Slide 1
___________________________________
Functional Imaging: A review of
fMRI, DTI and Non-invasive
Perfusion Imaging
Kristine Mosier DMD, Ph.D.
Neuroradiology & Imaging Science
Department of Radiology
Clinical fMRI, Chief Head & Neck Imaging
Associate Professor of Radiology, Neuroscience and
Biomedical Engineering
Indiana University School of Medicine & IUPUI
___________________________________
___________________________________
___________________________________
___________________________________
___________________________________
___________________________________
Slide 2
Overview
Functional Brain Mapping
Neurophysiology and hemodynamic basis of BOLD
/ CBF.
fMRI paradigms, data acquistion and processing.
Clinical case examples.
Diffusion Tensor Imaging (DTI) & Fibertracking.
Non-invasive Perfusion Imaging (Arterial Spin
Labeling).
Cases
___________________________________
___________________________________
___________________________________
___________________________________
___________________________________
___________________________________
___________________________________
Slide 3
___________________________________
___________________________________
___________________________________
___________________________________
___________________________________
___________________________________
___________________________________
Slide 4
Functional Imaging: fMRI
Brain activity can be mapped using either
BOLD technique (Blood Oxygen Level
Dependent) or • rCBF.
Both BOLD and CBF changes dependent on
neurovascular coupling.
BOLD signal most closely correlated with LFP
(local field potentials).
fMRI performed in the neurosurgical setting to
map eloquent cortex.
___________________________________
___________________________________
___________________________________
___________________________________
___________________________________
___________________________________
___________________________________
Slide 5
___________________________________
___________________________________
___________________________________
___________________________________
___________________________________
___________________________________
___________________________________
Slide 6
fMRI
___________________________________
___________________________________
___________________________________
___________________________________
___________________________________
___________________________________
___________________________________
Slide 7
___________________________________
BOLD mechanism: summary
Neuronal activity focal net increase in
blood flow and oxygenation.
Increase in focal oxygenated blood
decrease in deoxyhemoglobin less T2*
effect increase in signal intensity.
___________________________________
___________________________________
___________________________________
___________________________________
___________________________________
___________________________________
Slide 8
___________________________________
___________________________________
___________________________________
___________________________________
___________________________________
___________________________________
___________________________________
Slide 9
___________________________________
___________________________________
___________________________________
___________________________________
___________________________________
___________________________________
___________________________________
Slide 10
___________________________________
BOLD fMRI: contrast mechanism
Relative mismatch between O2
delivery and O2 extraction during
activation period
Blood flow is increased to activated
regions of brain
O2 extraction also increased, but less
than increase in O2 delivery
___________________________________
___________________________________
___________________________________
___________________________________
___________________________________
___________________________________
Slide 11
BOLD fMRI: contrast mechanism
Thus increased oxyHb at post-capillary
level decreased deoxyHb
DeoxyHb is paramagnetic
decreases T2* (decreases signal)
Decrease in local deoxyHb results in
increased signal intensity on T2*-wtd
images (≈ 1-5%)
___________________________________
___________________________________
___________________________________
___________________________________
___________________________________
___________________________________
___________________________________
Slide 12
Basis of BOLD fMRI
___________________________________
___________________________________
___________________________________
___________________________________
___________________________________
From: Moseley ME & Glover GH. NeuroImaging Clinics of North America; Functional
Neuroimaging 5(2): 161-191, 1995
___________________________________
___________________________________
Slide 13
Basis of BOLD fMRI
___________________________________
___________________________________
___________________________________
___________________________________
___________________________________
From: Moseley ME & Glover GH. NeuroImaging Clinics of North America; Functional
Neuroimaging 5(2): 161-191, 1995
___________________________________
___________________________________
Slide 14
Raw Image Time Series
___________________________________
___________________________________
___________________________________
visual stim
no stim
visual stim
no stim
___________________________________
___________________________________
___________________________________
___________________________________
Slide 15
___________________________________
Difference Image Time Series
___________________________________
___________________________________
visual stim
no stim
___________________________________
___________________________________
visual stim
no stim
___________________________________
___________________________________
Slide 16
• Peak BOLD signal arises
at the level of the postcapillary venule .
