Chemistry Department CHM 1220/1225 Winter 2006 Sample Exam New Material for Final Exam Answers Note: All values for ΔHf0, S0, and ΔGf0 are from Appendix C 1. 270.8 kJ 0 2. a. ΔS will be positive because one gas molecule is breaking into two gas molecules. ΔS = +175.5 J/K (4 sf) 0 b. ΔS will be positive because three gas molecule are produced. ΔS = +507.0 J/K 0 c. ΔS will be positive because three gas molecule are produced. ΔS = +33.51 J/K 0 d. ΔS is difficult to predict. ΔS = –218.5 J/K 0 3. a. ΔH = 57.1 kJ (1 dp) 0 b. ΔH = +1411.2 kJ (1 dp) 0 c. ΔH = 11.6 kJ (1 dp) 0 d. ΔH =–976.3 kJ (1 dp) 0 4. a. ΔG = 4.52 kJ (2 dp) 0 b. ΔG = +1260.0 kJ (2 dp) 0 c. ΔG = 1.7 kJ (1 dp) 0 d. ΔG =–1012.1 kJ (1 dp) 5. a. ΔG = –166.3 kJ (1 dp) 0 0 d. ΔG = ΔH – TΔS = –1254.5 kJ (1 dp) 91 6. a. K = 6.00 x 10 c. K = 0.50 7. a. T = 325 K b. T = 2783 K c. T = 346 K 8. a. ΔH>0 and ΔS>0. ΔG depends on temperature (+ at low temperature; – at high temperature) b. ΔH>0 and ΔS>0. ΔG depends on temperature (– at low temperature; + at high temperature) 9. a. ΔU = 56 J b. ΔU = –71.0 J c. ΔU = 0.84 J d. ΔU = –1322 J e. ΔU = –3140 J f. ΔU = –8.65 kJ 10. pH = 2.17; pOH = 11.83 –5 11. Kb = 2.2 x 10 –5 12. a. Kb = 2.0 x 10 –11 b. Ka = 2.3 x 10 –3 13. [C5H5N] = 1.0 x 10 M; pH = 3.00 14. pH = 8.08 –2 15. [HC3H5O3] = 7.4 x 10 M More detailed solutions on next pages. CHM 1220/1225 2 Page 2 of 3 a. N2O4(g) ––> 2 NO2(g) 0 Sf , J/(mol•K) 304.3 J/(mol•K) • 1 mol = 304.3 J/K 239.9 J/(mol•K) • 2 mol = 479.8 J/K 0 9.079 kJ/mol • 1mol = 9.079 kJ 33.1 kJ/mol • 2 mol = 66.2 kJ ΔHf (kJ/mol) 0 97.72 kJ/mol • 1 mol = 97.72 51.12 kJ/mol • 2 mol = 102.24 kJ ΔGf (kJ/mol) 0 ΔS = 479.8 J/K – 304.3 J/K = +175.5 J/K (4 sf) 0 ΔH = 66.2 kJ – 9.079 kJ = 57.121 kJ = 57.1 kJ (1 dp) 0 ΔG = 102.24 kJ – 97.72 kJ = 4.52 kJ (2 dp) 0 0 ΔG = ΔH – TΔS = 57.121 kJ – 1273 K • 0.1755 kJ/K = 57.121 kJ – 223.4115 kJ = –166.3 kJ (1 dp) K=e 166.3x10 3 J J 8.3145 •298K mol•K 67.1181 29 =e = 1.41 x 10 T = ΔH /ΔS = 57.1 kJ/0.1755 kJ/K = 325 K € 0 0 b. 2 AlCl3(s) ––> 2 