07_ch07_pre-calculas11_wncp_solution.qxd 5/28/11 4:10 PM Page 6 Home Quit Lesson 7.2 Exercises, pages 537–543 A 3. Simplify each expression. 3 2b a) 4 5 # 3 4 3b ⴝ 10 ⴝ p2 15 p2 ⴝ p 5 5 # ⴝ c3 # ⴚ2 4 x 3 ⴝ ⴚ6x 2 d) 10 15 3 p # 3 9x 2 # -2c5 Non-permissible value: c ⴝ 0 c3 10 # ⴚ5 ⴝ 2c ⴝ 6 # ⴝ 3p, p ⴝ 0 - 4x 9x 2 c) 3 # Non-permissible value: p ⴝ 0 2b 5 # 2 p2 15 p b) 5 2 c3 2 10 # ⴚ5 2c ⴚc ,cⴝ 0 4 2 7.2 Multiplying and Dividing Rational Expressions—Solutions DO NOT COPY. ©P 07_ch07_pre-calculas11_wncp_solution.qxd 5/28/11 4:10 PM Page 7 Home 4. Simplify each expression. 4 2 a) n , n Quit 2b 4 b) 5 , 10b Non-permissible value: n ⴝ 0 Non-permissible value: b ⴝ 0 2 4 2 n ⴜ nⴝ n 2b 4 2b ⴜ ⴝ 5 5 10b # n 42 1 2 ⴝ ,nⴝ 0 2 # 10 b 42 ⴝ b2, b ⴝ 0 d3 6 c) x , 3 d d) 4 , 12 Non-permissible value: x ⴝ 0 2 6 6 x ⴜ 3ⴝ x # Non-permissible value: d ⴝ 0 d3 d d3 ⴜ ⴝ 4 12 4 1 3 2 5. Simplify each expression. 2 m 10p a) 5p 3m # Non-permissible values: p ⴝ 0 and m ⴝ 0 # ⴝ 2 # # 12 3 d ⴝ 3d2, d ⴝ 0 ⴝ x, x ⴝ 0 2 m 10p m ⴝ 5p 3m 5 p 2 10 p 2 3m b) - 2ab2 - 4a , 15ab 5a3b Non-permissible values: a ⴝ 0 and b ⴝ 0 ⴚ 2ab2 ⴚ 4a ⴚ 2 a b2 ⴜ ⴝ 2 3 15ab 5a b 5 a3 b 2p , p ⴝ 0, m ⴝ 0 3 ⴝ # 3 15 a b ⴚ4 a 2 3b2 , a ⴝ 0, b ⴝ 0 2a2 B 6. Simplify each expression. 8(x - 3) 3x a) 2(x - 3) 9x2 # Non-permissible values: x ⴝ 0 and x ⴝ 3 ©P 4 ⴝ 3 x 2 (x ⴚ 3) ⴝ 4 , x ⴝ 0, 3 3x DO NOT COPY. # 8 (x ⴚ 3) 3 9 x 2 b) 15(x + 5) # 2x2 8x 5(x + 5)2 Non-permissible values: x ⴝ 0 and x ⴝ ⴚ 5 3 ⴝ ⴝ 15 (x ⴙ 5) 2x 2 # 4 8 x 5 (x ⴙ 5) 2 12 , x ⴝ ⴚ5, 0 x(x ⴙ 5) 7.2 Multiplying and Dividing Rational Expressions—Solutions 7 07_ch07_pre-calculas11_wncp_solution.qxd 5/28/11 4:10 PM Page 8 Home c) 2(x - 4)(x + 5) 4(x + 5) , 3(x + 1) (x + 1)2 d) 2 (x ⴚ 4) (x ⴙ 5) # 3 (x ⴙ 1) (x ⴙ 1) 2 (x ⴚ 4)(x ⴙ 1) ⴝ , x ⴝ ⴚ5, ⴚ1 6 # , 3 (y - 3) ⴝ 2 4 (x ⴙ 5) 7. Simplify each expression. 