•Problem: contribution to
signal from draining veins
• spatial, temporal artifact.
• Animal expt. at high
field (e.g. 7-9T) within
200 µm of LFP.
• Humans: several
studies BOLD accurate
to w/in 1cm of
electrode.
___________________________________
___________________________________
___________________________________
___________________________________
___________________________________
___________________________________
___________________________________
Slide 17
___________________________________
___________________________________
___________________________________
___________________________________
___________________________________
___________________________________
___________________________________
Slide 18
Echo Planar Imaging
___________________________________
___________________________________
___________________________________
FFT
___________________________________
___________________________________
k-space
image space
___________________________________
___________________________________
Slide 19
___________________________________
fMRI Data acquistion
Acquire time-series of fast images while
subject performs sensorimotor, language or
cognitive task
Process time-series data using statistical
methods & compare signal change during
task performance with signal during rest /
baseline.
Accurate processing: need to remove drift,
motion, physiological noise.
___________________________________
___________________________________
___________________________________
___________________________________
___________________________________
___________________________________
Slide 20
___________________________________
fMRI : Study Overview
___________________________________
Patient Prepar ation
Wor kstation
Image Reconstr uction
and Processing
___________________________________
Par adigm Design
Data Tr ansfer
___________________________________
Statistical Maps Computation
___________________________________
Visualization of Maps and Analysis
Data Acquisition
___________________________________
___________________________________
Slide 21
___________________________________
___________________________________
___________________________________
___________________________________
___________________________________
___________________________________
___________________________________
Slide 22
___________________________________
___________________________________
___________________________________
___________________________________
___________________________________
___________________________________
___________________________________
Slide 23
fMRI Data: Statistical Analysis
Most commercially available and custom
algorithms use GLM (General Linear
Model).
Y = M*a+e; Y = data vector, M = model of
amplitude response, a = response
amplitude, e = noise.
Current scanner software (GE, Siemens)
has “real-time” processing using t-test:
BEWARE; not all noise & artifact
removed!
___________________________________
___________________________________
___________________________________
___________________________________
___________________________________
___________________________________
___________________________________
Slide 24
fMRI Post-Procesing: FT paradigm
Raw EPI
___________________________________
___________________________________
___________________________________
___________________________________
___________________________________
___________________________________
___________________________________
Slide 25
fMRI Post-Procesing: FT paradigm
Bas_MoCo
___________________________________
___________________________________
___________________________________
___________________________________
___________________________________
___________________________________
___________________________________
Slide 26
Post-Processing: AFNI
#!/bin/bash
# set HOST = `hostname`
echo "subj=080821_HPA"
read subj
echo $subj
stadir=/data6/${subj}
refpath=/home/yang/fmriref
#TR=3s
#nslices=32
#frame=144
