Botaniwl]ournal uj the Limmm Soriflr (2000), 134:93 !29. With lfi figure' doi: I 0.1 006/bojl.2000.0:lb(), ;n·ailable online at http:! /v,ww.idealibrarc.com on IDE 1)-l® Under the microscope: plant anatomy and systematics. Edited 0 P]. Rudall and P Gasson Systematics and evolution of Velloziaceae, with special reference to sieve-element plastids and rbcL sequence data H.-DIETMAR BEHNKE* <:,ellenlehre, Unimsitat Heidelberg, lm Neuenheimer Feld 230, D-69120 Heidelberg, German_y ]ENS TREUTLEIN, MICHAEL WINK lnstitutfiir Pharma;:_eutische Biologic, Universitat Heidelberg, Im Neuenheimer Feld 364, D-69120 Heidelberg, German_y KLAUS KRAl\IER Botanischer Garten, Cniversitat Heidelberg, Im Neuenheimer reld 340. D-69120 Heidelber;_[',, Germany CHRISTIAN SCHNEIDER <:,ellenlehre, Unic•ersitat Heidelberg, lm Neuenheimer Feld 230, D-69120 Heidelber;_[',, German_y P. C. KAO C'hengdu Institute rj"Biology, Academia Sinica, PO. Box 416, Chengdu 610041, Sichuan, China Sieve-element plastids and rbcL nucleotide sequences wen· analysed for \'clloziaceae and all families sometimes discussed as close allies (Aeanthochlamydaceae, Amaryllidact"ae. Bromcliaceae, Cyclanthaccae, Haemodoraccae, Hypoxidaccae, Pandanaceae. Pcntastemonaccac, Stemonaceac). Velloziaceae (37 taxa inn·stigatcd) contain sieve-element plastids defined here as sub forms P2c, ,, P2c,h P2c,p, P2c,;L and P2c,pf and distinct from those of any other monocotyledon by ( l) angular crystals replacing to a large extent the monocotspecific cuneate crystals, (2) additional loosely-packed crystals, and (3) their very small average diameters. This sie\T-element plastid syndrome is a synapomorphy of Yelloziaceae and indicates the monophyly and early isolation of the family. Sieve-element plastids of the *Corresponding author. E-mail: [email protected] 0024 4074/00/0900'l:l + :J7 $3:J.O(J/0 93 © 200(1 The Linne an Societ\ ot" London H.-D. BEHNKE ET AL. 94 monotypic Acanthochlamydaceae share their small sizes with Velloziaceae, but all their crystals are cuneate, i.e. loosely-packed crystals were not found. Among the other families studied the sieve-element plastids of (a) some Bromeliaceae (Ayensua in particular) contain loosely-packed crystals, (b) several Amaryllidaceae incorporate additional orthogonal crystals, and (c) Pandanaceae belong to form-Pcf, but cuneate crystals are present throughout and the plastids are significantly larger than in Velloziaceae. The new information on the rbcL nucleotide sequences of 24 taxa of the Velloziaceae and of 20 additional taxa from putatively related families strongly support the monophyly of Velloziaceae and define Acanthochlamydaceae as its sister family. At the infra-familial level four evolutionary lines are discovered which correspond to major generic groups and their geographical distribution. The divergence time for the split between New Word and Old World taxa has been calculated as 40-70 million years, that between African and Madagascan species maximally 25 million years. The cladistic analysis requires that the monotypic genera Nanuza and Talbotia be included within Tfllozia and Xerophyta, respectively. At the ordinal level the analysis of the rbcL-data strengthens the Pandanales as a monophyletic clade. © 2000 The Linnean Society of London ADDITIOJ\iAL KEY WORDS:--Acanthochlamydaceae - Amaryllidaceae - Bromeliaceae - Haemodoraceae ·- Hypoxidaceae - molecular data - monocotyledons - Pandanales phylogeny -·· ultrastructure. COl'\TENTS Introduction . Systematics and affinities of V clloziaceae Sieve-element plastids: types, forms, subtypes, subforms, and sizes Material and methods Taxon sampling . Electron microscopy DNA isolation, PCR, and DNA-sequencing Data analysis . Results ~'>ieve-clement plastids of V elloziaccae Sieve-element plastids of Acanthochlamydaceae . Sieve-element plastids of families traditionally allied to Velloziaceae Sieve-element plastids of Pandanales sensu Kubitzki, Rudall & Chase (1998) Phylogeny reconstructions based on nucleotide sequences of the rbcL gene Discussion Subdivision and relationships within Vclloziaceac Affinities with other monocotvledonous families Phytogeography . , Taxonomic implications Character evolution in Pandanales Acknowledgements References 94 94 97 l 04 l 04 l 04 104 l 05 105 l 05 l 09 l 10 111 111 115 115 115 ll 7 ll 7 119 122 127 I:'-<TRODUCTION !iJstematics and affinities qf velloziaceae The monocotyledon family V elloziaceae was established by Endlicher (1341) who separated the genera Barbacenia Vand. and vellozia Vand. (including Xerophyta]uss.) from Haemodoraceae where Martius (1823), Sprengel (1827), Schultes & Schultes (1829) and Lindley (1330) had placed them. Endlicher's (1341) Vellozieae were part of his 'classis XVII Ensatae' and placed therein after Hydrocharideae, Burmanniaceae, .'iiE\ E-ELE.\IE:'\T PL\STIDS .\:"iD RBCl. D:\T.\ 1:'\ \'ELLOZI.'I.CJ:.\E Irideae, Haemodoraceae and followed by Hypoxideae, Amaryllideae, Agavcae and Bromeliaceac. This 'dassis' contained all families that during the next 150 years served as candidates for the putative closest ally of Velloziaceae. Howe\-er, these families were never grouped together subsequently. Seubert (1847, 1873), Hutchinson (1934), Cronquist (1968, 1981), and Huber ( 1991) recognized Hacmodoraceae as the sister group of the new family. Bentham and Hooker ( 1883) and Baker ( 1898) reduced it to tribal/ subfamilial status within their Amaryllidaceae, while Pax (1887, 1930) and Wettstein (1924) retained the family status and had Amaryllidaceae as the closest family. Takhtajan (1959, 1969, 1973), Melchior (1964), Ayensu (1973), and Thorne (l992a) suggest Hypoxidaceae, another early segregation from Amaryllidaceae, to be next to V clloziaceae, a relationship that was first proposed by Don ( 1830). Jussieu (1 789) placed his Xeropkyta, together with Burmannia, Tzllandsia, Bromelia, and Agave, into his 'ordo Bromeliae'. Gmelin (1796) and Lamarck (1808) likewise treat their X madagascariensis J. F. Gmcl. respectively X. pinijolia Lam. as members of the 'Pineapple family', and later Kunth ( 1822) also discussed relationships between Radia tubffiora A. Rich. ( = vellozia tubifiora H. B. K.) and Bromeliaceae. Closer affinities between Bromcliaceae and Velloziaceae were reestablished by Huber (\969, 1977) and Gilmartin & Brown (1987) and subsequently taken up by R. Dahlgren (1975, 1980), G. Dahlgren (1989), Takhtajan (1987, 1997), Froelich & Barthlott (1988), and Thorne (l992b). Eventually, the transfer of Vdlozia uaipanensis ~Iaguire (Maguire & Wurdack, 195 7) as 4Jensua uaipanensis (l\Iaguire) L. B. Sm. to Bromeliaceae (Smith, 1969) seemed to be symptomatic of the close relationship between the two families. Molecular characters, mainly rbcL sequence data, grouped Velloziaceae together with Stcmonaccae, Cyclanthaceae and Pandanaccae as 'stemonoids' or 'Pandanales', far away from the 'Bromeliads' and not close to any of the families previously discussed as related (Chase et al., 1993, 1995; Dm·all et a!., 1993; Kubitzki et al., 1998). The infra-familial classification ofVelloziaceac is still disputed. The family includes over 200 species in South America, Africa, l\hdagascar and Arabian Peninsula (South Y emenJ, grouped into eight or nine genera and two subfamilies vvith several sections, the delimitation and content of which continue to be controversial among taxonomists (see e.g. Smith & Ayensu, 1976; Menezes, 1980; l\fello-Silva, 1991; Menezes, Mello-Silva & Mayo, 1994). In the generic treatment this paper follows Kubitzki (1998) who like Smith & Ayensu (1976) restricted Xerophyta to African, Arabian and Madagascan and Vellozia to South American species, but like Menezes (1980) separated Barbacenia, Pleurostima and Burlemarxia from the latter, while Aylthonia (likewise segregated by Menezes, 1980) was kept within Vellozia (see also Mello-Silva, 1991 ). The specific ultrastructure of sieve-clement plastids provides characters that are useful in the delimitation, circumscription, and classification of taxa and have proved helpful in their assignment to higher categories of flowering plants (e.g. Behnke, 1981 a, 1991 ). P-type sieve-element plastids with cuneate protein crystals (see Fig. l ), i.e. in ultrathin sections distinctive by their predominantly triangular shape and classified as subtype-P2 (Behnke, 1977), were found to be common to all monocotyledons (Behnke 1968, 1969, 1981 b) and used as a synapomorphy to support the monophyly of the class (Cronquist, 1981; Dahlgren & Clifford, 1982; Dahlgren & Rasmussen, 1983; Takhtajan, 1997; Kubitzki et al., 1998). A first broad survey of sieve-element plastids in the monocotyledons listed some 96 H.-D. BEHNKE ET AL. e "'(t P2ccl lt ~~ P2ccp P2CcpS Monocotyledons Paleoherbs 1t ~ 1t Pl/2Ccp Figure I. Putative evolution of the forms and subforms of sieve-element plastids in monocotyledons. Dicotyledon form-PI/2c,p plastids, derived from S-type (form-Ss) via Pies and Pic, are connected to monocotyledon subform-P2c,p plastids as found in Tofieldiaceae. The loosely-packed polygonal crystal of subform-P2c,p plastids breaks up into many small loosely-packed crystals of subform-P2cd which are eventually lost in subform-P2c,. The addition of starch grains and/or protein filaments gives rise to form-P2cs, -P2cfs, and -P2cf plastids. Rarely, cuneate crystals are completely lost and form-Ss plastids formed. The major (sub)forms are connected by heavy arrows in the centre and middle right lanes, additional subforms (connected by light arrows) characterize detours or specific side ends. The subforms are arranged so as to evolve P2c-(sub)forms in the centre, add starch to the right (P2-subforms containing 's') and filaments to the top (P2-subforms with 'f'), while form-P2cfs occurs in the junction between 'cs' and 'cP and S-type in the far right (from Behnke, 2000; modified). 