), ... Aim of our work Study the stability of various magnetic configurations → systematic study of the characteristics of the magnetic field (topology, Bϕ /Bp ) on short time scales (Alfvén time) M. Gaurat, L. Jouve, F. Lignières Evolution of an axisymmetric magnetic field in a differentially rotating radiative zone 2 / 10 Governing equations Assumptions Axisymmetry, no meridional flows, µ and η uniform, Bp time-independent Governing equations − →→ − ∂Bϕ 1 1 = r sin θ( B . ∇)Ω + ∆ − B p ∂t Lu r 2 sin 2 θ ϕ − → → − Pm 1 ρr sin θ ∂Ω ∆− ∂t = r sin θ (Bp . ∇)(r sin θBϕ ) + Lu Lu = tη tAp Bϕ Bp α ΩΩAp = Lundquist number, Pm = where ΩAp = tη tν 1 r 2 sin 2 θ (r sin θ Ω) magnetic Prandtl number B √p R 4πρ +IC (Bϕ = 0 and Ω) / BC − → Dipolar Bp n=3 polytropic profile for ρ M. Gaurat, L. Jouve, F. Lignières Evolution of an axisymmetric magnetic field in a differentially rotating radiative zone 3 / 10 The different cases studied Dimensionless number Lu = [10 ; 102 ; 103 ; 104 ; 105 ] Pm = 1 Profile of ρ ρc /ρ0 = 1; 560; 7.103 ; 2.104 3, 5.104 ; 7.104 ; 105 ; 3.105 ; 106 Initial profile of Ω 4 radial profiles 2 cylindrical profiles BC on Ω at the inner boundary no-slip : Ω = cste stress-free : ∂Ω/∂r = 0 Spatial grid mesh 128x128 ; 256x256 ; 400x400 ; 512x512 Time step from 10−3 to 10−8 tAp M. Gaurat, L. Jouve, F. Lignières Evolution of an axisymmetric magnetic field in a differentially rotating radiative zone 4 / 10 A typical magnetic configuration obtained M. Gaurat, L. Jouve, F. Lignières Evolution of an axisymmetric magnetic field in a differentially rotating radiative zone 5 / 10 Asymptotic behaviours : Lu and ρ 6 3.0 max(Bϕ /Bp ) 5 2.5 4 tmax 2.0 3 1.5 2 1.0 1 0 100 102 103 Lu 104 105 0.5 0 10 106 10 101 102 1 103 Lu 104 105 106 max(Bϕ /Bp ) × q ρ0 ρc 10 101 1 tmax × 10-1 10-2 -1 10 100 q ρ0 ρc 100 10-1 100 101 102 103 ρc /ρ0 104 105 106 107 10-2 -1 10 100 101 102 103 ρc /ρ0 104 105 106 M. Gaurat, L. Jouve, F. Lignières Evolution of an axisymmetric magnetic field in a differentially rotating radiative zone 107 6 / 10 Modeling and comparison to the simulations Perturbations propagate as Alfvén − → waves along Bp ⇒ 2D problem → 1D problem Estimate of max(Bϕ /Bp ) and tmax Choose R L ds the field line in which is maximal 0 vAp → gives directly tmax → then solve 1D problem to get max(Bϕ /Bp ) Example of a simple solution Bϕ Bp (t θ∆Ω = tmax ) = r sinvAp cos( π2 Ls ) → gives predictions in good agreement with the simulations (Gaurat et al. in prep.) M. Gaurat, L. Jouve, F. Lignières Evolution of an axisymmetric magnetic field in a differentially rotating radiative zone 7 / 10 Instability of the magnetic configurations Likely to be subject to MRI or Tayler instability → depends on Bϕ Ω/ΩAϕ (Jouve et al. 2015), where ΩAϕ = r √4πρ Unstable cases (with Ogilvie 2007 dispersion relation) Ω/ΩAϕ = 10 σMRI = qΩ 2 where q = dlnΩ dlnr Ω/ΩAϕ = 1 σTI = ΩAϕ M. Gaurat, L. Jouve, F. Lignières Evolution of an axisymmetric magnetic field in a differentially rotating radiative zone 8 / 10 Instability of the magnetic configurations Background axisymmetric field oscillates with a frequency ≈ ΩAp To modify the spatial structure of the field : ΩσAp 1 MRI : σ ΩAp = q Ω 2 ΩAp Ω TI : ΩσAp = ΩAϕ = α ΩΩAp where α depends on the physical Ap parameters → given by the simulations and also by the model ⇒ Ω ΩAp 1 M. Gaurat, L. Jouve, F. Lignières Evolution of an axisymmetric magnetic field in a differentially rotating radiative zone 9 / 10 Conclusion Numerous magnetic configurations of a wound-up field obtained with 2D simulations Extrapolation to realistic density profiles Simple model gives good predictions of max(Bϕ /Bp ) and tmax Possibility to test the stability of the magnetic configurations obtained and to calculate the growth rate of the instability Possible application Explain the dichotomy observed in the distribution of the magnetic field of intermediate-mass stars M. Gaurat, L. Jouve, F. Lignières Evolution of an axisymmetric magnetic field in a differentially rotating radiative zone 10 / 10
© Copyright 2025 Paperzz