Midterm Exam Summer 2013 Math 1560 Solutions 100 points total 1. [10 points] Evaluate Im ((−i)−1+i ). Find all values. Simplify your answer. Solution: (−i)−1+i = e(−1+i) ln(−i) = e(−1+i)(0+i(−π/2−2πk)) = e(1+i)(π/2+2πk)) = eπ/2+2πk ei(π/2+2πk) = eπ/2+2πk (cos(π/2 + 2πk) + i sin(π/2 + 2πk)) = eπ/2+2πk i, k = 0, ±1, ±2... Hence Im ((−i)−1+i ) = eπ/2+2πk , k = 0, ±1, ±2... 1 2. [10 points] Find Re sin . z̄ z x + iy x y 1 = = 2 = 2 + 2 i. Solution: 2 2 z̄ z z̄ x +y x +y x + y2 1 x y Then Re sin = sin cosh . z̄ x2 + y 2 x2 + y 2 3. [10 points] Prove or disprove that the function 2 z + iz + 6 , 2i − z f (z) = −5i, z 6= 2i, z = 2i. is continuous at z = 2i. Solution: A function f (z) is continuous at a point z0 if lim f (z) = f (z0 ). z→z0 In the definition of f it is given that f (2i) = −5i. 2z + i z 2 + iz + 6 0 H ” 0 ” = lim = −5i. z→2i −1 z→2i 2i − z lim f (z) = lim z→2i So, we have shown that lim f (z) = f (2i). Hence, f (z) is continuous at z = 2i. z→2i z2 + 2 . Express the result in rectangular form. z+i 2z(z + i) − z 2 − 2 z 2 + 2zi − 2 f 0 (z) = = (z + i)2 (z + i)2 4. [10 points] Find f 0 (2) if f (z) = Solution: f 0 (2) = 2 + 4i 2 + 4i 2 + 4i 3 − 4i 22 + 4i 22 4 = = · = = + i 2 (2 + i) 3 + 4i 3 + 4i 3 − 4i 25 25 25 1 5. [10 points] Use CREs to show that the function f (z) = cos z̄ is non-analytic everywhere. Solution: f (z) = cos z̄ = cos(x − iy) = cos x cosh y + i sin x sinh y, v = sin x sinh y, u = cos x cosh y, ux = − sin x cosh y, vx = cos x sinh y, uy = cos x sinh y, vy = sin x cosh y. If we assume that CREs hold. Then ux = vy gives sin x = 0 and uy = −vx gives cos x sinh y = 0. The system has solutions x = πk, y = 0. Hence, CREs can hold only at the isolated points z = πk. But a function cannot be analytic at an isolated point. Hence, f (z) is non-analytic everywhere. 6. [10 points] Let u(x, y) = 2xy−y be a real part of an analytic function f (z) = u(x, y)+v(x, y)i. Find f (z). Solution: From CREs we have vy = ux = 2y, vx = −uy = −2x + 1. From vy = 2y we get v = y 2 + φ(x). To find φ(x) we use vx = −2x + 1 or φ0 (x) = −2x + 1. Then φ(x) = −x2 +x and v = −x2 +y 2 +x. Hence, f (z) = 2xy −y +(−x2 +y 2 +x)i = −iz 2 +iz. 7. [10 points] Evaluate the limit using the L’Hospital’s rule lim (sin z)z . z→0 Define and write the types of all indeterminate forms occurred during the process of obtaining the solution. Solution: z lim z ln sin z lim (sin z)z = lim eln(sin z) = ez→0 z→0 z→0 cos z/ sin z z 2 cos z ln sin z ∞ H ” ” = lim = − lim ∞ z→0 z→0 sin z z→0 z −1 −z −2 lim z ln sin z = lim z→0 2z cos z − z 2 sin z =0 z→0 cos z = − lim Hence, lim (sin z)z = e0 = 1. z→0 Z 8. Evaluate I = 3z 2 dz if C (a) [10 points] C is the curve in the complex plane given by y = x3 − 3x − 2 and joining points (0, −2) and (2, 0). 2 Solution: The function 3z 2 is analytic in the whole complex plane and the integral is independent of path. Hence, Z2 I= 2 3z dz = z 2 = 8 − (−2i)3 = 8 − 8i 3 −2i −2i (b) [10 points] C is the circle |z + 2| = 3. Solution: The function 3z 2 is analytic in the whole complex plane. The path C is closed. By Cauchy’s theorem I = 0. I 5z̄ dz where C is the circle |z + i| = 2. 9. [10 points] Evaluate I = C Solution: By the complex form of Green’s theorem we have Z Z ∂ I = 2i (5z̄) dA = 10i dA ∂ z̄ R R Z dA represents the area of the circle |z + i| = 2 with radius 2. Its area is The integral R π · 22 = 4π. Hence, I = 10i · 4π = 40πi. I bonus problem [15 points extra] Evaluate I = dz . z−i |z−i|=1 Solution: On the circle |z − i| = 1 we have z = i + eiθ , 0 ≤ θ < 2π, dz = ieiθ dθ. Then Z2π I= ieiθ dθ = eiθ 0 Z2π i dθ = 2πi 0 3
© Copyright 2026 Paperzz