200 species representing 65 families and included a few species of Velloziaceae and its putative allies (Behnke, 1981 b). Since then special efforts to obtain samples from all monocotyledon families as well as from groups that were segregated by morphological, chemical, molecular or other data, have raised the number of species investigated to presently over 700, all (except Pistia, Araceae) with subtype-P2 sieveelement plastids (Behnke, 1994, 1995, 2000, and unpublished results). Among the new specimens studied were several Velloziaceae. Their sieve-element SIL\ E-l:U::\IE'\T PL\STIDS A:\D RBCL D.\T.\ L'\ \'ELLOZL\CL\1: '17 plastids containt>d loosely-packed crystals that were surprisinglY identical to those found in 1!vensua (Bromcliaceae), but had no similarity to siew-clcmcnt plastids of the few species imTstigatcd from the Pandanales, \\herein according to molecular data (Chase et aL., 1995) Velloziaceae should be included. Therefore the inn:stigation of sieve-element plastids was extended to coYer as many taxa as available from Velloziaceae (plus Acanthochlan~J'S, included by Chase et al., 1995, but raised to family level by Kao, 1989) and all families considered related. At the same time, an analvsis of their rbcL gene sequences was initiated with almost the same set of taxa in order to advance further the relationships ofVelloziaceac and its infra-familial classification and via calculations of genetic distances to contribute towards the discussion vvhether Velloziaceae originated in the Old or ~ew \\"orld. This paper presents the results of these efforts and analyses the new sie\T-element plastid and rbcL sequence data together with re\c,·ant information taken fi·om the literature. SieN-I'iemmt pLastids: types, forms, sub[rpe.s, mbfomzs. and .1i;:Ps Sieve-element plastids are characterized by their content of protein crystals (c), protein filaments (f) and starch grains (s) which can be identified by histochemical staining and enzymatic digestion (see Behnke, 1972, 1975), but arc usually detected with the transmission electron microscope (TEM) in ultrathin sections. Different morphologies and different quantities of protein and starch determine the specific sieve-element plastid possessed by a taxon. Consequently, if an arbitrary number of species is screened, definite criteria are necessary to categorize sieve-element plastids and eventually to support or disprove the putative systematic position of a taxon proposed by considering other characters (Behnke, 1991 ). Ijpes of sien'-element plastids are the result of a basic distinction: if protein is present, a plastid belongs to P-type, absence of protein defines the S-fype (Behnke, 1971). Starch may be present (s) or absent (o) in either type. Forms of sicn'-clement plastids give an exact notation of their qualitative content and commonly suffice to describe a taxon. Eight distinct combinations can be formed by the four characters, all are found among angiosperms: forms Pc Pes, Pcfs, Pcf, Pfs, Pf, Ss, So (Behnke, 1991) Certainly, forms represent only a rough approximation to the genetically determined species-specific composition of a sie\·c-element plastid, which is also characterized by its size as well as by the morphology, number and arrangement of its protein crystals, protein filaments and starch grains. The establishment of the subtype and subform categories is meant as a tool to describe taxa more precisely. Subtypes of sieve-clement plastids explain P-type taxa at ordinal or higher levels and are marked by numerals, e.g. subtype-P2 includes all sieve-element plastids containing cuneate crystals, mainly found in monocotyledons (Behnke, 197 7. 1981 b, 2000). Su~forms of sieve-clement plastids evaluate different morphologies of protein crystals or other contents (Behnke, 2000) and are recorded by subscripts to the respective character symbol: e.g. subform-P2catf describes sie\·e-elcment plastids containing angular C) plus loosely-packed CJ crystals besides protein filaments (f). subform-P2c," those with angular and a single loosely-packed polygonal C,) crystaL and subformP2c,o with cuneate (,) and orthogonal U crystals. Si;:.es of sieve-clement plastids measured as average diameter are of additional help for the description of families or higher taxa (sec Behnke. 2000). Vt:llozia variegata Goethart & Henrard hirsuta Goethart & Henrard (I) hirsuta Goethart & Henrard (2) sel/owii Seub, sp. (I) sp. (2) tubiflora (A. Rich.) H. B. K variabilis Mart. ex Schult. f. P2c.,, P2c.,j P2c.,, P2c,,, P2c.,1, P2c,, P2c,, P2c.,~ P2c.," P2c.,l P2c.," P2c.," P2c.,pf Vt:llozia af[ caespitosa L. B. Sm. & Ayensu Vel/ozia crassicaulis Mart. ex Schult. f. Vt:llozia declinans Goethart & Henrard vellozia froesii L. B. Sm. Vt:l/ozia glochidea Pohl Vt:l/ozia Vt:l/ozia Vt:l/ozia Vt:llozia Vt:l/ozia Vt:l/ozia Vt:/lozia P2c.,, P2c.,, P2c P2cf P2c.,; P2c.,, P2c,, P2c.,; P2c.,; P2c,, P2c.,, P2c,,; P2c,; P2c.,; P2ca/ P2c,1, Form 29 8 1.19 0.77 1.05 0.92 0.74 0.62 0.90 0.89 0.92 0.68 0.91 0.92 1.28 1.00 0.91 0.91 0.9+ 0.53 0.67 0.94 0.68 0.95 1.12 0.91 0.87 0,79 0.71 1.06 0.52 0.75 0.78 0.81 0.75 0.63 0.86 0.96 0.80 0.56 Sicn'-element plastid data No. spp Diameter stem leaf BG-SPF, leg. A. Salatino BG-SPF, leg. A. Salatino BG-SPF, leg. A. Salatino BG-BONN 9635 BG-BONN 9646 BG-BONN 4412 Depto. Santa Cruz, Prov. Chiquitos, nearby Santiago de Chiquitos (BOL), leg. Ibisch & Nowicki 99.0123 BG-BONN 9651 BG-HEID 101408 Depto. Santa Cruz, Prov. Florida, Cuevas, vicinity ofAmbor6 Nat. Park, 63°45'vV, l8°13'S (BOL), leg. Ibisch & Nowicki 98.133 BG-BONN 9741 BG-BONN 9643 BG-SPF, leg. A. Salatino BG-BONN 9985 BG-BONN 9639 BG-BONN 96+7 BG-SPF, leg. A. Salatino BG-BONN 9978 BG-B0:\1'\ 1297+ BG-HEID BG-BONN 565.5 BG-SPF, leg. A. Salatino BG-BR 1987-0437; BG-SPF, leg. A Salatino BG-K 1980-2675 BG-SPF, leg. A. Salatino BG-SPF, leg. A. Salatino BG-BONN 12786 Origin of material Treutlein & Wink 397 Treutlein & Wink 425 Treutlein & Wink 455 Treutlein & \\'ink 4-22 Treutlein & Wink 453 Treutlein & Wink 408 (1) Treutlein & Wink 411 (2) Treutlein & Wink 429 Treutlein & Wink 4-18 Treutlein & Wink 4-28 Treutlein & Wink 456 Treutlein & Wink 452 Treutlein & Wink 403 Treutlein & \\'ink 442 Treutlein & Wink 426 Treutlein & Wink 407 Treutlein & Wink 405 rbcL analysis l. Sieve-element plastid data and origin of material used in the combined ultrastructural and rbrL analysis of\' clloziaceae and related families Barbarenia .wisea L. B. Sm. Barbacenia tmnentosa 1\ I art. Barbareniopsis boliviensis (Baker) L. B. Sm. Barbareniopsis castil/onii (Hauman) lbisch Barbaceniopsis vmgasiana (L. B. Sm.) L. B. Sm. .\imu.::a plirata (:\[art.) L. B. Sm. & Ayensu }Vimuza plicata (1\lart.) L. B. Sm. & Ayensu P/eurostima Janniei N. L. Menezes Pleurostima purpurea Raf. Pleurostima purpurea Raf. Pleurostima riparia N. L. Menezes & Mello-Silva Pleurostima stenophy!la (Goethart & Henrard) N. L. Menezes Talbotia elegans (Hook.) Balf. Vt:l/ozia andina lbisch, Vasquez & Nowicki \.ELLOZL\f~EAE Taxon L<\BLE r-- ---1 ::.. ~ ::"1 z ;;:; :c ~ t;e :c ~ :0 '"" H. Pr'rricr l1<~k{'l ,(/lfedileri !lbkcr t \1. I .. :\lcw; n <jilmdnr1 IRrndlc:. :\.I .. ~lrll<'/<".' ril/w,t (Baker! 1.. B. Sm. .hrtNr rdim·rti-' jJirujiJ/ia Lm1. rks Baker (Baker) Dur. & Scbinz ~glandulosa . I'I!Filinrw Hn·l> . \f:m. i.HJo j;rir/i(tr~ I .. ( ;a{anllut.l nirah\ [ ~. !lalnantlm.\ mbns/n., IHnh.r Sweet flahrant/w, !uhi.,jlrlilw., {L'Hhi t.:· Tr;rulr llalnrmt/m.1 \'lrittlillll hybrid rLtnL' l L E. .\I (Jon· 1/rmowr!l!!i\ raroliuamo :I,.: Hcrl 1. r graudtjlolll PLuwh. & l.ind. /•:utm,fa amanliata (B;IkcT) Jl;t\ datu.\ .. (:'!?frmthti5 lur~dt'f'\l·rhlw ( ,'Ji!llllll \ (."r/nwu (,(tfo.llf'! !ii!Ul .lmmothorii' (OJrmita (1'\_er-(;;nrl.' lit·r/). !loophom• dt.llidta (L. [) Herb. llrullwi~;i11 lienei F.l\1. l.ciuln. "' \\. F. Barker A~L-\RYIJ,ll)i\(;EAE .Jmn!ltoddrw{YI hradutl a P. (:. K<1c1 \( ',;\\iTIHH 'Hl .. \\\1\'IJ;\t :E.\ I Xemj1hrta Baker Yar. petlinala ',Baker! H. I':Z.. 1'2< p:z, 1'2< P2c P2t p~( p:z, P:.!r J'2c P:?c 1'2. I''Lc p~~( 1'2r 1'2<" 1'2r p:z, ]':?, 1':!<" p:z, 1'2d UG-HE ID II< ;.H Elll B<;-HElll I .Ill .O:l B<;-HEII> IH:-H EIIl IH :-HEl ll .II'> Jl( ;.H Elf) ~J:)l) B<:-H Elf) BC-H E!l) B<;. HElD BC-H Eill B<!-H Eill BC-HE ID B(;-HE IJl Brazor ia ( 1.:12 .% .I I ~ 1.~n BC-HE lf) .:II J:lj H<:-HEID BO-HE ID B< ;.If EID .T! I. \H BC-HEIJ) .II l.:l7 ..1~1 I ;Ill \ \': l\11(1 :\f. II. :\l;,dic ld .\rca, \\'-Sid ntan (China), L\ . t·s. \ .. ~loulllaill kg. I'. C. Kao He11,;duan 1.1 I 1.:21 lt'g.. \. liC-E "' f\l;~Ja,\r. lq~. B. I Burtt 1> IH ;.E Tr.tllSL<,d. lc~. B. L. Burtt 2'.1117 IH ;.fl( BG-BU NN i'll'l BG-BO N!\ BC-BO NN 11771 BC-B O"i\ I I 1:2:.' HG-B Ol\N 13690 BC:-B ONN 13G'l .:'7 ..'J-1 /.'>:l I.IH tu,:, ll.li:, 1'2< ,.~,, 1.( II P:.!( 1':.'< ll.IJ lUi! ll.bii .Ill 27 O.jH 07.1 !.IU I'C'r 1'2t p~{" P2c.,/ P:!c.,1• P2r., 0.60 0.80 !sc<· Tahl•· l'n-rnk ill ,'V. \\'ink I Hi Trcntlc in & \l-ink Trcutlc in & \\'ink 1'2'1 Trn11 kin & \\'ink ~I! I (oll!inur d Trcutlc iu & \\'ink II() Treutle in & Wink 40'1 Trelltk in & Wink 412 ~ -i _ ::;:: -;::. s '"' '- 2 / ;..- ~ ~ ::; ~ ""' ::>;, ~ :./'. c j :.t: ~ .-- ~ ~ ~ :"': .... Aechmea purpureorosea (Hook.) \ Vawra Ananas comosus (L.) 1\Ierr. Ayensua uaipanensis (Maguire) L. B. Sm. Billbergia reichardii Wawra Bmcchinia micrantha (Baker) 1\Iez Brocchinia reducta Baker Canistrum Josterianum L. B. Sm. Deuterocohnia brevispicata Rauh & H. Hrodm. Disteganthus basilateralis Lam. PJckia altissima Lind!. Fosterella caulescens Rauh Fosterella villosula (Harms) L. B. Sm. Greigia sp. Guzmania monostachya (L.) Rushy ex Mez Guzmania zahnii (Hook. f.), Mez Navia phelpsiae L. B. Sm. Neoregelia olens L. B. Sm. Nidulariwn innocentii Lem. .Nuiularium procerum Lindm. Orthophytum saxicola (Ule) L. B. Sm. Pepinia corollina (Linden & Andre) Varadarajan & Gilmartin Pitcaimia sp. Pitcaimia villetaensis Rauh Puya vallo-grandensis Rauh BROMELIACEAE Pancratium maritimum L. Pancratium sickenbergeriAsch. & Schweinf. ex Barb.Boiss. & Barbey Phaedranassa tunguraguae Ravenna Rauhia perul'iana Traub Scadoxus multifiorus (Martyn) Raf. Spreke/ia fimnosissima (L.) Herb. IVorslrya rayneri (Hook.) Traub & 1\Ioldenke :(epll)•ranthes candida (Lind.) Herb. :(ephyranthes grandifiora Lind!. Taxon 22 0.73 0.76 P2c, 1 P2c P2c P2c 1.39 1.09 1.00 0.86 0.94 P2c" P2c P2c" P2c 0.80 0.83 1.30 1.03 0.73 0.91 P2c P2c" P2c P2c, 1 P2c" P2c, 1 P2c 0.87 0.79 0.86 0.70 1.30 0.87 1.12 1.27 1.02 1.28 1.25 P2c" P2c P2c P2c P2c P2c" 1.10 1.19 1.75 1.39 P2c,, P2c.J P2c P2c,, P2cf P2c P2c 1.00 1.32 1.39 BG-HEID BG-HEID BG-HEID BG-HEID BG-HEID BG-HEID; BG-BONN; BG-FRP BG-HEID BG-HEID BG-HEID BG-HEID BG-HEID BG-BONN BG-HEID BG-HEID BG-HEID BG-HEID BG-HEID BG-HEID BG-HEID BG-HEID BG-HEID BG-HEID BG-BONN BG-HEID BG-HEID BG-HEID BG-HEID BG-BONN; BG-HEID BG-BONN BG-HEID BG-HEID lie de Re (F), leg. H.