##tasks=(FT RB LB VS RM WG NA)
tasks=(BWchbd CLchbd)
#frames=(144 144 144 144 144)
##datadir=(8-fMRI-EPI-FT 22-fMRI-EPI-RB 15-fMRI-EPI-LB 29-fMRI-EPI-WG 36-fMRI-EPI-RM 43-fMRI-EPI-NA)
datadir=(10-ep2d_pace_stamp_BA 14-ep2d_pace_stamp_WG 16-ep2d_pace_stamp_NA 18-ep2d_pace_stamp_RM 20-ep2d_pace_stamp_PL 26-ep2d_pace_stamp_CS)
cd ${stadir}/afni
## segmentation mprage in SPM5 and generate brain only mask on segemented brain
## coregister T2 or T1 to mprage in SPM5 and then coregister EPI-MC.nii to rT2.nii or rT1.nii
## coregister *MC.nii in SPM5 --- estimate ONLY
##first convert these spm_output_files back to afni
#files=`ls r*MC*.nii`
#for file in ${files}
#do
#echo run for ${file}
#
origfile=${file#r}
#
\rm tmp*
#
3dresample -dxyz 2.5 2.5 3.5 -prefix tmp-rs -inset ${file}
#
3dresample -master tmp-rs+orig -inset ${origfile} -prefix tmp-orig-rs
#
3dWarpDrive -affine_general -base tmp-rs+orig -prefix ${origfile%.nii}-fix tmp-orig-rs+orig
#done
#files=`ls rMask*.nii`
#for file in ${files}
#do
#echo run for ${file}
#
origfile=${file#r}
#
\rm tmp*
#
3dresample -dxyz 2.5 2.5 3.5 -prefix tmp-rs -inset ${file}
#
3dresample -master tmp-rs+orig -inset ${origfile} -prefix tmp-orig-rs
#
3dWarpDrive -affine_general -base tmp-rs+orig -prefix ${origfile%.nii}-fix tmp-orig-rs+orig
#
###3dresample -master ${origfile} -inset ${file} -prefix tmp-rs
#
###3dWarpDrive -affine_general -base tmp-rs+orig -prefix ${origfile%.nii}-fix -twopass ${origfile}
#done
## now analyze each task
#echo all tasks are ${tasks[*]}
n=0
for task in ${tasks[*]}
do
echo run for $task
3dvolreg -verbose -Fourier -prefix ${subj}-${task}-MC.nii -base 0 -zpad 4 -tshift 0 -1Dfile ${subj}-${task}mc ${task}.nii
1dplot -ps -volreg -one -nopush -xlabel ${subj}-${task} ${subj}-${task}mc > ${subj}-${task}mc.ps
3dNotes -HH " " ${subj}-${task}-MC.nii.gz
3dAutomask -prefix Mask-${task} ${subj}-${task}-MC.nii.gz
3dDespike -prefix ${subj}-${task}-MCds ${subj}-${task}-MC.nii.gz
3dmerge -1blur_fwhm 5 -doall -prefix ${subj}-${task}-MCdssm ${subj}-${task}-MCds+orig
file=${subj}-${task}-MCdssm+orig
cp ${subj}-${task}mc mc
3dDeconvolve -input ${file} \
-progress 10000 \
-mask Mask-${task}+orig \
-polort A -num_stimts 8 \
-stim_file 1 ${refpath}/test_on.wav.1D -stim_label 1 'On' \
-stim_file 2 ${refpath}/test_off.wav.1D -stim_label 2 'Off' \
-stim_file 3 'mc[0]' -stim_base 2 -stim_label 3 Roll \
-stim_file 4 'mc[1]' -stim_base 3 -stim_label 4 Pitch \
-stim_file 5 'mc[2]' -stim_base 4 -stim_label 5 Yaw \
-stim_file 6 'mc[3]' -stim_base 5 -stim_label 6 dS \
-stim_file 7 'mc[4]' -stim_base 6 -stim_label 7 dL \
-stim_file 8 'mc[5]' -stim_base 7 -stim_label 8 dP \
-num_glt 4 \
-glt_label 1 'On' -gltsym 'SYM: +On' \
-glt_label 2 'Off' -gltsym 'SYM: +Off' \
-glt_label 3 'On-Off' -gltsym 'SYM: +On -Off' \
-glt_label 4 'Off-On' -gltsym 'SYM: +Off -On' \
-bucket ${subj}-${task}+mlr -nocout -tout -fout -rout -vout \
-fitts ${subj}-${task}+fit -errts ${subj}-${task}+ert -xsave \
-cbucket ${subj}-${task}+cbk -x1D ${task}
___________________________________
___________________________________
___________________________________
___________________________________
___________________________________
___________________________________
3drefit -addFDR ${subj}-${task}+mlr+orig
#3dFDR -input ${subj}-${task}+mlr+orig -mask_file Mask-${task}-fix+orig -prefix ${subj}-${task}+mlrFDR
#3dNotes -HH " " ${subj}-${task}+mlrFDR+orig
((n=n+1))
done
Slide 27
___________________________________
fMRI Post-Procesing: FT paradigm
Motion Parameters
___________________________________
___________________________________
___________________________________
___________________________________
___________________________________
___________________________________
___________________________________
Slide 28
fMRI Post-Procesing: FT paradigm
<matrix
# ni_type = "11*double"
# ni_dimen = "144"
# ColumnLabels = "Run#1Pol#0 ; Run#1Pol#1 ; Run#1Pol#2 ; On#0 ; Off#0 ; Roll#0 ; Pitch#0 ; Yaw#0 ;
dS#0 ; dL#0 ; dP#0"