2a + 2b a - 2b a) 3a - 6b a + b y(y + 1) 10y (y - 3)2 Non-permissible values: y ⴝ 3, y ⴝ 0, and y ⴝ ⴚ1 Non-permissible values: x ⴝ ⴚ5 and x ⴝ ⴚ1 ⴝ Quit ⴝ b) 10 y # (y ⴚ 3) 3 (y ⴚ 3)2 y (y ⴙ 1) 10 , y ⴝ ⴚ1, 0, 3 (y ⴚ 3)(y ⴙ 1) n2 - 4 6n + 3 2n + 1 n - 2 # Non-permissible values: Non-permissible values: a ⴝ 2b and a ⴝ ⴚb n ⴝ ⴚ and n ⴝ 2 2a ⴙ 2b a ⴚ 2b 3a ⴚ 6b a ⴙ b n2 ⴚ 4 6n ⴙ 3 2n ⴙ 1 n ⴚ 2 1 2 # ⴝ 2 (a ⴙ b) # 3 (a ⴚ 2b) # a ⴚ 2b aⴙb 2 3 ⴝ 3(n ⴙ 2), n ⴝ ⴚ , 2 x2 - 25 x + 5 c) x - 4 , 3x - 12 d) (x ⴚ 5)(x ⴙ 5) xⴙ5 ⴜ xⴚ4 3(x ⴚ 4) (b + 2)2 3b2 - 3 ⴝ Non-permissible values: ⴝ x ⴝ ⴚ5, x ⴝ 4, and x ⴝ 5 3 (x ⴚ 4) ⴝ xⴙ5 xⴚ4 ⴝ 3 , x ⴝ ⴚ5, 4, 5 xⴚ5 # # 1 2 ⴝ , a ⴝ 2b, ⴚb ⴝ (n ⴚ 2) (n ⴙ 2) 3 (2n ⴙ 1) 2n ⴙ 1 nⴚ2 ⴝ (b ⴙ 2)2 3(b ⴚ 1) 2 ⴝ (x ⴚ 3)(x ⴙ 2) (x ⴚ 4)(x ⴙ 4) xⴙ4 x(x ⴙ 2) # Non-permissible values: x ⴝ ⴚ4, ⴚ2, 0 (x ⴚ 3) (x ⴙ 2) ⴝ xⴙ4 # (x ⴚ 4) (x ⴙ 4) x (x ⴙ 2) (x ⴚ 3)(x ⴚ 4) , x ⴝ ⴚ4, ⴚ 2, 0 ⴝ x ⴜ 2(b ⴙ 2) 1ⴚb (b ⴙ 2)2 3(b ⴚ 1)(b ⴙ 1) ⴝ 2(b ⴙ 2) ⴜ (b ⴙ 2) 2 3 (b ⴚ 1) (b ⴙ 1) ⴝⴚ # 2b + 4 1 - b ⴚ (b ⴚ 1) Non-permissible values: b ⴝ ⴚ2, b ⴝ ⴚ1, and b ⴝ 1 (x ⴚ 5) (x ⴙ 5) 8. Simplify each expression. x2 - x - 6 x2 - 16 a) x + 4 x2 + 2x , b) # ⴚ (b ⴚ 1) 2 (b ⴙ 2) bⴙ2 , b ⴝ ⴚ2, ⴚ1, 1 6(b ⴙ 1) 2x2 - x - 1 4x2 + 28x + 48 x2 + 2x - 3 2x2 - 13x - 7 # ⴝ ⴝ (2x ⴙ 1)(x ⴚ 1) 4(x2 ⴙ 7x ⴙ 12) (x ⴙ 3)(x ⴚ 1) # (2x ⴙ 1)(x ⴚ 7) (2x ⴙ 1)(x ⴚ 1) 4(x ⴙ 3)(x ⴙ 4) (x ⴙ 3)(x ⴚ 1) # (2x ⴙ 1)(x ⴚ 7) Non-permissible values: 1 2 x ⴝ ⴚ3, ⴚ , 1, 7 ⴝ (2x ⴙ 1) (x ⴚ 1) (x ⴙ 3) (x ⴚ 1) # 4 (x ⴙ 3) (x ⴙ 4) (2x ⴙ 1) (x ⴚ 7) 4(x ⴙ 4) 1 , x ⴝ ⴚ3, ⴚ , 1, 7 ⴝ xⴚ7 2 8 7.2 Multiplying and Dividing Rational Expressions—Solutions DO NOT COPY. ©P 07_ch07_pre-calculas11_wncp_solution.qxd 5/28/11 4:10 PM Page 9 Home c) 3m - 12 m2 - m - 12 , 2 m + 3 m - 9 ⴝ (m ⴚ 4)(m ⴙ 3) 3(m ⴚ 4) ⴜ mⴙ3 (m ⴚ 3)(m ⴙ 3) d) 4s2 + 4s + 1 2s2 - 7s - 4 , 2 12s + 8 6s - 5s - 6 ⴝ Non-permissible values: m ⴝ ⴚ3, 3, 4 Quit (2s ⴙ 1)(s ⴚ 4) (3s ⴙ 2)(2s ⴚ 3) ⴜ (2s ⴙ 1)(2s ⴙ 1) 4(3s ⴙ 2) Non-permissible values: ⴝ (m ⴚ 4) (m ⴙ 3) mⴙ3 ⴝ (m ⴚ 3)(m ⴙ 3) , m ⴝ ⴚ3, 3, 4 3 2 1 3 3 2 2 (2s ⴙ 1) (s ⴚ 4) s ⴝⴚ ,ⴚ , # (m ⴚ 3)(m ⴙ 3) ⴝ 3 (m ⴚ 4) ⴝ # 4 (3s ⴙ 2) (3s ⴙ 2) (2s ⴚ 3) (2s ⴙ 1) (2s ⴙ 1) 4(s ⴚ 4) (2s ⴚ 3)(2s ⴙ 1) 2 3 1 3 2 2 ,sⴝⴚ , ⴚ , 9. Each rational expression is the product of two different rational expressions. What might the rational expressions have been? Describe the strategy you used to find out. 3 a) y b) x + 1 3x I wrote two polynomial expressions such that when I divided the numerators and denominators by their common factors, I was left with the given product. I then expanded where necessary. Sample Response: (x ⴙ 1)(x ⴙ 2) (2) xⴙ1 ⴝ 3x 3x(2) (x ⴙ 2) 3(2x) (5) 3 y ⴝ (5) (2x)y # ⴝ # 6x 5 , x ⴝ 0, y ⴝ 0 5 2xy ⴝ # x2 ⴙ 3x ⴙ 2 2 , x ⴝ ⴚ2, 0 6x xⴙ2 # 10. Each rational expression is the quotient of two different rational expressions. What might the rational expressions have been? How do you know? 3 a) x - 5 b) x - 9 x + 8 I wrote a product of two polynomial expressions such that when I divided the numerators and denominators by their common factors, I was left with the given expression. I then expanded where necessary, inverted the second expression, then changed multiplication to division. Sample Response: 3(5) 3 xⴙ4 ⴝ xⴚ5 (x ⴚ 5)(x ⴙ 4) (5) # ⴝ 15 5 ⴜ , xⴙ4 (x ⴚ 5)(x ⴙ 4) x ⴝ ⴚ4, 5 ©P DO NOT COPY. (x ⴚ 9)2 xⴚ9 2 ⴝ xⴙ8 2(x ⴙ 8) (x ⴚ 9) # ⴝ x2 ⴚ 18x ⴙ 81 xⴚ9 ⴜ , 2x ⴙ 16 2 x ⴝ ⴚ 8, 9 7.2 Multiplying and Dividing Rational Expressions—Solutions 9 07_ch07_pre-calculas11_wncp_solution.qxd 5/28/11 4:10 PM Page 10 Home 11. Simplify each expression. 