-D. Behnke BG-HEID Origin of material !-continued Sieve-element plastid data Diameter :'lio. spp leaf stem P2c P2c Form TABLE & & & & Wink Wink Wink Wink 437 399 436 440 Treutlein & Wink 415 Treutlein Treutlein Treutlein Treutlein Treutlein & Wink 414 Treutlein & Wink 438 Treutlein & Wink 398 Treutlein & Wink 439 Treutlein & Wink 413 rbcL analysis r- :>... "'-1 t>: t'l "' z ::r: t'l to p: ~ c angwti11ima Ridl. hrrcimtia hank1ii .\. Cunn. hr)'cinctia haaeriana Endl. l·i;rcinl'fia dq:,antuia B. ( :. Stone hncinrtia ncdl!! F. l\lucll. hnl"inctia .Junimiari, :\!err. Flqrinetia inn:E;11i.1 Bl. l·l~rrinetia I':Zcr I':Zcr P:Zcr P:Zcr P:Zcr P:!cr I':Zcr P:Zcr HI p:z, PA:"JDA:"JA<:EAF .II:) 1.2+ I.IIB 1'2c 1.7B I.HII It I l.:lll I .:;c, I.'Jii .. )/ I.IB I ..)2 .~:-) .Oil I':Zc p:z, l.l:l IB I IB 1'2c HYPOXIDA< :EAI<. 1'2< I IB I 12 Curru!Zt;o rajJilala (I .our.) 1\.untzt· H)'poxi., h)gmmefnm Labill. Hypoxi., l't//o,a L. Rhodo/l)j}()ti., /)()urii (Baker) Nl'i 1.2:l I. 17 I. I 'I I.IH P:Zc P:Zc 1'2c I.B7 l.til 1.'> 7 ll.'lli I. 71i l.:l'l I 'Ill I.IB 1.:-, 7 1.:).-) l.bl l.lli 0.7B 1'2c D. Dun DC. mm~Y,Irsii I':Zc I':Zc I':Zc P:Zc P:Zc P:Zc P~< 1'2c p:z, p:z, I':Zc P~h P:Zc l.+'l l.li'l 1'2c P:Zc Ill l.ll P2c 1'2c hybrid Conos/)'lis mndimn1 Endl. fadm~mthr1 ramliniana (I .am.:· I )and~ Wachmdorjia panicuiata L. Xiphidiwn coerulewn Auhl. Jln(~o,cantlws .1m:Y,o.::antho1 .·ln(~;o.~ant/m, Jlm•idu.l IIAEJ\.IODORAf:EAE Asplundia goebeiii (\\",·iss & R. \\'ap;ncr n R. \\'ap;tHTi Harling . hpiandia sp. . hf!lundiu .ljJectabi/i, Harling Cariurlol'im jJaima/a Ruiz & Pas. Crdanthu' lnjmrtitu.l Po it. /Jicranoj~Jgiwn mirmrrjJ!wlwn ~~Hook. L; Harling /Jirranof!Jgium fto(vrrjJfmlum Harli11g /Jinmwf!Jgiwn sp. h•odianthu.<.fimijrr (l'oit.) I .indm. /.,ur/m•ia lanr_zj(J/ia Hrongn. <:Y(:J,A'\.J"THA<:EAE Racinea spiculosa (Griscb.) Spmccr & Smith lhesea giutirw.w LincH. !'rima hierogiJ•jJhica (Carr.) E. l\lorr. B<;-r-.uc B<;-1\I B<;-K I'Hi'l-lli<):Z7 B<;-K I'Hi'l-:l'rl~> B<;-HEII>: K(;-KIEI. B<;-K l'lHB-1'11 B<;-1\1; BG-K BG-HEII> BG-HEID B<;-HEID B(;-HEII>: IH;-B< )\;\: BC-BONN market garden, leg. \\'. Barthlott B<;-B< >NN Cull" Co., FL (LIS.\). L. C. Chafin B<;-BONN B<;-1\1 BC-HEID BC-HEm B(;-BO:\'f\ B<;-HEID B<;-HEII) BC-HEII) B<;-B<>:".'N BG-HEID BG-HEID B<;-BO~f\ B<;-HE]]) BG-HEID BG-HEID BG-HEID ++ I Trcutlein & \\"ink +1.-> Trcutlci11 & \\·ink lT) Treutlciu & \\.ittk J:l I ·1 n·utkitt & \\"ittk l"lll Trnttleiu & \\"ink H+ ·1 rnttkiu & \\'iuk t:l~ Treutlein & \\'ink ((mtinunl c -- ~-. (' ;_. E :::; __. ~ :::;_. ::I s s; C/1 s L. -::I -i C/1 :;.. :s ; t: p ~ ~ :,.:.; Croomiajaponica Miq. Croomia pauciflora Torr. Sternona tuherosa Lour. Stichoneuron caudatum Ridl. STEMONACEAE Pentasternona egregia (Schott) Steenis PENTASTEMONACEAE B. Pres!. fi~)'cinflia jJ!tiliji/Jinm.sir Hems!. Fl~winetia r(£?irhjolia Hems!. Frercinetia scan dew Gaudich. Pa~1dmmr albijivns B. C. Stone Pandanus amarrllijiJ!ius Roxb. Pandanus bajJit.slii \\'arb. Pandanus bilamellatus 1\Iartelli Pandanus candelabmm P. BeaU\·. Pandanus dyckioides Baker Pandanusjorsteri C. 1\loorc & F. 1\ludl. Pandanusjurcatus Roxb. Pandanus houlletii Carr. Pandanw irregularis Ridl. Pandanus kirkii Rendle Pandanus microcarpus Balf. f. Pandanus montanus Borv Pandanus pacificus hort.' Veitch Pandanus papuanus (So1ms) Ridl. Pandanus pristis B. C. Stone Pandanus pulcher Martelli & Pic. Serm. Pandanus purpurascens Thouars Pandanus pygmaeus Thouars Pandanus sanderi Mast. Pandanus sp. Pandanus sylvestris Bory Pandanus tectorius Sol. ex Parkinson Pandanus toinu H. St. John Pandanus utilis Bory Pandanus vandermeeschii Balf. f. Pandanus variegatus Miq. Pandanus veitchii Mast. & T. Moore Sararanga philippinensis Merr. F1~rcinetia jaranica Bl. Frerrinetia lu~onen.sis K. 'l'axon 1.33 1.35 1.24 1.58 1.14 P2c P2c P2c P2c P2c 4 1.26 1.26 1.70 2.79 1.82 1.53 3.64 1.9+ 1.23 2.37 1.85 1.33 1.57 :n:J 1.6+ l.3B 0.72 1.23 0.98 1.17 1.84 1.25 0.99 1.17 1.78 1.34 1.13 0.99 1.10 1.35 1.39 0.9+ 1.03 1.+2 1.0+ 1.+9 0.99 1.07 1.19 1.35 1.0 I BG-M BG-M BG-M BG-M; BG-HEID BG-SING; BG-M BG-:\1 BG-BO'\'\: BG-HEID BG-:\1 BG-B I.J.I-2+-7+-B:l BG-K 1988-8618 BG-K 197+-866 BG-K 1986-21.11 BG-:\1 BG-:\1 BG-HEID BG-HEID BG-K 1972 25 78 BG-l\1 BG-HEID BG-K 1985-1510 BG-HEID BG-K 198+-5361 BG-KIEL BG-HEID BG-l\I BG-HEID BG-B 001-09-80-10 BG-B 193-10-79-83 BG-KIEL BG-KIEL BG-HEID ex Madagascar, leg. W. Rauh 21912 BG-B 280-03-80-10 BG-M BG-M BG-HEID BG-B 132-48-74-80 BG-K 1973-20814 BG-HEID BG-K 1993-3470 Origin of n1alcria1 !-continued Sicn·-ckment plastid data '\o. spp Diamncr leaf stcn1 P2c P2c P2cf P2d' P2cf P2cf P2cf P2cf P2cf P2cf P2cf P2c P2cf P2cf P2cf P2cf P2cf P2cf P2cf P2cf P2cf P2cf P2cf P2cf P2cf P2cf P2cf P2cf P2cf P2cf P2cf P2cf P2cf P2cf P2c P2c Form TABLE anal~·sis Treutlein & Wink 432 Treutlein & \\'ink .J.OO Trcutlein & \\'ink +I 7 rb(L ~ t" t>J "-i tTl ;;;:: z ::r: tTl t;O ;:c ~ ~ SIE\ E-EI.DIL\T PL\STJDS .\:'\D RBCL DAL\ I:\ n:UDZL\C L\L ~E ::::::::: -.=-:::.= "-f :--t;;!; ,--.;; t: .. ·- c t ; :;., ::; - -~ ·~ :i ~ .::: ~~--- ~ 8 - ~~ =~~ - c f - :~ - .,.. - ~ :C '/ ~ '- :- ~ '- 'f ;..: .-- -· ~ l.~.~ . , . _ " "' ,- . ~- ~~~~2 ~ ;: ~~~~..::: I 'o::":;:'c~ ~~J1~ "'' - '- - ~· ~ '- - " e ~~- "' .;:: '- I 1 - << < '- ~ 7." ~ "' ~ -1- " '~ ~ :::: d: J'. -- ~ ;>, 103 104 H.-D. BEHNKE ET AL. :\IATERIAL AND METHODS Taxon sampling The species included in the present analysis of sieve-element plastids and rbcL sequences were selected both to cover as many species as available of Velloziaceae and to include taxa from all the families sometimes treated as related to them (collection data are given in Table 1). Additional rbcL sequences included were obtained from different sources (see Table 2). Vouchers containing a sample of the specimen used, an electron micrograph of a typical plastid, and a block of embedded material are placed in the TEX herbarium. The rbcL sequences of taxa analysed in this paper will be deposited in GenBank. Electron microscopy Living material is a prerequisite for fixing sieve elements and subsequently investigating their plastids with the TEM. Therefore, the majority of species were prepared for fixation by the first author in botanical gardens, while other samples were sent to Heidelberg by express mail. Stem material (vegetative or generative) was cut with a razor blade into thin longitudinal sections and immediately immersed in the fixation mixture. Additionally, or alternatively when stems were not available, parts of petioles or leaf veins were used. Fixation was for three or more hours in a sodium-cacodylate buffered solution containing 4% formaldehyde and 5% glutaraldehyde adjusted to pH 7 .3. Postfixation in buffered l% OsO.h stepwise dehydration with acetone, embedding and polymerization in epon-araldite or low viscosity epoxy mixtures were according to standard procedures. Semithin sections were cut from embedded material and inspected for phloem, before ultrathin sections were cut with a diamond knife using a Reichert Ultracut microtome and subsequently stained with aqueous uranyl acetate and lead citrate. Sections were viewed and photographed with a Philips CM 10 or a Philips EM 400, at 100 kV. DNA isolation, PCR, and DNA-sequencing Total DNA was isolated from fresh or frozen leaf material using a modified version of the CTAB method (Doyle & Doyle, 1990). Primers used for PCR flank the beginning and the end of the rbcL gene (rbcLN: 5'ATGTCACCACAAACAGAAACTAAAGC3', rbcLR: S'T ATCCATTGCTGGGAATTCAAATTTG 3'). Alternatively for primer rbcLR, reverse primer 1R was used (rbcL 1R: 5'GGGTGCCCTAAAGTTCCTCC 3'). For amplification total DNA was used as a template, plus l 0 pmol each of primers rbcLN and rbcLR (rbcL l R), 1.5 mM MgCl 2, 0.1 mM of each dNTP, 5 j.!l amplification buffer and 1.5 U Taq DNA Polymerase (Amersham Pharmacia Biotech) in a total volume of 50 j.!l. After an initial denaturation step (4 min at 94°C) 30 cycles of 30 s at 95°, 30 s at 45°C, and 90s at 72°C were performed on a Biometra thermocycler. After 30 cycles the reaction temperature was maintained at 72°C for 4 min and than lowered to 4°C for further storage. The quality of the resulting PCR products was controlled by electrophoresis SIE\'1:-ELE\IE:\T PL\ST]])S .~:\"D RBCL DXI.\ L\ n:LLOZI.\C:E.