¬∃x (P x ∧ ¬Q x) ⊢ ∀x (P x → Q x) We want to show that ¬∃x (Px ∧ ¬Qx) ⊢ ∀x (Px → Qx). ¬∃x (P x ∧ ¬Q x) ⊢ ∀x (P x → Q x) We want to show that ¬∃x (Px ∧ ¬Qx) ⊢ ∀x (Px → Qx). I will prove the conclusion by proving Pa → Qa and applying ∀Intro. ¬∃x (P x ∧ ¬Q x) ⊢ ∀x (P x → Q x) We want to show that ¬∃x (Px ∧ ¬Qx) ⊢ ∀x (Px → Qx). I will prove the conclusion by proving Pa → Qa and applying ∀Intro. To prove Pa → Qa I assume its negation ¬(Pa → Qa) and prove from this Pa ∧ ¬Qa. Applying ∃Intro will give me ∃x (Px ∧ ¬Qx), which contradicts the premiss and I can conclude Pa → Qa by applying ¬Elim. ¬∃x (P x ∧ ¬Q x) ⊢ ∀x (P x → Q x) I write down the negation of Pa → Qa and try to obtain Pa. To this end I assume Pa and ¬Pa. ¬Pa Pa ¬(Pa → Qa) ¬∃x (P x ∧ ¬Q x) ⊢ ∀x (P x → Q x) Using ¬Elim I conclude Qa. Pa ¬Pa Qa ¬(Pa → Qa) ¬∃x (P x ∧ ¬Q x) ⊢ ∀x (P x → Q x) Now I apply →Intro to discharge Pa. ¬Pa [Pa] Qa Pa → Qa ¬(Pa → Qa) ¬∃x (P x ∧ ¬Q x) ⊢ ∀x (P x → Q x) This yields a contradiction, which allows me to apply ¬Elim and ¬Pa is discharged as well. [¬Pa] [Pa] Qa Pa → Qa ¬(Pa → Qa) Pa ¬∃x (P x ∧ ¬Q x) ⊢ ∀x (P x → Q x) Following my plan, I try to prove ¬Qa from the assumption ¬(Pa → Qa). I try to do this by assuming Qa hoping that I can apply ¬Intro. [¬Pa] [Pa] Qa Pa → Qa Qa ¬(Pa → Qa) Pa ¬(Pa → Qa) ¬∃x (P x ∧ ¬Q x) ⊢ ∀x (P x → Q x) But that’s easy because I can derive Pa → Qa by →Intro. . . [¬Pa] [Pa] Qa Pa → Qa ¬(Pa → Qa) Pa Qa Pa → Qa ¬(Pa → Qa) ¬∃x (P x ∧ ¬Q x) ⊢ ∀x (P x → Q x) and applying then ¬Intro. [¬Pa] [Pa] Qa Pa → Qa ¬(Pa → Qa) Pa [Qa] Pa → Qa ¬(Pa → Qa) ¬Qa ¬∃x (P x ∧ ¬Q x) ⊢ ∀x (P x → Q x) The plan is to prove Pa ∧ ¬Qa. . . [¬Pa] [Pa] Qa Pa → Qa [Qa] ¬(Pa → Qa) Pa → Qa Pa Pa ∧ ¬Qa ¬(Pa → Qa) ¬Qa ¬∃x (P x ∧ ¬Q x) ⊢ ∀x (P x → Q x) . . . and to apply ∃Intro, [¬Pa] [Pa] Qa Pa → Qa [Qa] ¬(Pa → Qa) Pa → Qa Pa Pa ∧ ¬Qa ∃x (Px ∧ ¬Qx) ¬(Pa → Qa) ¬Qa ¬∃x (P x ∧ ¬Q x) ⊢ ∀x (P x → Q x) which contradicts the premiss. [¬Pa] [Pa] Qa Pa → Qa [Qa] ¬(Pa → Qa) Pa → Qa ¬(Pa → Qa) Pa ¬Qa Pa ∧ ¬Qa ∃x (Px ∧ ¬Qx) ¬∃x (Px ∧ ¬Qx) ¬∃x (P x ∧ ¬Q x) ⊢ ∀x (P x → Q x) So using ¬Elim I infer Pa → Qa and discharge ¬(Pa → Qa). [¬Pa] [Pa] Qa Pa → Qa [Qa] [¬(Pa → Qa)] Pa → Qa [¬(Pa → Qa)] Pa ¬Qa Pa ∧ ¬Qa ∃x (Px ∧ ¬Qx) ¬∃x (Px ∧ ¬Qx) Pa → Qa ¬∃x (P x ∧ ¬Q x) ⊢ ∀x (P x → Q x) Finally there is no undischarged assumption left that contains the constant a. Thus, I can apply ∀Intro. [¬Pa] [Pa] Qa Pa → Qa [Qa] [¬(Pa → Qa)] Pa → Qa [¬(Pa → Qa)] Pa ¬Qa Pa ∧ ¬Qa ∃x (Px ∧ ¬Qx) ¬∃x (Px ∧ ¬Qx) Pa → Qa ∀x (Px → Qx) ¬∃x (P x ∧ ¬Q x) ⊢ ∀x (P x → Q x) Apart from the premiss there is no undischarged assumption left. So the proof is complete. [¬Pa] [Pa] Qa Pa → Qa [Qa] [¬(Pa → Qa)] Pa → Qa [¬(Pa → Qa)] Pa ¬Qa Pa ∧ ¬Qa ∃x (Px ∧ ¬Qx) ¬∃x (Px ∧ ¬Qx) Pa → Qa ∀x (Px → Qx)
© Copyright 2026 Paperzz