Al(s) + 3 Cl2(g) 2 AlCl3(s) ––> 0 Sf , J/(mol•K) 109.3 J/(mol•K) • 2 mol = 218.6 J/K 2 Al(s) + 3 Cl2(g) 28.28 J/(mol•K) • 2 mol 223.0 J/(mol•K) • 3 mol = 56.56 J/K = 669.0 J/K 0 –705.6 kJ/mol • 2 mol = –1411.2 kJ 0 kJ/mol • 2 mol = 0 kJ 0 kJ/mol • 3 mol = 0 kJ ΔHf (kJ/mol) 0 –630.0 kJ/mol • 2 mol = –1260.0 kJ 0 kJ/mol • 2 mol = 0 kJ 0 kJ/mol • 3 mol = 0 kJ ΔGf (kJ/mol) 0 ΔS = (56.56 + 669.0) J/K – 218.6 J/K = (725.56 – 218.6) J/K = +506.96 J/K = 507.0 J/K 0 ΔH = 0 kJ – (–1411.2 kJ) = +1411.2 kJ (1 dp) 0 ΔG = 0 kJ – (–1260.0 kJ) = +1260.0 kJ (2 dp) 0 0 T = ΔH /ΔS = 1411.2 kJ/0.5070 kJ/K = 2783 K c. Be(OH)2(s) ––> BeO(s) + H2O(l) Be(OH)2(s) ––> BeO(s) + H2O(l) 0 Sf , J/(mol•K) 50.21 J/(mol•K) • 1 mol = 13.77 J/(mol•K) • 1 mol = 69.95 J/(mol•K) • 1 mol = 50.21 J/K 13.77 J/K 69.95 J/K 0 –905.8 kJ/mol • 1 mol = –608.4 kJ/mol • 1 mol = –285.8 kJ/mol • 1 mol = ΔHf (kJ/mol) –905.8 kJ –608.4 kJ –285.8 kJ 0 –817.9 kJ/mol • 1 mol = –579.1 kJ/mol • 1 mol = –237.1 kJ/mol • 1 mol = ΔGf (kJ/mol) –817.9 kJ –579.1 kJ –237.1 kJ 0 ΔS = (13.77 + 69.95) J/K – 50.21 J/K = (83.72 – 50.21) J/K = +33.51 J/K 0 ΔH = (–608.4 + –285.8) kJ – (–905.8 kJ) = –894.2 kJ – (–905.8 kJ) = 11.6 kJ (1 dp) 0 ΔG = (–579.1 + –237.1) kJ – (–817.9 kJ) = (–816.2 kJ) – (–817.9 kJ) = 1.7 kJ (1 dp) K= e –1.7x10 3 J J 8.3145 •298K mol•K –0.6861 =e = 0.50 T = ΔH /ΔS = 11.6 kJ/0.03351 kJ/K = 346 K € 0 0 d. N2O4(g) + 4 H2(g) ––> N2(g) + 4 H2O(g) N2O4(g) + 4 H2(g) ––> N2(g) + 4 H2O(g) 0 Sf , J/(mol•K) 303.3 J/(mol•K) • 1 130.6 J/(mol•K) • 4 191.6 J/(mol•K) • 1 188.7 J/(mol•K) • 4 mol = 303.3 J/K mol = 521.8 J/K mol = 191.6 J/K mol = 754.8 J/K 0 9.079 kJ/mol • 1 mol 0 kJ/mol • 4 mol = 0 0 kJ/mol • 1 mol = 0 –241.8 kJ/mol • 4 ΔHf (kJ/mol) = 9.079 kJ kJ kJ mol = –967.2 kJ 0 97.72 kJ/mol • 1 mol 0 kJ/mol • 4 mol = 0 0 kJ/mol • 1 mol = 0 –228.6 kJ/mol • 4 ΔGf (kJ/mol) = 97.72 kJ kJ kJ mol = –914.4 kJ 0 ΔS = (191.6 + 754.8) J/K – (303.3 + 521.8) J/K = (946.4 – 1164.9) J/K = –218.5 J/K 0 ΔH = (0 + –967.2) kJ – (9.079 + 0)kJ) = –967.2 kJ – (9.079 