\E 105 on an 1.5% agarose gel (Qualex Gold Agarose, Fl\IC BioProducts). Depending on the strength of the band, l to 6 111 of the PCR product were used to pcrf(Jrm direct cycle sequencing of the PCR products (Thermo Sequenasc cycle sequencing kit, Amersham Lik Sciences). The follmving cy5 5' labelled sequencing primers were used to obtain O\Trlapping sequences: Primer Leg7: 74-5 bp reverse: 5'TTCGCATGTACCCGCAGTAGCA3'; Primer Leg 3: 635 bp fl:mvard: reverse: 4-19 bp 2: Leg Primer 5'TGCGTTGGAGAGACCGTTTC3'; 1024- bp fcJrward: 5'ATTCGCA.AATCTTCCAGACG3'; Primer Leg 4-: 5'ACTTTAGGYTTTGTTGATTT3'. The cycle sequencing program used was 3 min at 94°C, followed by 25 cycles of 30 s at 94°C; 90s at 50°C. The st>quencing products were loaded on longranger acrylamide gel (Fl\IC BioProducts) without further purification and run on an ALF EXPRESS II sequencer (Amersham Pharmacia Biotech) for automatic fluorescence detection of the nucleotide sequence. Sequences wert> aligned using MICROSOFT \VORDPAD 4.00.950. Data analysL1 The diameters of plastids were recorded in metaphloem sieve clements. The sizes were measured from negatives taken at standard magnifications and a\·erages calculated after critical evaluation of the set of plastids obtained f()f each species. A total of some 5000 measurements formed the data set processed for species and family averages. Phylogenetic trees \vere reconstructed using character state and distance methods, such as Maximum Parsimony (MP), ~eighborjoining (l'{J) and l\Iaximum Likelihood (ML) as provided by the software package PAUP* 4-.0 (Swofford, 1998). Divergence times between selected taxa vverc estimated using a p-distancc matrix (Table 3). The splits between liverwort and vascular plants (jJwrhantia po£vmorpha Xerophyta villosa), between ferns and seed plants (Angiopteris evecta- Xerop~yta l'illosa) and between cycads and angiosperms :G)cas revoluta-Xerop~yta villosa), 4-40 million years ago (Mya), 393 .Mya and 285 Mya (Savard et al., 1994), respectin~ly, were taken as reference distances. RESLTI'S Sieve-element plastids of Velloz_iaceae The stem and leaf metaphloem of the species of Velloziaceae inwstigated is composed of sien: tubes, companion cells and phloem-parenchyma cells (Figs 2A, 4A). Sieve elements are comparatively small (diameters of about 311m haw been measured), closely associated with companion cells, and combine to iorm sicYe tubes by compound sie\'e plates (Fig. 2A). During their ontogeny, sieve elements undergo the same selective autophagy as described for many angiosperms (sec Behnke, 1989) and comprising above all the degeneration of nuclei, breakdown of the tonoplast as a delimitation between the vacuole and the cytoplasm, and the concomitant loss of ribosomes, dictyosomes, microtubules and most of the endoplasmic reticulum. The mature sieve clement retains its structural and functional identitY by the presence 19 20 21 IH 17 !() 10 II 12 13 14 15 li (J.()(l.J.):i 1).(11102 0.009()1 IUJII41 Xnvpl~r!a dn~rlnimde.\ Xrwpl~rta dm_ylm.01dr1 \·ar. p('{tinata o.o 11 o:~ Talhotia rlrf!a/1\ 0.01341 0.0157:l 0.01.172 0.012:i7 0.01:\13 ().()1418 (J.(lllfl5 ll.OIIi83 0.01499 0.01540 ll.011i21 ll.IJ14:18 lfllo:;:ia hinu!a (21 0.01.)7.) I fllo;:;ia andina 0.01971 .Vanuza plica/a 0.0181'! O.Ol.H7 0.01.170 0.017(-)(:i 0.02079 0.016.)9 O.Olfi.Sl !Ul!L):-5 11.00877 0.010.)(-j IUJIIYl o.oJ:)fN 11.01840 0.01689 0.(JI:l79 0.01712 11.111.1:\B 0.011181 O.OIH69 O.OIIi07 0.0(192-t 0.01.)..\-/ 0.0137G O.IJ1338 0.01300 0.01334 0.01.):13 0.01811 O.OIIili1 0.010!)6 0.00994 0.00912 11.01241 (J.())()(ifl ()J)()())j 0.00000 O.OIJ:l.13 0.00229 0.00:1.1:1 0.002()() 0.00.12H O.OOHHO 0.007WI 0.0061.) 0.00979 O.OOB7q 0.00700 O.OI.i2:l 0.01321 0.01457 ll.ll1143 0.01338 0.01497 0.0175! 0.01.'1Wl ll.OOBB2 ll.IJIIIi2 ll.OII48 O.IIOBBII 0.01799 O.OI51J:l 0.015{)() O.IJI501 0.01435 O.Olli82 0.01854 ll.ll1777 o.OIOYJ 0.002().) 0.007qj (J.Illl49 0.0092..\0.111.)47 0.01298 O.IJ1411 0.01378 0.01254 O.OH57 0.0171i4 0.01.177 ll.IJII4:l 0.01071 0.00990 (l.OI:\17 ().()1144 O.OO(JWI O.Olfi97 IJ.01841i 0.01827 0.0Jj72 (Ul17B9 0.01.):)() 0.014'18 0.111304 0.0077:~ (l.\)J lb7 ll.IJI070 0.009~1() 0.008:\H 0.00/(:i() ll.ll2228 0.01316 0.01.)49 0.0L)21 0.01 :lB2 IJ.Ol:llfl 0,02059 0.02034 ().(11783 0.02032 o.o2n2 0.02370 0.0231() 0.011i19 0.01H78 O.ll201i8 0.02222 0.021.50 0.01 ~15() IUJI44H 0.01{)2.) ().()1411 0.01229 O.ll211ill O.IJ191JH 11.01489 O.llll :l4 0.01252 O.fJIS:l2 0.017.18 0.01491 0.012~)(_) 0.0077() 11.00)l2 O.OOG~I 1 0.01!/18 Ill 0.00312 (U HJ~ I:1 0 O.OIHB8 O.IJI708 0.01731 0.012:H 0.0\()()3 0.01NJ 0.1)1790 0.01763 II 1).(11703 0.01451 0.014'10 ll.ll11:l7 0.014B'l 0.01.):1.) 1Hlllil2 0.01661 0.0076~) 12 O.OJ:liO O.OI:m'l 0.01410 0.01407 O.IJ1154 0.01334 0.010.1.) ().()117'1 13 O.IJ05·10 0.00000 0.00().)9 0.00.1.)() 0.00078 0.01011i 0.00676 14 0.0007'1 o.umm 0.00765 0.00495 0.00764 O.O(J..\-99 O.OO.)til 0.00459 j() 0.0040.) 0.00000 0.00349 ]j 0.00411 0.00566 0.00726 li.IJ0742 17 0.00473 0.00705 IJ.IJOSOO lfl O.IJ0768 O.OOG63 ]q 3. Pair-wise genetic distances between the V elloziaceac taxa studied. Distances are given as p-distanccs (1.0 = l 00% nucleotide substitutions) Ba!ha(flliojJ\i,\ Bmha(flliojJJi\ ho!itiem/,\ XnojJI{rlaeglmululu\a .\'nopkrta p111_i[ulia TABLE 0.00908 211 ;-- ~ '-1 tl'J t"l z ;;:: ::r:: ~ I:C ~ ::r:: a; SIE\ E-ELL\IE'\T PL\STIDS A.'\D RBCL IHT.\ I'\ n:LI.OZI.\CI: \I: 107 of a plasmalemma which delimits the cell against the apoplast and is continuous through sieve pores and plasmodesmata. Plastids, mitochondria. and some endoplasmatic reticulum arc still present and occupy a parietal position (Fig. 2A). The characteristic features of the sieve-element plastids are found at an early stage in the maturation of a sieve element (Fig. 2A, arrowheads) and continue to be present during the entire life time of the siew clement. As typical of angiosperms and found in many (but not all) monocotyledons, the sieve elements of the Velloziaceae contain P(hloem)-protein that is seen as distinct filaments (e.g. Figs 3E, 5B, 6A,C) and may occlude the sien~ pores (Fig. 2C). Pprotein is synthesized in the cytoplasm ofyoung, nucleate phloem cells (see Behnke, 1989; Evert, 1990), has well-known biochemical properties (Cronshaw & Sabnis, 1990) and a function in sealing the sieve-plate pores of injured sieve tubes. P-protein must not be mixed up vvith the filaments defining form-Pf, -Pcf, -Pds, and -Pf~ sieve-element plastids (Behnke, 1991) and present in form-P2cf plastids of some Velloziaceae. The origin (i.e. coded by nuclear DNA, by plastid DNA, or by both), biochemical composition and function of 'plastid filaments' arc just as unknown as are those of protein crystals found in sieve-element plastids. Howen.T, both first appear in young plastids and are never released as long as the sieve element is alive (see Behnke, 1989, 1991 ). In Velloziaceae (37 taxa investigated) sieve-element plastids belong to either formP2c or form-P2cf, i.e. to only two of the four forms present in monocotyledons (compare Figs 1 and 12). However, most of them are distinctive by ( 1) the presence of crystals with indistinctly angular faces which replace the monocot-specific cuneate ones, (2) the inclusion of a single loosely-packed polygonal crystal or several looselypacked crystals of different morphologies, and (3) the very small average' diameters of sieve-element plastids recorded in both stem and leaf phloem (seC' Table I). Although one or other of these features may occasionally he present in other monocotyledons, their combination is unique and accentuated here as the Velloziaceae (sieve-element plastid) syndrome. The presence of angular crystals is used to redefine the sieve-element plastids of V clloziaccae as belonging to subforms P2c" " P2cah P2c"1" P2cJ, P2c,,/ (Fig. 12, but see previous nomenclature' in Behnke, 2000) and thereby distinguish them from others containing cuneate crystals, e.g. subformP2cr~ as in Ayensua (Fig. 10 A,C) and other taxa (see Table 1 and Behnke, 2000). The six species of Barbacenia and Pleurostima investigated contain form-P2c plastids with many angular, sometimes roundish crystals and several loosely-packed crystals of which one is comparatively large. However, while most specimens have subformP2ca1 plastids (Fig. 2C,E,F; Table I), Pleurostima stenopkylla has subform-P2c,,1, (Fig. 2B) and in sieve-clement plastids of Barbacenia ( = "-!J;lthonia) tomentosa neither polygonal nor other loosely-packed crystals were found (subform-P2c" ,; Fig. 2D). Form-P2c and form-P2cfsieve-clement plastids are present within ~'ello;:.ia: suhformP2catf in V. crassicaulis (Fig. 3A), subform-P2ca/ in V glodzidea and T~ hirsuta (2), subform-P2ca1 in V. variabili.s (Fig. 3B) and V. variegata (Fig. 3C,F), and suhform-P2caf> in V. aff. caespitosa (Fig. 3D), V. declinans (Fig. 3G), V Jroesii, T~ sellrneiz, and T~ tubiflom (Fig. 3E). The loosely-packed crystals in subform-P2ca 1 plastids are often rod-shaped or orthogonal (Fig. 3B,C,F). V. hirsuta (I) and the new Bolivian T~ andina (Fig. 3H,I; see Ibisch et al., in press) have subform-P2c", plastids. The two different forms of sieve-element plastids present in V hirsuta Goethart & Hem·arcl were found in specimens that also differed morphologically and add to anatomical and other characters usC'cl to define three types in this species (see t\lello-Sih·a. 1990). 108 H.-D. BEHNKE ET AL. SIE\'E-EIE\IE'\T PI~~STIDS .\:'\D RBCL DAT.\ !'\ n:LI.UZL\CL.\E \09 The genus Xeroph)'ta likewise includes all five subforms found in the family. The African X retineruis (Fig. -1-B) and X villosa (Fig. 4C) contain subform-P2cJ plastids, the Madagascan X dasylirioides var. pertinata (Fig. 4F), X. eglandulosa (Fig. 4D,E), and X pinifolia subform- P2cal plastids. However, in the sample investigated of X. dasylirioides (variety unknown) no filaments could be detected (see Table l). Amongst the other species, X. schlechteri (Fig. 4H) and X splendens (Fig. 4I) have subform-P2cap plastids. No loosely-packed crystals were found in X. humilis (subform-P2a,; Fig. 4G). Sieve-element plastids of X. retineruis (Fig. 4B), X. dasylirioides var. pectinata (Fig. 4F) and X. splendens (Fig. 4I) contain some tubular structures in addition to crystals (and filaments). Loosely-packed crystals are rod-shaped/ orthogonal in X. schlechteri (Fig. 4H). The sieve-element plastids of Barbaceniopsis (three species investigated), including B. castillonii, sec Ibisch et al., in press) are of subform-P2c"'' but their specific characters are rather extraordinary. In all samples there are only one or two irregularly shaped loosely-packed crystals (Fig. 5C-F), and in some plastids it is hard to find them (Fig. 5B). The other (densely-packed) crystals are angular, but in B. vargasiana there is often only one angular, rather polygonal (Fig. 5A,D,E) or irregular crystal which is sometimes divided into smaller ones (Fig. 5F). The monotypic genera Nanu;:,a (Fig. 6C,D) and Talbotia (Fig. 6A,B) have subformP2ca , sieve-element plastids with angular and cuneate crystals. Material of Burlemarxia species was not available. Siez'e-element plastids of Acanthochlam_vdaceae The phloem of the monotypic Acanthoclzlam)'S bracteata (stem, root and leaves were investigated) is composed of small sieve elements combined to sieve tubes by simple sieve plates, companion cells and phloem parenchyma cells. Mature sieve elements contain plastids, mitochondria and P-protein (Fig. 7A-C) and are connected to their companion cells by sieve pore-plasmodesmata combinations (Fig. 7D). Sieve-element plastids are among the tiniest in monocots and belong to form-P2c (Fig. 7B-D). There are many small crystals in a plastid, with the larger ones being distinctly cuneate. Additional loosely-packed crystals as present in most Velloziaceae were not found. Figure 2. Velloziaceac. A, longitudinal ultrathin section through stem metaphloem of Pleurostlma purpurea showing sieve elements (sc), companion cells (cc), and phloem-parenchyma cells ipc). The lower siew· element is at an early stage of differentiation and contains cytoplasm with young sicn·-elcment plastids (arrowheads) and a nucleus (n), while in the upper sieve element the nucleus and vacuole are degenerated, its cytoplasm with many plastids is delimited to a small wall-adjacent laver, and the remaining lumen filled with P(hloem)-protein (*1. The upper sin·c element is connected to an immature one by a sieve plate (between arrows). B, subform-P2c,P plastids with angular raJ and loosely-packed polygonal (p) crystals in sie,·e clements of Pleurostlma stenoph)'lla; sieve plate between arrows. C, sieve element of Pleuras lima fanniei with loosely-packed (I) and angular 1a) crystals of broken plastid and with P-protein (*) partlv occluding sin·C"·platc pores (arrows). D, subform-P2c.,, plastids of Barbawzia tomentosa. E, F, subform-P2c,1 plastids of Pleurostima jJurpurea (E) and Barbacenia grisea (Fl. Scale bars= l 1.1m. 110 H.