3x3y 2y2 8x3y2 a) 18x3 4xy5 12xy # # 3 x3 y 36 ⴝ # 4 x y5 18 x 3 3 # # Non-permissible values: a ⴝ 0, b ⴝ 0 2 2 2 y2 3ab 8b2 2a2b2 , 4ab3 27a5b3 6ab3 b) Non-permissible values: x ⴝ 0, y ⴝ 0 ⴝ Quit 8 x 3 y2 6 12 x y 3 a b 4 a b3 ⴝ 2 # 3 8 b2 5 32 9 27 a b # 2 6 a b3 2 a 2 b2 2 ⴝ 6 2 , a ⴝ 0, b ⴝ 0 3a b x , x ⴝ 0, y ⴝ 0 18y 12. Simplify each expression. 2x - 10 2x - 4 x + 3 a) 2 , 2 x - 2x - 15 2x2 + 15x + 7 x + 5x - 14 # ⴝ 2(x ⴚ 5) 2(x ⴚ 2) xⴙ3 ⴜ (x ⴚ 5)(x ⴙ 3) (2x ⴙ 1)(x ⴙ 7) (x ⴙ 7)(x ⴚ 2) # 1 2 (x ⴙ 7) (x ⴚ 2) Non-permissible values: x ⴝ ⴚ7, ⴚ3, ⴚ , 2, 5 b) 2 (x ⴚ 5) ⴝ xⴙ3 (x ⴚ 5) (x ⴙ 3) ⴝ 1 1 , x ⴝ ⴚ7, ⴚ3, ⴚ , 2, 5 2x ⴙ 1 2 # # (2x ⴙ 1) (x ⴙ 7) 2 (x ⴚ 2) x2 + 14x + 49 3x + 24 x2 - x - 56 , 2 x + 8 x - 6x - 16 x2 - 16x + 64 # ⴝ (x ⴚ 8)(x ⴙ 7) (x ⴙ 7)(x ⴙ 7) 3(x ⴙ 8) ⴜ xⴙ8 (x ⴚ 8)(x ⴙ 2) (x ⴚ 8)(x ⴚ 8) # Non-permissible values: x ⴝ ⴚ8, ⴚ7, ⴚ2, 8 (x ⴚ 8) (x ⴙ 7) (x ⴚ 8) (x ⴙ 2) xⴙ8 (x ⴙ 7) (x ⴙ 7) 3(x ⴙ 2) ⴝ , x ⴝ ⴚ8, ⴚ7, ⴚ2, 8 xⴙ7 ⴝ # x + 4y x2 - 25y2 # 3 (x ⴙ 8) (x ⴚ 8) (x ⴚ 8) x + 5y , x - 4y c) x - 5y # 2 x - 16y2 ⴝ x ⴙ 4y (x ⴚ 5y)(x ⴙ 5y) x ⴙ 5y ⴜ x ⴚ 5y (x ⴚ 4y)(x ⴙ 4y) x ⴚ 4y # Non-permissible values: x ⴝ ⴚ 5y, ⴚ4y, 4y, 5y ⴝ x ⴙ 4y x ⴚ 5y # (x ⴚ 5y) (x ⴙ 5y) (x ⴚ 4y) (x ⴙ 4y) # x ⴚ 4y x ⴙ 5y ⴝ 1, x ⴝ ⴚ5y, ⴚ4y, 4y, 5y 10 7.2 Multiplying and Dividing Rational Expressions—Solutions DO NOT COPY. ©P 07_ch07_pre-calculas11_wncp_solution.qxd 5/28/11 4:10 PM Page 11 Home d) Quit (5c + 6d)2 9c2 - 16d2 3c + 4d , 3c - 4d 25c2 - 36d2 5c - 6d # ⴝ (5c ⴙ 6d)2 (3c ⴚ 4d)(3c ⴙ 4d) 3c ⴚ 4d # (5c ⴚ 6d)(5c ⴙ 6d) Non-permissible values: c ⴝ ⴚ ⴝ (5c ⴙ 6d) 2 3c ⴚ 4d # 4d 6d 6d 4d ,ⴚ , , 3 5 5 3 (3c ⴚ 4d) (3c ⴙ 4d) (5c ⴚ 6d) (5c ⴙ 6d) ⴝ 5c ⴙ 6d, c ⴝ ⴚ 3c ⴙ 4d 5c ⴚ 6d ⴜ 5c ⴚ 6d 3c ⴙ 4d # 4d 6d 6d 