kJ) = –976.279 kJ = –976.3 kJ (1 dp) 0 ΔG = (0 + –914.4) kJ – (97.72 + 0) kJ = (–914.4 kJ) – (97.72 kJ) = –1012.1 kJ (1 dp) 0 0 0 ΔG = ΔH – TΔS = –976.3 kJ – 1273 K • 0.2185 kJ/K = (–976.3 – 278.1505) kJ = –1254.5 kJ (1 dp) 9. a. q = 85 J; w = –29 J; ΔU = q + w = 56 J b. q = –57.5 J; w = –13.5 J; ΔU = q + w = –71.0 J c. ΔU = q + w = 0.84 J CHM 1220/1225 Page 3 of 3 d. q = –900 J; w = –422 J; ΔU = q + w = –1322 J e. q = –3140 J, w = 0 J; ΔU = q + w = –3140 J f. q = –8.65 kJ; w = 0 J; ΔU = q + w = –8.65 kJ 10. [NH3] = 2.5 M NH3(aq) + H2O(l) ⇔ Start 2.5 Change –x Equilibrium 2.5 – x Kb = 2 € + NH4 ( aq) + 0 +x x [NH+4 ][OH– ] x2 = = 1.8x10 –5 ; assuming (2.5 – x) = 2.5 [NH3 ] (2.5 − x) –5 -5 x = 2.5(1.8 x 10 ) = 4.5 x 10 –3 x = 6.7 x 10 + -3 [H3O ] = x = 6.7 x 10 M pH = 2.17; pOH = 11.83 11. Bz(aq) + Start 0.068 Change –x Equilibrium 0.068 – x – –3 pOH = 2.91; [OH ] = 1.2 x 10 M + H2O(l) ⇔ HBz ( aq) + 0 +x x [HBz + ][OH– ] (1.2x10–3 ) 2 Kb = = = 2.2x10 –5 [Bz] (0.068 − 0.0012) – € – OH (aq) 0 +x x –14 –10 – OH (aq) 0 +x x –5 12. a. Kb for CN = Kw/Ka for HCN = 1.0 x 10 /4.9 x 10 = 2.0 x 10 + –14 –4 –11 b. Ka for CH3NH3 = Kw/Kb for CH3NH2 = 1.0 x 10 /4.4 x 10 = 2.3 x 10 13. + + C5H5NH (aq) + H2O(l) ⇔ H3O ( aq) C5H5N(aq) Start 0.15 0 0 Change –x +x +x Equilibrium 0.15 – x x x Assume that 0.15 – x = 0.15 x2 Kw Ka = = = 7.14 x10–6 –9 0.15 1.4x10 2 14. € –6 x = 1.07 x 10 –3 –3 x = 1.0 x 10 M; pH = 3.00; [C5H5N] = 1.0 x 10 M NH3(aq) + 0.10 –x 0.10 – x Start Change Equilibrium Kb = H2O(l) ⇔ –5 – –5 M; pOH = 5.92; pH = 8.08 15. HLac(aq) + H2O(l) ⇔ Start C Change –x Equilibrium C–x + –2.51 –3 pH = 2.51; [H3O ] = 10 = 3.1 x 10 M x2 Ka = = 1.3x10 –4 ; x = 3.1 x 10–3 M C− x –2 7.4 x 10 = C – 1.3 x 10 –2 C = 7.4 x 10 M € – OH (aq) 0 +x x [NH+4 ][OH– ] x(0.15 + x) = = 1.8x10 –5 ; assume (0.15 + x) = 0.15 and (0.10 – x) = 0.10 [NH3 ] (0.10 − x) x = 1.2 x 10 ; [OH ] = 1.2 x 10 € + NH4 ( aq) + 0.15 +x 0.15 + x –4 € + H3O ( aq) 0 +x x (3.1x10 –3 ) 2 1.3x10–4 Lac(aq) 0 +x x = (C − 1.3x10 –4 )
© Copyright 2026 Paperzz