-D. BEHNKE ET AL. Figure 3. Velloziaceae. Sieve-element plastids of ~llo.:;ia: subform-P2cJ plastids in ~llo.:;ia crassicaulis (A), subform-P2c,1 with rod-shaped loosely-packed crystals in V variabilis (B) and V variegata (C, F), subform-P2c,P in V aff. caespitosa (D), V tubijlora (E) and V declinans (G). ~llo.:;ia andina has subformP2c,_, plastids with almost cuneate crystals (H, I). a = angular, c =cuneate crystals, f = protein filaments, I = loosely-packed, p =polygonal, * = P-protein. Scale bar in H = l J.lm. All to same scale. Sieve-element plastids qf.families traditional!J allied to Vello;::iaceae The sieve-element plastids of those families long time considered related to the Velloziaceae also belong to either form-P2c or form-P2cf (i.e. no starch-containing P2-forms were recorded), but their average diameters are considerably larger than in Velloziaceae (see Table I and Figs 8- l 0). SIEH>ELEI'dE:\T PL\ST!DS ~~1\;D RBC1, DAT\ l:\ \'ELLOZL~CE~\E Ill Amaryllidaceae: 29 species investigated, all with form-P2c plastids, except Rauhia (Fig. SE,F) and Vtonl~ya (Fig. SB) which contain form-P2cf. The sieve-element plastids of several species contain one to three orthogonal crystals in addition to many cuneate ones, thus establishing subform-P2c,0 (Fig. SA,C,D,G,J) and subform-P2cJ (Fig. SE). In ultrathin sections these orthogonal crystals may have rectangular (including quadrangular), trapezoidal or other outlines (Fig. SC). Like cuneate crystals they are composed of densely-packed subunits. The average diameter of sieveelement plastids in both stem and leaf phloem is considerably higher than in Velloziaceae (see Table 1). Hypoxidaceae: 4 species investigated, all with form-P2c sieve-element plastids with only cuneate crystals (Fig. 9A). Plastid diameters are similar to those of Amaryllidaceae. Haemodoraceae: 7 species investigated. Sieve-element plastids all of form-P2c (Fig. 9B) but with considerably larger diameter than previous families (Table 1). Bromeliaceae: 22 species investigated, all with form-P2c plastids, but with subformP2cr~ in several species. The average diameter of their sieve-element plastids is larger than in Velloziaceae, but among all putatively related families the size of their leaf phloem sieve-element plastids are the closest to those of Velloziaceae (see Table 1). Judged by their ultrastructure subform-P2cr~ plastids of .l~yen.sua and Brocchinia (Fig. lOA,C-D) arc similar to those found in Velloziaceae, but their clear cuneate crystals do not conform. However, subform-P2c, 1 plastids are also present in some Laxmanniaceae (formerly Lomandraceae) and different families of Poales (Behnke 2000). Sieve-element pla.stid.s qf Pandanales sensu Kubit::.ki, Rudall & Chase (1998) The distinctive sieve-element plastids found in V elloziaceae do not match the plastids in any of the other families placed in the Pandanales. Pandanaceae: 41 species from the three genera investigated, almost all with formP2cf plastids. The specific features include very large plastid diameter, a prominent peripheral ring of protein filaments, and many cuneate crystals (Fig. lll--L, Table l ). Cyclanthaceae: l 0 species investigated, all with form- P2c plastids of rather large diameter (Fig. ll E-H, Table l ). Except for the absence of protein filaments their characters come close to those of the sieve-element plastids in Pandanaceae. Pentastemonaceae: the monotypic Pentastemona egregia contains form-P2c sieveelement plastids with many medium-sized cuneate crystals (Fig. ll D); the average plastid diameter is slightly smaller than in Stemonaceae (Table l ). Stemonaceae: four species investigated, all with form-P2c sieve-element plastids of considerably smaller diameter than in Cyclanthaceae (Fig. llA--C, Table l ). Phylogeny reconstructions based on nucleotide sequences qf the rbcL gene The phylogenetic analysis focussed on 24 taxa ofVelloziaceac (seven genera) and 10 taxa of related families (Acanthochlamydaceae, Stemonaceae, Pandanaceae, and Cyclanthaceae) which had already been identified as a monophyletic group (Pandanales, Chase et al., 1993). Other monocot families, sometimes considered 11 2 H .-D. BEHNKE ET AL. S IEH>E LE:\I E'\T PL\STIDS A:'-JD RBCL Di\1'.-\ I'\ \ 'ELLOZ I.-\ CL\ E 113 Figure 5. Velloziaceac, sieve-element plastids of Barbaceniopsis. A, longitud inal ultrathin section th rough sieve element (se) of B. l'argasiana with three plastids. B, two sie,·e clements in stem of B. castillonii connected by a sieve p late (between arrows) and containing plastids and P-protein (*). C , subformP2c,, plastids of B. holi1•iensis. D , subfonn -P2c,, plastid from leaf vein of B . castillonii. E-F, various aspects of subform-P2c., p lastids in B. vargasiana. a = densely-packed angular crysta ls, I =loosely-packed crystals. Scale bars = I 11m . Figure 4. Vclloziaccac. A, longitudinal ultrathin section through stem melaphloem of Xerophyta retinervis with several small sieve elements (se), phloem-pa renchyma cells (pc), and la rger xylem clements (x). B- 1, sieve-element plastids of leaf (B) and stem (C - I) of Xeropf!Jta: subform-P2cJ in X 1~tinervis (B) and X villosa (C), sublc>rm-P2c,/ in (D , E), X eglandulosa and X dasy lirioide.1 var. pectinata (F), subtorm-P2c, , in X humilis (G) and sublorm-P2c.p in X. schlechteri (H) and X 1plendens (I). a = angular crystals, c = cuneate crystals, f = protein filamems, p = loosely-packed polygonal crystal, t = tubular inclusions. Scale bars: A = 5 ~-!m; B, C . F = 1 1-!m. D -I to same scale as B. 114 H.-D. BEHNKE ETAL. Figure 6. Velloziaceae, subform-P2c,, sieve-element plastids in Talbotia elegans (A, B) and .Nanuza plicata (C, D) with many angular (a) and often cuneate (c) crystals. * = P-protein. Scale bars= l J.lm. related, were also included in our analysis, and Acarus was chosen as an outgroup. Distance and character state methods (MP, NJ, ML) produced trees which were almost congruent with each other in the arrangement of Pandanales (Figs 13-16) which always cluster as a monophyletic group (85% bootstrap support). Acanthochlamys is a sister group to Velloziaceae (100% bootstrap). Pandanaceae and Cyclanthaceae also form a well-supported sister group (94% bootstrap) which apparently shares ancestry with Stemonaceae. Amaryllidaceae, Bromeliaceae, Haemodoraceae and Hypoxidaceae, the families that have previously been treated as close allies of Velloziaceae, are members of different clades, neither closely related to each other nor to the clade including Velloziaceae. However, their phylogenetic position could not be established with certainty, as NJ bootstrap (Fig. 13) and MP strict consensus (Fig. 14) trees do not resolve the underlying bifurcations indicated by the ML phylogeny (Fig. 15). A more complete sampling would be necessary to resolve their interfamilial relationships, which was outside the scope of this study. Within Velloziaceae, at least four evolutionary lines can be discovered by MP, l'{J, and ML reconstructions which mostly correspond to the major genera: (1) African and Madagascan species of Xerophyta and the mono typic Talbotia embedded within Xeropfryta, (2) Barbaceniopsis, (3) Pleurostima and Barbacenia, and (4) Vello:;;ia plus the monotypic Nanu:;;a. Species of lines 2, 3, and 4 are restricted to South America (Fig. 14). Genetic distances (Table 3, Fig. 15) between these taxa imply that Old World and New World members of the Velloziaceae diverged 40-70 Mya (if we SIE\'E-ELEC\!E'\T PIASTIDS AND RBCL DAT\ I'\ \'ELLOZIACE.'