4d ,ⴚ , , 3 5 5 3 13. Simplify each expression. x2 - x - 6 x2 - 2x - 8 , 2 x + 5 x + 2x - 15 2 x - x - 6 x2 - 2x - 8 , 2 x + 5 x + 2x - 15 Compare the solutions. What do you notice? x2 ⴚ x ⴚ 6 x2 ⴚ 2x ⴚ 8 ⴜ 2 xⴙ5 x ⴙ 2x ⴚ 15 ⴝ (x ⴚ 4)(x ⴙ 2) (x ⴚ 3)(x ⴙ 2) ⴜ xⴙ5 (x ⴙ 5)(x ⴚ 3) Non-permissible values: x ⴝ ⴚ5, ⴚ2, 3 ⴝ (x ⴚ 4) (x ⴙ 2) xⴙ5 # x2 ⴚ x ⴚ 6 x2 ⴚ 2x ⴚ 8 ⴜ xⴙ5 x ⴙ 2x ⴚ 15 2 ⴝ (x ⴚ 3)(x ⴙ 2) (x ⴙ 5)(x ⴚ 3) (x ⴚ 4)(x ⴙ 2) xⴙ5 ⴜ Non-permissible values: x ⴝ ⴚ5, ⴚ2, 3, 4 (x ⴙ 5) (x ⴚ 3) (x ⴚ 3) (x ⴙ 2) ⴝ x ⴚ 4, x ⴝ ⴚ 5, ⴚ2, 3 The solutions are reciprocals. (x ⴚ 3) (x ⴙ 2) xⴙ5 (x ⴙ 5) (x ⴚ 3) (x ⴚ 4) (x ⴙ 2) 1 , x ⴝ ⴚ5, ⴚ2, 3, 4 ⴝ xⴚ4 ⴝ # C 14. a) Write a polynomial A so that the expression below simplifies to -1. 3n2 + 2n - 8 A 4 , n Z -2, - 1, 3 n2 + 4n + 4 3n2 - n - 4 # ⴝ ⴝ (3n ⴚ 4) (n ⴙ 2) (n ⴙ 2) (n ⴙ 2) # A (3n ⴚ 4) (n ⴙ 1) A (n ⴙ 2)(n ⴙ 1) Set the expression equal to ⴚ1. ⴚ1 ⴝ A (n ⴙ 2)(n ⴙ 1) A ⴝ ⴚ (n ⴙ 2)(n ⴙ 1) A ⴝ ⴚ(n2 ⴙ 3n ⴙ 2) A ⴝ ⴚ n2 ⴚ 3n ⴚ 2 ©P DO NOT COPY. 7.2 Multiplying and Dividing Rational Expressions—Solutions 11 07_ch07_pre-calculas11_wncp_solution.qxd 5/28/11 4:10 PM Page 12 Home Quit 1 b) Write a polynomial B so that the expression below simplifies to 5 . x2 + 6x + 9 3x2 + 11x + 6 , , x Z -3, 0 2 B 5x + 15x ⴝ ⴝ ⴝ (x ⴙ 3)(x ⴙ 3) 5x(x ⴙ 3) (x ⴙ 3) (x ⴙ 3) 5x (x ⴙ 3) (x ⴙ 3)(3x ⴙ 2) B ⴜ # B (x ⴙ 3) (3x ⴙ 2) B 5x(3x ⴙ 2) 1 5 Set the expression equal to . 1 B ⴝ 5 5x(3x ⴙ 2) Bⴝ 5x(3x ⴙ 2) 5 B ⴝ x(3x ⴙ 2) B ⴝ 3x2 ⴙ 2x 2 Since B is in the denominator, x ⴝ ⴚ , 0 3 2 1 - a 15. Simplify: 1 - 4 a2 aⴚ2 a ⴝ 2 a ⴚ4 a2 aⴚ2 a2 2 a a ⴚ4 aⴚ2 a2 ⴝ a (a ⴚ 2) (a ⴙ 2) ⴝ # # ⴝ 12 Non-permissible values: a ⴝ ⴚ2, 0, 2 a , a ⴝ ⴚ2, 0, 2 aⴙ2 7.2 Multiplying and Dividing Rational Expressions—Solutions DO NOT COPY. ©P
© Copyright 2026 Paperzz