# ColumnGroups = "3@-1,1,6@0,8"
# RowTR = "2"
# GoodList = "0..143"
# NRowFull = "144"
# RunStart = "0"
# Nstim = "2"
# StimBots = "3,10"
# StimTops = "3,10"
# StimLabels = "On ; dP"
# Nglt = "4"
# GltLabels = "On ; Off ; On-Off ; Off-On"
# GltMatrix_000000 = "1,11,3@0,1,7@0"
# GltMatrix_000001 = "1,11,4@0,1,6@0"
# GltMatrix_000002 = "1,11,3@0,1,-1,6@0"
# GltMatrix_000003 = "1,11,3@0,-1,1,6@0"
# CommandLine = "3dDeconvolve -input 100712OOS-FT-dsMCewsm+orig -progress 30000 -automask -float polort A -num_stimts 8 -stim_file 1 /home/yang/doc/fmriref/p4on5off_on_wav.1D -stim_label 1 On -stim_file 2
/home/yang/doc/fmriref/p4on5off_off_wav.1D -stim_label 2 Off -stim_file 3 'mc[0]' -stim_base 2 stim_label 3 Roll -stim_file 4 'mc[1]' -stim_base 3 -stim_label 4 Pitch -stim_file 5 'mc[2]'
-stim_base 4 -stim_label 5 Yaw -stim_file 6 'mc[3]' -stim_base 5 -stim_label 6 dS -stim_file 7
'mc[4]' -stim_base 6 -stim_label 7 dL -stim_file 8 'mc[5]' -stim_base 7 -stim_label 8 dP num_glt 4 -glt_label 1 On -gltsym 'SYM: +On' -glt_label 2 Off -gltsym 'SYM: +Off' glt_label 3 On-Off -gltsym 'SYM: +On -Off' -glt_label 4 Off-On -gltsym 'SYM: +Off -On' bucket 100712OOS-FT+mlr -nocout -tout -fout -rout -vout -fitts 100712OOS-FT+fit -errts 100712OOS-FT+ert xsave -cbucket 100712OOS-FT+cbk -x1D FT"
#>
___________________________________
___________________________________
___________________________________
___________________________________
___________________________________
___________________________________
___________________________________
Slide 29
fMRI Post-Procesing: FT paradigm
Intermediate T-map
___________________________________
___________________________________
___________________________________
___________________________________
___________________________________
___________________________________
___________________________________
Slide 30
fMRI Post-Procesing: FT paradigm
Design
___________________________________
___________________________________
___________________________________
___________________________________
___________________________________
___________________________________
___________________________________
Slide 31
fMRI Post-Procesing: FT paradigm
Mean + T-map
___________________________________
___________________________________
___________________________________
___________________________________
___________________________________
___________________________________
___________________________________
Slide 32
fMRI Post-Procesing: FT paradigm
GLM
___________________________________
___________________________________
___________________________________
___________________________________
___________________________________
___________________________________
___________________________________
Slide 33
fMRI: Typical Tasks
Sensorimotor
Gross motor: Finger-tapping, tongue tapping
Fine motor: object manipulation (Mosier)
Sensory: Visual field / retinotopic mapping
Language: expressive & receptive speech
Expressive speech: Word generation, Object naming,
Rhyming
Receptive speech: Passive Listening, Rhyming
Memory: Working memory
Other: Swallowing / articulated speech (Mosier)
Not yet standardized: ASFNR working on that!
___________________________________
___________________________________
___________________________________
___________________________________
___________________________________
___________________________________
___________________________________
Slide 34
___________________________________
fMRI: Choice of Tasks
Tasks
Location
Gross
Motor
Fine
Motor
Language
Frontal
+
+ /-
+
Parietal
+
+
+
Temporal
+/-
Occipital
Insular
Visual
Field
___________________________________
___________________________________
___________________________________
+ /-
Object
Naming
+
Other
+
+
+
Working
Memory
___________________________________
+
+
+
+
___________________________________
___________________________________
Slide 35
___________________________________
fMRI: Patient Selection
Intracranial lesion requiring eloquent cortex
mapping.