\E 115 equate 0.0389% nucleotide substitutions or 0.0125% non-synonymous nucleotide substitutions with 1 million years of divergence). DISCliSSION Subdivision and relationships within Vello;::iaceae The infra-familial classification of V elloziaceae is not yet settled. During the last decade the discussion has concentrated on two proposals that differ not only in size and composition of subfamilies, but also in circumscription of genera (see MelloSilva, 1991 ). One of the major disputes is on the treatment of Old World against New World taxa. Based on entirely different sets of characters, Smith & Ayensu (1976) incorporated all Old World species, except the monotypic Talbotia, into the genus Xerophyta, while Menezes (1980) also recognized Xerophyta species in Brazil. Based mainly on stigma shape and leaf blade anatomy Smith & Ayensu (1976) assigned the New World species to Barbaceniopsis (with 3 species), their new monotypic genus Nanuza ( = Vello:::.ia plicata Mart.) and the two major genera Barbacenia and Vello:::.ia. Menezes (1980) used stamen and anther characters for the delimitation of genera. She included Barbaceniopsis, Nanu:::.a and Talbotia within Xerophyta and separated three new genera, Pleurostima Raf., Aylthonia Menezes, and Burlemarxia Menezes, from Barbacenia. The rbcL tree separates the family into clades which correspond neither to the subdivisions proposed by Smith & Ayensu (1976) nor to those of Menezes (1980). While the distinct sieve-element plastid syndrome is apomorphic to the family, the distribution of the subforms recognized (Fig. 12) does not reflect any specific infra-familial classification: all five subforms are found among Vello:::.ia and Xerophyta species, three in Barbacenial Pleurostirna. The investigated species of Barbaceniopsis have subform-P2ca1 plastids, and the monotypic Nanu:::.a and Talbotia contain subformP2ca-r· An assessment of the significance of the five subforms to the distinction and relationship of the taxa studied would require a scoring of the different plastid contents and their cladistic analysis, which together with other morphological characters will be carried out separately. Affinities with other rnonocoryledonous families Both ultrastructural and molecular analyses substantiate Velloziaceae as a monophyletic family. The sieve-element plastids of Velloziaceae are distinct from those of all other families by the combination of angular crystals, additional loosely-packed crystals and comparatively small average diameters. This syndrome is to be added to the synapomorphies recognized by Menezes et aL (1994), i.e. presence of transfusion tracheids in the leaf vascular bundles, a reduced inflorescence, and an independent dehiscence of all four anther locules. · Loosely-packed crystals are present in some Bromeliaceae, a family that has previously been considered to be closely related, as well as in some Laxmanniaceae (formerly Lomandraceae) and Poales (Behnke, 2000), but all these have definite cuneate crystals. The results from our rbcL study, i.e. the 11 6 H.-D. BEHNKE ET AL. SIE\'E-ELEl\IE:\'T PL\STIDS .-\.c\ID RBCL DAT.\ II'\ \'ELLOZL\CE.\E 117 comparatively great number of character changes and the 100% support in the bootstrap analysis (Figs 13, 15), put the monophyly of the Velloziaceac as first established by Chase et al. (1995) and their most likely early isolation (see Kubitzki, 1998) on a broader basis. Acanthochlamys was raised to family rank by Kao (1989; see also Kao & Kubitzki, 1998) but included in Velloziaceae by Chase et al. (1995) and the Angiosperm Phylogeny Group (APG, 1998). Our combined results, i.e. small form-P2c plastids without loosely-packed crystals (Fig. 7), clear distance in Neighbor Joining and strong bootstrap support (Fig. 13), favour a monotypic family whose closest affinities are with Velloziaceae, and with no close affinities to Amaryllidaceae where Acanthochlamys was earlier included (see Kao & Kubitzki, 1998). Phylogeography According to our preliminary estimate based on the split between J;farchantia (Lewis, Mishler & Vilgalys, 1997) and the vascular plants 440 M ya and the split between cycads and angiosperms 285 Mya (Savard et al., 1994), and using the greatest distance among the investigated species, New and Old \'Vorld members of Velloziaceae diverged about 40--70 Mya, ruling out that the disjunction seen today is a result of plate tectonics. Instead, we have to assume either migration or more likely, long-distance dispersal either by hurricanes or the sea. Since among the nther members of the Pandanales there are likewise Old and New \Vorld groups, a clear decision on where the Velloziaceae originated cannot be made at present. Based on morphological and chromosome-cytological characters Menezes ( 1980) and Melo et al. (1997) suggest South America as the centre of origin of the family, while Ayensu (1973) favoured Madagascar as the origin of dispersal. However, our DNA studies show that the Xerophyta species from Madagascar (eglandulosa, pinijolia, dasylirioides) arc separated by up to 1.3% nucleotide substitutions from taxa that occur on the African mainland, indicating a divergence about 10 to maximally 25 Mya, long after the isolation of Madagascar, and long after the separation of the African from the South American species. Taxonomic implications The monotypic genus Talbotia from South Africa (mainly Natal to eastern Transvaal) clusters within a clade that is composed of members of the genus Xerophyta, making this genus paraphyletic (Figs 14, 15 ). It would therefore be plausible to merge Talbotia with Xerophyta, reinstate Xerophyta elegans (Balf.) Baker (Baker, 1875), Figure 7. Acanthochlamydaccae, longitudinal ultrathin sections through stem (A, B, D) and transverse section through root (C) phloem of Aranthochlamy; bracteata. A, sicw· element (se) with plastid (p) and Pprotein (*), adjacent to phlocm-parmchyma cell (pc) with starch-containing plastid (s). B D, form-P2c plastids in sieve elements containing P-protein (*) and connected to companion cells (cc) by sieve pore-plasmodesmata combinations (arrowheads). D is serial section to B; c =cuneate crystals, m = mitochondria. Scale bars= l f.!m. 11 8 H .-D . BEHNKE ET AL. Sllc\'E-ELE'\IE:'\T PL\STIDS ,\ND RBCL OAT.\ 1:'\ \"El .LOZI.\CL\E I 19 Figure 9. Form-P2c sieve-element plastids with cuneate crystals. A, Hypoxis villo.w (Hypoxidaceae). B, lAchnanthe.1 caroliniana (H ae modo race ae). Scale bars= l ~m. and thus support a treatment that has been proposed already by ~lenezes ( 1980). Actually, genetic distances between the two genera a re very small (see Table 3). Nanu;;.a, another monotypic genus, clusters within a strongly supported assemblage (Figs 14, 15), making the genus Vellozia paraphyletic. Again because of small distances to the different Vello<.ia species (Table 3), we suggest merging }lanuz:.a with Vello<.ia. Smith & Ayensu (1976) raised Vello<.ia plicata Mart. to the monotypic Nanu<:,a and dedicated it to Nanuza L. de Menezes who prefers to treat this species as Xeropfryta plicata (Mart.) Sprengel (M enezes, 1980). However, Mello-Silva ( 1991 ) on the basis of stigma and pollen charac ters, opposed its inclusion in either H:ffo.;:ia or Xempfryta. Barbacenia grisea is closely related to Pleurostima riparia and both are nested within other Pleurostima species, making the genus paraphyletic. Pleurostima was included within Barbacenia by Smith & Ayensu ( 1976), but treated as a separate genus by M enezes (1980). P riparia has been recombined by M ello-Silva (1994) as Barbacenia riparia. As both genera contain many species (90 or 20, respectively; Kubitzki , 1998), more species should be studied to corroborate this finding . Character evolution in Pandanales W e have taken the phylogenetic trees as a framework to analyse the distribution of forms of sieve-element plastids. Figure 16 shows a cladogram onto w·hich the plastid forms have been m apped. With respect to V elloziaceae, it is evident that (1 ) the so-called Velloziaccae syndrome (angular crystals together with loosely-packed crystals of any number and Figure 8. Sieve-element plastids of th e Amaryllidaceae. A, ultra thin sectio n or two siC\T elements or Eucharis x grandiflora with three subrorm-P2c.., plastids. B, rorm-P2cf plastid of H insl~ra l"i!l'll eri. C, part or a sieve element of H;·mmocalhf tubiflora with many intac t sie\T-elemcnt plastids and the crys tals of broken plastids. Orthogonal crystals (o) have difterent shapes. D- .\I, subrorm-P2c,, plastids a re prcscm in Eucrasia aurantiara (D ), 1-{ymmocallis tubijiora (G) and Galanthus nivalis (J), form-P2c in Pancratium maritimum (H), Scadoxus multijlorus (I), N erine samiensis (K), Calos/emma purpureum (L) and Boophone disticha (M), and subform-P2c,,f in Rauhia peruviana (E,F). c =cuneate crystals, r =protein filaments. Scale ba rs in A and M =I ~m. B- M to sa m e scale. 120 H.-D. BEHNKE ET AL. Figure 10. Sieve-element plastids of the Bromcliaceae. A-D, subform-P2cd in Ayensua uaipanensis (A, C), Navia phelpsiae (B), and Brocchinia rnicrantha (D). c =cuneate crystals, I= loosely-packed crystals. Scale bars= 1 f.tm. shape and small plastid diameter) figures as a synapomorphy, (2) the addition of protein filaments, and thus transformation into P2catf- or P2capf-subforms, is a synapomorphic character to subgroups of both Xerophyta and vellozia, and (3) other subgroups within the vellozia and Xeroplryta clades (Nanuza, Talbotia, vellozia andina; see also Table l) have lost the loosely-packed crystals, as has Acanthochlamydaceae, the sister group of Velloziaceae. The cladogram (Fig. 16) also suggests that in Velloziaceae the distinction between subform-P2ca1 and -P2cap as well as between -P2catf -and P2cal sieve-element plastids is only a gradual one and that the transitions from/to -P2ca1 to/from -P2cap' respectively -P2catf and -P2capf, are gradual. Furthermore, it supports views proposed earlier (Behnke, 2000) that in subtype-P2 sieveelement plastids the addition of protein filaments, defining the P2cf-(sub)forms, occurred comparatively late. Within the Pandanales clade, form-P2cf sieve-element plastids (not identical to the subform-P2ca11/ found in Velloziaceae) are a synapomorphy of Pandanaceae, Figure II. Sieve-element plastids of Cyclanthaceae (E-H), Pandanaceae (I-L), Pentastemonaceae (D), and Stemonaceae (A-C). Form-P2c plastids with only cuneate crystals in Stichoneuron caudaturn (A), Croornia paucijiora (B), Sternona tubijlora (C), Pentasternona egregia (D), Dicranopygiurn sp. (E), Evodianthusfunifer (F), G)clanthus bipartitus (G), Asplundia spectabilis (H), Sararanga philippinensis (J) and form-P2cf plastids in Pandanus irregularis (I), Pandanus vandermeeschii (K) and Freycinetia luzonensis (L). f =protein filaments. Scale bar in E = I flm. All to same scale. SIE\-E-EI.E:'IIE'\T PL\STII)S .\'\D RBC1. DXL\ 1'\ \TLLO Z I.\CE.\E D E 12 1 122 H.