Table S1: Reactions modified in the secondary mechanisms of toluene. Reactions A n Ea References n° 2.5 36.3 5.65 3.2 15.2 -5.13 estimateda estimatedb estimatedc estimatedd estimatede estimatedf (24) (25) (26) (27) (28) (29) 1.43 2.88 0.0 5.65 3.2 5.9 estimatedc estimatedd estimatedg (30) (31) (32) Added submechanism for phenylbenzyl ether (C6H5OCH2C6H5) C6H5CH2O+toluene=C6H5OCH2C6H5+CH3 7.8x102 2.88 C6H5O+benzyl=C6H5OCH2C6H5 1.0x1011 0.0 C6H5OCH2C6H5+H=C6H5CH2O+C6H6 8.5x1012 0.0 C6H5OCH2C6H5+OH=>C6H5+C6H5CHO+H2O 3.5x109 1.0 C6H5OCH2C6H5+H=>C6H5+C6H5CHO+H2 1.95x106 2.37 C6H5OCH2C6H5+O=>C6H5+C6H5CHO+OH 4.2x1011 0.0 3.22 0.00 5.81 0.87 5.81 0.00 estimatedd estimatedi Estimatedh estimatedj estimatedc estimatedj (33) (34) (35) (36) (37) (38) Added submechanism for methylphenylbenzylether (TolOCH2C6H5) OC6H4CH3+benzyl=TolOCH2C6H5 1.0x1011 0.0 0.00 C6H4CH3+C6H5CH2O=TolOCH2C6H5 1.0x1011 0.0 0.00 TolOCH2C6H5+H=toluene+C6H5CH2O 8.5x1012 0.0 5.81 TolOCH2C6H5+OH=>C6H4CH3+C6H5CHO+H2O 8.7x1011 1.0 0.87 TolOCH2C6H5+H=>C6H4CH3+C6H5CHO+H2 4.9x106 2.37 5.81 TolOCH2C6H5+O=>C6H4CH3+C6H5CHO+OH 1.0x1012 0.0 0.00 estimatedi estimatedi Estimatedh estimatedj estimatedc estimatedj (39) (40) (41) (42) (44) (44) Added submechanism for ethylphenylphenol (PhenolC2H4bz) bibenzyl+OH=PhenolC2H4bz+H 1.7x1013 0.0 C6H4OH+C8H9-1=PhenolC2H4bz 1.0x1011 0.0 HOC6H4CH2+benzyl=PhenolC2H4bz 1.0x1011 0.0 PhenolC2H4bz+OH=>styrene+C6H5O+H2O 8.7x109 1.0 PhenolC2H4bz+H=>styrene+C6H5O+H2 4.9x106 2.37 PhenolC2H4bz+O=>styrene+C6H5O+OH 1.0x1012 0.0 10.6 0.00 0.00 0.87 5.81 0.0 estimatedk estimatedi estimatedi estimatedj estimatedc estimatedj (45) (46) (47) (48) (49) (50) Added submechanism for 1-butenylbenzene (C6H5C4H7) benzyl+C3H5=C6H5C4H7 5.0x1012 C6H5C4H7+OH=>benzyl+pC3H4+H2O 5.2x109 C6H5C4H7+H=>benzyl+pC3H4+H2 2.9x106 C6H5C4H7+O=>benzyl+pC3H4+OH 6.3x1011 C6H5C4H7+OH=>benzyl+pC3H4+H2O 3.0x106 C6H5C4H7+H=>benzyl+pC3H4+H2 5.4x104 C6H5C4H7+O=>benzyl+pC3H4+OH 8.8x1010 0.00 0.87 5.81 0.0 -1.52 -1.9 3.25 estimatedi estimatedj estimatedc estimatedj estimatede estimatede estimatede (51) (52) (53) (54) (55) (56) (57) Reactions modified in the secondary mechanism toluene C6H5CHO+CH3=C6H5CO+CH4 2.0x10-6 5.6 C6H5CHOH=C6H5CHO+H 2.0x1013 0.0 bibenzyl+H=C6H6+C8H9-1 5.6x108 1.43 bibenzyl+OH=C6H5OH+C8H9-1 7.8x102 2.88 C14H13+O2= stilbene+HO2 1.6x1012 0.00 C14H13+OOH=>R2OH+C6H5CHO+benzyl 8.2x104 2.20 C14H13 is C6H5•CHCH2C6H5 Added submechanism for stilbene (C6H5CHCHC6H5) stilbene+H=>C6H6+C2H2+C6H5 5.7x108 stilbene+OH=C6H5OH+C6H5C2H2 7.8x102 stilbene+OH=C6H5CHO+benzyl 1.0x1013 0.00 1.0 2.37 0.0 2.0 2.5 0.7 Notes: The rate constants are given at 1 atm (k= ATnexp(-Ea/RT)) in cm3, mol, s, kcal units. a: Rate constant taken equal to that proposed by Baulch et al. [32] for acetaldehyde. b: -factor taken equal to that proposed Heyberger et al. [33] and activation energy estimated using the Evans-Polyany correlation proposed by Sirjean et al. [35] for -scissions of alkyl radicals. c: Rate constant taken equal to that theoretically calculated with CBS-QB3 method with Gausssian03 [16] by Tian et al. [21], with when needed A-factor multiplied by a factor taking into account the number abstractable H atoms. d: Rate constant taken equal to that of the similar reaction of toluene proposed by Seta et al. [34]. e: Rate constant taken equal to that proposed by Touchard et al. [35] in the case of allylic radicals. f: Rate constant taken