Patient able to undergo MR imaging at 1.5T or
3T (only 3T at IUPUI).
AVM patients: specific clips not safe @ 3T.
Stents; not all safe @ 3T
Body habitus
Claustrophobia
Able to speak & understand English
Able to read @ 6th grade level.
Peds + /
___________________________________
___________________________________
___________________________________
___________________________________
___________________________________
___________________________________
Slide 36
Clinical fMRI: Neurosurgical Mapping
___________________________________
___________________________________
___________________________________
___________________________________
A
fMRI
___________________________________
ESC
(Language rhyming task )
IU Radiology fMRI
___________________________________
___________________________________
Slide 37
Case 1: Oligodendroglioma; Bilateral Finger
tapping
Pre-central gyrus
___________________________________
___________________________________
___________________________________
___________________________________
___________________________________
___________________________________
Central sulcus
___________________________________
Slide 38
Case 1 Oligodendroglioma; Object manipulation –right
hand: fine motor, sensory – tactile, proprioception
___________________________________
___________________________________
___________________________________
___________________________________
___________________________________
___________________________________
___________________________________
Slide 39
Case 1: Oligodendroglioma Language: Word
Generation: speech execution
___________________________________
___________________________________
Activation
___________________________________
___________________________________
___________________________________
___________________________________
___________________________________
Slide 40
Case 1: Oligodendroglioma Language: Naming;
semantic language: speech reception and
execution
Noise
Activation
___________________________________
___________________________________
___________________________________
___________________________________
___________________________________
Noise
___________________________________
___________________________________
Slide 41
Case 1: Oligodendroglioma Language: Rhyming;
semantic language
Noise
___________________________________
___________________________________
___________________________________
___________________________________
___________________________________
___________________________________
___________________________________
Slide 42
Case 2: Finger-tapping
___________________________________
___________________________________
___________________________________
___________________________________
___________________________________
___________________________________
___________________________________
Slide 43
Case 2: Object Manipulation
___________________________________
___________________________________
___________________________________
___________________________________
___________________________________
___________________________________
___________________________________
Slide 44
Case 2: Working Memory
___________________________________
___________________________________
___________________________________
___________________________________
___________________________________
___________________________________
___________________________________
Slide 45
fMRI Brain Mapping
Advantages:
Non-invasive mapping of eloquent cortex w/
maps co-registered to anatomical images.
In many institutions, this has completely replaced
WADA testing.
Disadvantages:
Not all subjects are candidates: MRI safety,
patient must be awake & cooperative, peds.
Requires a team with expertise: neuroradiology,
neurosurgery, neuropsych., MR physicists, image processing
specialists, etc.
Indirect measure of neuronal activity.
___________________________________
___________________________________
___________________________________
___________________________________
___________________________________
___________________________________
___________________________________
Slide 46
Case 3:WHO Grade II oligoastrocytoma
___________________________________
___________________________________
___________________________________
___________________________________
___________________________________
___________________________________
___________________________________
Slide 47
Case 3:WHO Grade II oligoastrocytoma
FT
TT
___________________________________
___________________________________
___________________________________
Naming
Rhyming
___________________________________
___________________________________
___________________________________
___________________________________
Slide 48
Case 3:WHO Grade II oligoastrocytoma
___________________________________
___________________________________
___________________________________
___________________________________
___________________________________
___________________________________
___________________________________
Slide 49
Case 4: Visual Cortex, Awake
___________________________________
___________________________________
___________________________________
___________________________________
___________________________________
___________________________________
___________________________________
Slide 50
Case 4: Visual Cortex, Awake
___________________________________
___________________________________
___________________________________
___________________________________
___________________________________
Note: patient has granted permission for his photos to be used for publication
and teaching
___________________________________
___________________________________
Slide 51
Case 4: Visual Cortex, Awake
___________________________________
___________________________________
___________________________________
___________________________________
___________________________________
Note: patient has granted permission for his photos to be used for publication
and teaching
___________________________________
___________________________________
Slide 52
Case 4:Oligoastrocytoma < Gr III
Left Chkbd
___________________________________
Face
Matching
Right Chkbd
___________________________________
___________________________________
___________________________________
___________________________________
___________________________________
___________________________________
Slide 53
___________________________________
___________________________________
___________________________________
___________________________________
___________________________________
___________________________________
___________________________________
Slide 54
___________________________________
___________________________________
___________________________________
___________________________________
___________________________________
___________________________________
___________________________________
Slide 55