-D. BEHNKE ET AL. Figure 12. The forms and subforms of sieve-element plastids in Velloziaceae. The five subforms containing angular crystals are a synapomorphy of Velloziaceae and may be superimposed on Figure I (to the left of subforms P2c,p and P2cc~), but their connection to the other subforms is not yet settled. while all other taxa contain form-P2c plastids. The presence of subform-P2cci sieveelement plastids in Ayensua and other Bromeliaceae as well as in some Poales (Behnke, 2000) appears as a convergent trait. ACKNOWLEDGEMENTS Wilhelm Barthlott initially directed the senior author's attention to the Velloziaceae. We thank him for permitting us to use the splendid Velloziaceae collection at the Botanical Garden of the University ofBonn and Werner Holler for maintaining this collection in an excellent condition. We are also grateful to the following for giving help to our investigations: David E. Bouffard (Herbaria of Harvard University, Cambridge MA, U.S.A.), Linda G. Chafin (Tallahassee FL, U.S.A.), Pierre L. Ibisch (Science Dept., F.A.N., Santa Cruz, BOL), Bruce A. Sorrie (Southern Pines NC, U.S.A.) and Abraham E. van Wyk (Dept. of Botany, University of Pretoria, RSA) collected live samples in the field. Roselle Andrews (Royal Botanic Gardens, Kew), Josef Bogner (Botanischer Garten, Universitat Mtinchen, D), Inge Dorr (Botanisches Institut, Universitat Kiel, D), Ulrich Hecker (Botanischer Garten, Universitat Mainz, D), Beat Leuenberger (Botanischer Garten, Berlin-Dahlem, D), Wolfram Lobin (Botanischer Garten, Universitat Bonn, D), John Main (Royal Botanic Garden, Edinburgh), Elmar Robbrecht (National Botanic Garden, Meise, B), Antonio Salatino (Inst. Biociencias, Universidade de Sao Paulo, BR) and Hilke Steinecke (Palmengarten, Frankfurt, D) provided samples cultivated in their institutions. Mark W. Chase (Royal Botanic Gardens, Kew) and Melvin R. Duvall (Northern Illinois University DeKalb IL, U.S.A.) furnished rbcL sequences of Acanthochlamys, Acarus and Stemona. Steffi Gold and Brigitte Moraw gave expert help with fixations, ultramicrotome and photographic work. Early support for this study was provided by the Deutsche Forschungsgemeinschaft. SIE\'E-ELE\IE:\T PL\STIDS .\:\"[) RBC1, DAT.\ 1:\ n:LLOZIACE.\L 123 Neighbor Joining Bootstrap Hypoxis glabella r - - - - - Fostere/18 cau/escens - Hypoxidaceae 1 - - - - - - Pepinia coral/ina f - - - - - - Navia phe/psiae Nidularium innocentii Canistrum fosterianum Billbergia reichardii '------ Neorege/ia olens Broccllinia micrantha Ayensua uaipanensis Vriesea f!ieroglyf?hica Guzmama zahnu Prionium serratum Typha latifolia f----------------------Lachnan~escarolin~na . - - - - - - Cyc/anthus bipartitus Asp/undia spectabilis Dicranopyg1um p<}lycepha/um Evodianthus funifer '------- Carludovica P!Jimata Pandanus dubius Freycinetia luzonensis Stichoneuron caudatum Stemona japonica r - - - - - - - - - - Xerophyta schlechteri Barbaceniopsis vaiJiasiana Barbaceniopsis bolwiensis Xerophyt_a eglandulosa Xerophyta pmifolia f----~-----l-- XerophY.fa dasylirioides X dasylirioides var. pectinata Talbot1a elegans Xerophyta villosa XerophyJa retinervis Pleurostima stenophylla Pleurostima riparia Barbacenia grisea f - - - - - - - - - P/eurostima purpurea . - - - - - - Vellozia froesii Vel/ozia glochidea 1 Vellozia glochidea 2 Ve/lozia crassicaulis '------- Vellozia hirsuta 2 Vellozia sp. 2 Vellozia declinans 1--------- Vellozia andina '----------- Nanuza p/icata '------------- Vellozia tubiflora '--------------------- Acanthoch/amys bracteata 100 Pleea tenuifo/1a Tofieldia pusilla Amaryllis belladonna 94 Bowiea vo/ubilis Kniphofia uvaria 77 Alisma plantago-aquatica Potamogeton amplifolius ' - - - - - - - - - - - - - - - - - - - Acorus calamus Bromeliaceae - Prioniaceae Typhaceae Haemodoraceae J Pandanaceae ] Stemonaceae JCyol~th.oo~ Velloziaceae - J - Acanthochlamydaceae Tofieldiaceae Amaryllidaceae Hyacinthaceae Asphodelaceae Ahsmataceae Potamogetonaceae Outgroup Figure 13. Molecular phylo~eny and systematics of the Pandanales inferred from nucleotide sequences of the rbcL gene. The data set was analysed by the J\'eighbor Joinin~ distance method using Kimura 2- parameter as a distance algorithm. The bootstrap cladogram (on 1000 replications) shows a 50% consensus tree which treats all bifurcations with a bootstrap value lower than 50% as unrcsoked. 124 H.-D. BEHNKE ET AL. Maximum Parsimony DISTRIBUTION Strict Australia, New Zealand New World South Africa Northern temperate North America Tropical Asia South Africa/ Madagascar* South America China J South Africa J holarctic Figure 14. Molecular phylogeny and geographic origin of the Pandanales. Analysis with the Maximum Parsimony character state method using a heuristic search. The analysis was terminated when I 000 equally parsimonious trees were found. Results are documented as s strict consensus cladogram. Tree length 956 steps, CI=0.538, Rl=0.777, Hl=0.462. SIE\ E-ELEl\IE:'>T PL\ST!DS ,\0/D RBCL DAT.\ I'> \'ELLOZIACE.\E 125 Maximum Likelihood . - - - - - - Hyp_oxis g_labella Amaryllis belladonna ._______ Bowiea volubilis L-------- Kniphofia uvaria Fosterella caulescens Pepinia coral/ina Nidu/arium innocentii Canistrum fosterianum Billbergia reichardii Neoregelia olens Brocchinia micrantha Ayensua uaipanensis Vriesea f)ieroglyphica Guzmama zahn11 Navia phelpsiae .....---....:.....___;;,___ Prionium serratum ' - - - - - - - Typha latifolia Lachnanthes caro/iniana Cyclanthus biparlitus Asplund1a spectabilis Dicranopyg1um polycephalum Carludovica {)t!lmata Evodianthus funifer Pandanus dubius Freycinetia luzonensis Stichoneuron caudatum Stemona jap_onica Xerophyta schlechteri Xerophyta eulandu/osa Xerophvta pmifolia Xerophyta dasylirioides Xerophyta dasylirioides var. pectinata Talbotia elegans XerophY!a vi/losa Xeroph)'ta retinervis Barbaceniopsis vargasiana Barbaceniopsis boliviensis Pleurostima stenophy/la Pleurostima riparia Barbacenia gnsea P/eurostima purpurea Vellozia froesii Velfozia glochidea 1 Vellozia crassicaulis Vellozia glochidea 2 Ve/lozia nirsuta 2 Ve/lozia sp. 2 Ve/lozia declinans Nanuza plicata Ve/lozia andina Vellozia tubiflora .___ _ Acanthochlamys bracteata Pleea tenuifolia ' - - - - - Tofieldia pusilla L---{=====~===~A~/isma plantago-aquatics Potamogeton amplifolius .___ _ _ _ _ _ Acorus calamus L---[==: - 0.005 substitutions/site Figure 15. Maximum Likelihood phylogram of the Pandanales. A substitution rate of2 and a transition/ transversion ratio of2 were assumed. Base abundance: A=0.272, C=0.196, G=0.245, 1'=0.287_ A single tree was obtained with a score of 7599. Branch lengths are proportional to genetic distances and thus divergence times. H.-D. BEHNKE ET AL. 1'26 Maximum Parsimony Strict ~• • • • • • • • • • * loss of loosely-packed Hypoxis glabella Fostere/18 caulescens Pepinia coral/ina Nidularium innocentii Canistrum fosterianum •••• subform-P2cc/ plastids Billbergia reichardii Neorege/ia olens . E •• • • : : • t Velloziaceae syndrome (angular crystals, loosely-packed crystals, small plastid diameter) • •• • • • ••: • • • Broccflinia micrantha • • • • Ayensua uaipanensis : crystals and of filaments ~~~S,::n'/~e::JI,~fhica : + addition of filaments : • • • • • • • • • • • · Navia phelpsiae Prionium serratum Typha latifolia t - - - - - - - - - - - Lachnanthes caroliniana Cyclanthus biparlitus Asplundia spectabi/is Dicranopyg1um p_()/ycephalum Evodianthus funifer Carludovica pa/mata Pandanus dubius ¢::=l + filaments Freyclnetla luzonensis Sticnoneuron caudatum Stemona japonica .----xe rophvt a sch/echteri ~ Xeropliyta eqlandulosa Xerophyf!l pmifolia ¢::=l +filament s Xemgh dasyllrioides JrioldeS var. pectinata X. v111asa ~ Xerop Xeroph"yta retlnfHVis Talbotia elegans Barbaceniopsis vaiJiasiana Barbaceniopsis bo/IViensis _..----- P/eurostima stenophylla P/eurostima riparia Barbacenia grisea . . . . . .•Pieurostimapu~urea . . . . . . . Vellozia froesii Vellozla glochidea 1 Vellozla crassicaulls ¢::=l + filaments Vellozia glochldea 2 Vellozla hlrsuta 2 Vellozia sp. 2 Vellozia declinans Vellozia tubiflora 1 - - - - - Vellozia andina .______ Nanuza plicata L-------A canthoc hlamys bracteata Amaryllis belladonna Bowiea volubilis Kniphofia uvaria Pleea tenuifolia Tofieldia pusil/a Alisma p/antago-aquatica Potamogeton amplifolius L......- ------- ---Aco rus calamus J t J *......... mapped Figure 16. Character state evolution in Velloziaceae . Forms of sieve-clemen t plastids were sieveonto the strict MP consensus tree. The Velloziaceae clade which is characterize d by the specific highlighted are filaments additional with subgroups lines, bold in element plastid syndrome is marked drawn and marked by an arrow. Branches leading to bromeliacea n taxa with subtype-P2c d plastids are as dashed lines. SIE\'E-ELL\IE'\T PIASTIDS .\ND RBCL DAT.\ I:\ \'ELLOZL-\CE.\E 127 REFERENCES APG (The Angiosperm Phylogeny Group). 1998. An ordinal classification for the families of flowering plants. Annals of the .\1issouri Botanical Garden 85: 531 553. Ayensu ES. 1973. Phytogeography and b·olution of the Velloziaceae. In: :\1eggers BJ, Ayensu ES, Duckworth \\'D, eds. Tropicalforest ero~yslems in Africa and South Amenca: A romjJaratiz•e revieze \\'ashington: Smithsonian Institution Press, I 05 119. Baker JG. 1875. Synopsis of the African species of Xerophyta. Journal ofBotan_y 13: 231-236. Baker JG. 1898. Amaryllidcat'. In: Thisl"lton-Dyer WT, ed. D. 0/im~> Flora of tropical Ajrira, Vol. 7, 376-413. London. Behnke H-D. 1968. Zum Feinbau der Siehrbhren-Plastiden bei l\1onokotvlen .. \atum·is.1m1chajien 55: 140-141. Behnke H-D. 1969. Die Siehrohren-Plastiden der Monokotyledonen. Vergkichendc Untersuchungen tiber Feinbau und Vcrbrcitung eines charakteristischen Plastidentyps. Plan/a 84: 174 184. Behnke H-D. 1971. Sieve-tube plastids of Magnoliidae and Ranunculidae in relation to systematics. Taxon 20: 723 730. Behnke H-D. 1972. Siew-tuht' plastids in relation to angiosperm systematics-- an attempt towards a classification by ultrastructural analysis. Botanical Revieu· 38: 15.1-197. Behnke H-D. 1975. P-type sien:-element plastids: a correlative ultrastructural and ultrahistochemical study on the diversity and uniformity of a new reliable character in seed plant svstcmaties. ProtofJlasma 83: 91- I 0 I. Behnke H-D. 1977. Transmission electron microscopy and systematics of flowering plants. Plant Systematics and Aimlution, Supplenzmt I: 15.1 -I 78. Behnke H-D. 198Ia. Sieve-element characters. "'Vordic Journal ofBotany 1: 381-400. Behnke H-D. 