___________________________________
___________________________________
___________________________________
___________________________________
___________________________________
___________________________________
___________________________________
Slide 56
___________________________________
___________________________________
___________________________________
___________________________________
___________________________________
___________________________________
Fig. 9.3
___________________________________
Slide 57
MR Diffusion Tensor Imaging
___________________________________
___________________________________
___________________________________
___________________________________
___________________________________
In liquids
In tissues
Anisotropy
___________________________________
___________________________________
Slide 58
___________________________________
___________________________________
___________________________________
___________________________________
___________________________________
___________________________________
___________________________________
Slide 59
___________________________________
___________________________________
___________________________________
___________________________________
___________________________________
___________________________________
___________________________________
Slide 60
DTI
___________________________________
___________________________________
___________________________________
___________________________________
___________________________________
___________________________________
___________________________________
Slide 61
___________________________________
___________________________________
___________________________________
___________________________________
___________________________________
___________________________________
___________________________________
Slide 62
___________________________________
___________________________________
___________________________________
___________________________________
___________________________________
___________________________________
___________________________________
Slide 63
Case 5 - DTI/FA
___________________________________
___________________________________
___________________________________
___________________________________
___________________________________
___________________________________
___________________________________
Slide 64
___________________________________
___________________________________
___________________________________
___________________________________
___________________________________
___________________________________
___________________________________
Slide 65
___________________________________
___________________________________
___________________________________
___________________________________
___________________________________
___________________________________
___________________________________
Slide 66
DTI: Fiber Tracking
___________________________________
___________________________________
___________________________________
___________________________________
___________________________________
Adapted from:
Descoteaux et al. 2007
___________________________________
___________________________________
Slide 67
DTI at 3T
___________________________________
___________________________________
___________________________________
___________________________________
___________________________________
___________________________________
___________________________________
Slide 68
Case 1 DTI
___________________________________
___________________________________
___________________________________
___________________________________
___________________________________
___________________________________
___________________________________
Slide 69
Case 2: DTI
___________________________________
___________________________________
___________________________________
___________________________________
___________________________________
___________________________________
___________________________________
Slide 70
___________________________________
A
B
C
D
___________________________________
___________________________________
___________________________________
___________________________________
___________________________________
___________________________________
Slide 71
___________________________________
___________________________________
___________________________________
___________________________________
___________________________________
___________________________________
___________________________________
Slide 72
___________________________________
___________________________________
___________________________________
___________________________________
___________________________________
___________________________________
___________________________________
Slide 73
Case 6: 54 y.o. w/partial complex seizures & speech
arrest
___________________________________
___________________________________
___________________________________
___________________________________
___________________________________
___________________________________
___________________________________
Slide 74
Case 6: Bilateral Finger-tapping
___________________________________
___________________________________
___________________________________
___________________________________
___________________________________
___________________________________
___________________________________
Slide 75
Case 6: Word Generation
___________________________________
___________________________________
___________________________________
___________________________________
___________________________________
___________________________________
___________________________________
Slide 76
Case 6: Naming
___________________________________
___________________________________
___________________________________
___________________________________
___________________________________
___________________________________
___________________________________
Slide 77
Case 6: DTI
___________________________________
___________________________________
___________________________________
___________________________________
___________________________________
___________________________________
___________________________________
Slide 78
Case 6: Perfusion (ASL)
___________________________________
___________________________________
___________________________________
___________________________________
___________________________________
___________________________________
___________________________________
Slide 79
___________________________________
___________________________________
___________________________________
___________________________________
___________________________________
___________________________________
___________________________________
© Copyright 2026 Paperzz