1981b. Siebelement-Piastiden, Phloem-Protein und Evolution dcr B!Utenpflanzen: II. Monokotyledonen. Berirhte der Deutsrhen Botanischen Gesell.1chaji 94: 64 7-662. Behnke H-D. 1989. Structure of the phloem. In: Baker DA, Milburn.JA, eds. Transport qfPhotoas.llmilates. Harlow: Longman, 79-137. Behnke H-D. 1991. Distribution and evolution of forms and types of sie\'C-element plastids in the dicotyledons. Aliso 13: 167 182. Behnke H-D. 1994. Sieve-element plastids, nuclear crystals and phloem proteins in the Zin~iberalcs. Botanica Acta 197: 3-1 L Behnke H-D. 1995. P-tvpe siew-clement plastids and the systematics of the Arall"s (sensu Cronquist 1988)- with S-type plastids in Pistia. Plant ,~)·stematics and El'Olution 195: 87-119. Behnke H-D. 2000. Forms and sizes of sieve-element plastids and evolution of the Monocotyledons. In: \'\'ilson KL, :Vforrison DA, eds. A1onorots---5ystematics and evolution. Vol. I of Proccedings of the Second International Conference on the Comparative Biology of the :Vfonocots, Sydney, September 1998. Melbourne: CSIRO, 163-188. Bentham G, Hooker JD. 1883. Genera Plantarum, Vol. 3,2. London. Chase MW, Soltis DE, Olmstead RG, Morgan D, Les DH, Mishler BD, Duvall MR, Price RA, Hills HG, Qiu Y-L, Kron KA, RettigJH, Conti E, Palmer JD, ManhartJR, Sytsma KJ, Michaels HJ, Kress WJ, Karol KG, Clark DW, Hedn!n M, Gaut BS,Jansen RK, Kim K-J, Wimpee CF, SmithJF, Furnier GR, Strauss SH, Xiang Q-Y, Plunkett GM, Soltis PS, Swensen SM, Williams SE, Gadek PA, Quinn CJ, Eguiarte LE, Golenberg E, Learn GH Jr, Graham SW, Barrett SCH, Dayanandan S, Albert VA. 1993. Phylogenetics of seed plants: an analysis of nucleotide sequences from the plastid gene rbrL. Annals qf the .Hissouri Botanical Garden 80: 528 580. Chase MW, Duvall MR, Hills HG, ConranJG, Cox AV, Eguiarte LE, Hartwell], Fay MF, Caddick LR, Cameron KM, HootS. 1995. Molecular phylogenetics ofLilianae. In: Rudall PJ, Cribb PJ, Cutler DF, Humphries CJ, cds. ,\1onocotyledons: 5fystematics and Emlution. Kew: Royal Botanic Gardens, I 09-13 7. Cronquist A. 1968. The evolution and classification offlowering plants. London: :'1/clson. Cronquist A. 1981. An intq;rated ~ystem of classification offlowering plants. New York: Columbia {j nivcrsity Press. Cronshaw J, Sabnis DD. 1990. Phloem proteins. In: Behnke H-D, Sjolund RD, eds. Sin·e elements. Comparatiz•e structure, induction and development. Berlin: Springer, 257-283. Dahlgren G. 1989. An updated angiosperm classification. Botanical Journal of the Linnean Society 100: 197-203. 128 H.-D. BEHNKE ET AL. Dahlgren R. 1975. A system of classification of the angiosperms to be used to demonstrate the distribution of characters. Botaniska Notiser 128: 119-14 7. Dahlgren RMT. 1980. A revised system of classification of the angiosperms. Botanical Journal qf the Linnean Society 80: 91-124. Dahlgren RMT, Clifford HT. 1982. 77ze monocotyledons: A comparative study. Botanical Systematics, Vol. 2. An Occasional Series of Monographs (ed. by VH Heywood). London: Academic Press. Dahlgren R, Rasmussen FN. 1983. Monocotyledon evolution. Characters and phylogenetic estimation. Evolutionary Biology 16: 255-395. Don D. 1830. Observations on the affinities of vellozia, Barbacenia, Glaux, Aucuba, Viviania, Deutzia, and of a new genus of the order Rubiaceae. Edinburgh ]Yew Philosophical Journal 8: 164-172. DoylelJ, DoyleJL. 1990. Isolation of plant DNA from fresh tissue. Focus 12: 13-15. Duvall MR, Clegg MT, Chase MW, Clark WD, Kress WJ, Hills HG, Eguiarte LE, Smith JF, Gant BS, Zimmer E. 1993. Phylogenetic hypotheses for the monocotyledons constructed from rbcL sequence data. Annals qfthe lvfissouri Botanical Garden 80: 607-619. Endlicher S. 1841. Enchiridion Botanicum. Leipzig & Wien. Evert RF. 1990. Dicotyledons. In: Behnke H-D, Sjolund RD, eds. Sieve elements. Comparative structure, induction and development. Berlin: Springer, 103-137. Fay MF, Chase MW. 1996. Resurrection of Themidaccae for the Brodiaea alliance, and recircumscription of Alliaceae, Amaryllidaceae and Agapanthoideae. Taxon 45: 441-451. Froelich D, Barthlott W. 1988. Mikromorphologie der epicuticularen Wachse und das System der Monokotylen. Tropische und subtropische Pflanzenwelt 63: 279-409. Gilmartin AJ, Brown GK. 1987. Bromeliales, related monocots, and resolution of relationships among Bromeliaceae subfamilies. Systematic Botany 12: 493-500. Gmelin JF. 1796. Camli a Linne, Systema vegetabilium. Lyon. Huber H. 1969. Die Samenmerkmale und Verwandtschaftsverhaltnisse der Liliifloren. Afitteilungen der Botanischen Staatssammlungen Munchen 8: 219-538. Huber H. 1977. The treatment of the monocotyledons in an evolutionary system of classification. Plant Systematics and Evolution, Supplement 1: 285-296. Huber H. 1991. Angiospermen. Leiifaden durch die Ordnungen und Familien der Bedecktsamer. Stuttgart, New York: Fischer. Hutchinson]. 1934. 77zejamilies qfjlowering plants. II. ,V!onocotyledons. London: Macmillan. Ibisch PL, Nowicki C, Vasquez R, Koch K. (in press). Taxonomy and biology of Andean Velloziaceae: vellozia andina sp. nov. and notes on Barbaceniopsis (including Barbaceniopsis castillonii comb. nov.). Systematic Botany. Jussieu AL. 1789. Genera plantarum secundum ordines naturales disposita. Paris. Kao PC. 1989. Acanthochlamydaceae-a new monocotyledon family. In: Kao PC, Tan Z-M, eds. Flora Sichuanica, Vol. 9, 483-507, pl. I-IX. Kao PC, Kubitzki K. 1998. Acanthochlamydaceae. In: Kubitzki K, ed. 77ze fomilies and genera qf vascular plants, Vol. 3, 55-53. Berlin: Springer. Kubitzki K. 1998. Velloziaceae. In: Kubitzki K, ed. 77zefamilies and genera qfvascular plants, Vol. 3, 459-467. Berlin: Springer. Kubitzki K, Rudall PJ, Chase MW. 1998. Systematics and Evolution. In: Kubitzki K, ed. 77ze families and genera qfvascular plants. Vol. 3, 23-33. Berlin: Springer. Kunth CS. 1822. Synopsis Plantarum, quas, in itinere ad plagam aequinoctialem orbis novi.. collegerunt Al. de Humboldt et Am. Bonpland. Vol. 1. Paris. Lamarck M. 1808. Encyclopidie Methodique. Botanique. Paris. Lewis LA, Mishler BD, Vilgalys R. 1997. Phylogenetic relationships of the liverworts (Hepaticae), a basal embryophyte lineage, inferred from nucleotide sequence data of the chloroplast gene rbcL. Molecular Phylogenetics and Evolution 7: 377-393. Lindley J. 1830. An introduction to the natural ~stem qf bota'!J. London. Maguire B, WurdacklJ. 1957. Botany of the Phelp's Venezuelan Guayana expeditions-H. UaipanTepui, Estado Bolivar. Memoirs qf the }lew York Botanical Garden 9: 4 77-484. Martius CFP. 1823. Nova Genera et Species Plantarum Brasiliensium, Vol l. Miinchen. Melchior H (Ed). 1964. A. Engler's Syllabus der FJlanzenfamilien. Band II, 12th ed. Berlin: Borntrager. Mello-Silva R de. 1990. Morphological and anatomical differentiation of vellozia hirsuta populations (V elloziaceae). Plant Systematics and Evolution 173: 197-208. Mello-Silva R de. 1991. The infra-familial taxonomic circumscription of the Velloziaceae: A historical and critical analysis. Taxon 40: 45-51. .>;11-:H:-ELE.\11:.\T PL\ST!l)S .\:\D RBCL D.\T.\ I:\ q:LU l/1.\( :E.\1: Mello-Silva R de. 1994 . .\ m·\\· species. new sYnonyms. and a nc\\· combination uz Brazilian Velloziaceac .. \in·on 4: :!.71 '275. Me1o NF de, Guerra M, Benko-Iseppon AM, Menezes NL de. 1997. Cnogcnctics and cytotaxonmn~ ofVclloziaccae. Plant Sntematir.l and Etolution 204: 2:17-273. Menezes NL de. 1980. En1lution in \'dloziaccae, \l·ith special reference to .mdroccial characters. In: Brickell (:D. Cutler DF. Cregan .\1. eels. Pflaloid IIIOIIO!'Oir/edonJ. 117 13B. Linne an Society Symposium Series :\'o B. Menezes NL de, Mello-Si1va R de, Mayo SJ. 1994 . .-\cladistic ;mah-sis of the \'clloziacc;w. Arll' Bulletin 49: 71 'l2. · Pax F. 1887. \'clloziaccae. In: En?;lcr :\. Prantl K. eck Du• natlirlirhen lJian~enjiunilim. \'oL 2 1:'1): 125 12 7. Leipzig. Pax F. 1930. \'clloziaccac. In: Engler A. eel. Dir natiirlirhm Pjlan.:mjrmzzlim. 2 .. \uti.. \'ol. I.'Ja: -HI +:H. Leipzig: Engelmann. J, Bruijn AY de. 1998 . .\natomical and molecular systematics of.\stcliaceac and Hypoxidaceac. Botarzira/]oumal ofthe Lin11ea11 Socit!r 127: I -12. Savard L, Peng Li, Strauss SH, Chase MW, Michaud M, Bousquet]. 1994. Chloroplast ancl nuclear gene sequences indicate late Pcnn.wh·anian time for the last common ancestor of extant seed plants. l'rocmling' ufthe .\ationa/ Academr u[Scinzm. [·.s .. L 91: 5163 ~Jl61. Schultes JA, Schultes JH. 1829. S;ntema T~gctabihum. \ 'oL 7 l '· Stuttgart. Seubert M. 1847. \'cllosicae. In: .\Ianius CFP. Eichler.\. ccls. F!orrz bra,i/ien,z,. } I . 6.'i fH. :\Iunchen, \Vien, Leipzig. Seubert M. 1873. \'ellosicac. In: \\'arming E. cd. ,~)'mbolae adjlormn Brrnihae centmlil rr~gna.,andam. \'oL 13, 341 :-163. Kjohcnhan1. Smith JF, Kress WJ, Zimmer EA. 1993. PhYlogenetic anahsis of the Zingibcraks based on rbcL sequences. Anna/.1 oj the Jfi.,_,ouri Botmzimi Garden 80: 620 6'.-10. Smith LB. 1969. Bromcliaccac . .\Jemoirs rltlze ,\ezc iork Botaniml Gmden 18: 29 :>2. Smith LB, Ayensu ES. 1976 . . \ rt'\·ision oL\mcrican \'elloziaccac. Smit!l.lorzian Contributioll\ in Botany Rudall PJ, Chase MW, Cutler DF, Rushy 30: 1-172. Sprengel C. 1827 . .~·v.,trma lr,getabilium. I Gth eel. Gottingac. Swofford DL. 1998. HlCP" ·1.0. Plylogrnetic ana(rsis using jilll.limonr. Sunderland .:\1.\.: Sinauer Publications. Takhtajan A. 1959. Die L:,·olution der Angio.,jJmnen. Jcna: \'EB CustaY FischcT. Takhtajan A. 1969. Nozuring j!lrznts. Or~gin and dispersal. Edinburgh: OlinT and BonL Takhtajan A. 1973. Erolutiun wzd Ausbreitung der BliitmjJflanc:en. Stuttgart: Fischer. Takhtajan A. 1987. ,~)'.llmza Jlagnoliop!!vlorwn. Leningrad: :\'auka [in Russian]. Takhtajan A. 1997. Dirersilr and classijimtion ojflou.ering plan/.1. :\'c11 York: Columbia l'ninTsitY Press. Thorne RF. 1992a. Classification and geographY of the ftm1-cring plants. Botanim/ Reriew 58: 2:Z:) -3+8. Thorne RF. 1992b. Cpdate of the 1992 Thorne Classification of the ~-\ngiospermae in Botanical Review. 22 December I 'J':J2. circulated by RF Thorne. ~rstemati_,,fzm Botanik. 3 .. umgearb. Wettstein R. 1924. Handhurfz drr ~-\uHagc. Leipzig· & \\'iciL
© Copyright 2026 Paperzz