equal to that used for the similar reaction of benzyl radicals [25]. g: Rate constant taken equal to that of the similar reaction for ethylene proposed by Baulch et al. [32]. h: Rate constant taken equal to that proposed by Manion and Louw [36] for the same reaction for phenol. i: Rate constants of unimolecular initiations or combinations calculated using software KINGAS [29]. j: Rate constant taken equal to that of the similar reaction in the case of toluene [19] with A-factor multiplied by a factor taking into account the number abstractable H atoms. k: Rate constant taken equal to that of the similar reaction in the case of toluene [19] . 1 Validation of the mechanism on benzene and toluene data (JSR): ► Benzene (experimental data from Da Costa et al. [20]) Operating conditions: (1) T = 923 K Ф = 1.9 x benzene = 0.04 τ = 1.6 – 8.8 s P = 800 Torr (2) T = 923 K Ф = 3.6 x benzene = 0.045 τ = 1.6 – 8.8 s P = 800 Torr (1) At an equivalence ratio of 1.9 -3 30 20 10 0 0.15 0.10 0.05 -3 2 4 0 4 6 Residence time (s) Mole Fraction 15 10 5 0 20 2 4 6 Residence time (s) 8 -3 0.8 0.4 Ethylene+Acetylene 0.8 0.4 0.0 2 4x10 Propyne 40 1.2x10 Methane 8 -6 Carbon Monoxide 60 8 0.0 2 Mole Fraction 4 6 Residence time (s) -3 1.2x10 Carbon Dioxide -3 0 8 Mole Fraction Mole Fraction 4 6 Residence time (s) 8 20x10 80x10 0.00 2 12x10 Oxygen Mole Fraction Mole Fraction 40 0.20 Mole Fraction Benzene Mole Fraction 50x10 4 6 Residence time (s) 8 2 4 6 Residence time (s) 8 -3 Phenol 3 2 1 0 2 4 6 Residence time (s) 8 2 4 6 Residence time (s) 8 Figure 1: Oxidation of benzene in a Jet-Stirred Reactor (T = 923K; φ = 1.9; P = 800 Torr; τ = 1.6-8.8; x benzene = 0.04). Points ● are experiments [20], lines are simulations with the mechanism presented in the attached paper. 2 (2) At an equivalence ratio of 3.6 Oxygen Mole Fraction Mole Fraction 80 50x10 60 40 20 -3 40 30 20 10 0 0 4 2 0 -6 0.4 12 8 4 0 2 4 6 Residence time (s) 8 Ethylene+Acetylene 0.8 0.4 0.0 0 4x10 Propyne 10 -3 0.8 8 Mole Fraction Mole Fraction 4 6 Residence time (s) 20 1.2x10 Methane 0.0 2 Carbon Monoxide 30 8 -3 6 16x10 2 4 6 Residence time (s) 1.2x10 Carbon Dioxide -3 0 8 Mole Fraction Mole Fraction 2 4 6 Residence time (s) -3 8 40x10 0 0 10x10 Benzene Mole Fraction -3 Mole Fraction 100x10 2 4 6 Residence time (s) 8 0 2 4 6 Residence time (s) 8 -3 Phenol 3 2 1 0 0 2 4 6 Residence time (s) 8 0 2 4 6 Residence time (s) 8 Figure 2: Oxidation of benzene in a Jet-Stirred Reactor (T = 923K; φ = 3.6; P = 800 Torr; τ = 1.6-8.8; x benzene = 0.045). Points ● are experiments [20], lines are simulations with the mechanism presented in the attached paper. 3 ► Toluene (experimental data from Bounaceur et al. [19]) Operating conditions: Ф = 0.9 -3 0.20 Toluene Mole Fraction 15 10 5 0 4 6 8 10 Residence time (s) 0.10 0.05 -3 10 5 40 20 0 2 4 6 8 10 Residence time (s) 1.5 1.0 0.5 12 -3 1.6x10 0.8 0.4 2 4 6 8 10 Residence time (s) -6 0 40 20 0 2 4 6 8 10 Residence time (s) 12 -6 80x10 Mole Fraction Benzaldehyde 600 400 200 0 2 4 6 8 10 Residence time (s) 2 4 6 8 10 Residence time (s) 12 -6 Ethylbenzene 120 80 40 12 -6 0 -3 1.6x10 Benzylalcool 60 40 20 0 0 2 4 6 8 10 Residence time (s) 0 0 Mole Fraction 0 Acetylene+Ethylene 0.4 160x10 Styrene 60 0.0 12 0.8 12 80 Mole Fraction 1.2 4 6 8 10 Residence time (s) 0.0 0 100x10 Benzene 2 -3 1.2x10 Methane 0.0 0 Carbon Monoxide 60 12 Mole Fraction 15 0 Mole Fraction 2 4 6 8 10 Residence time (s) -3 2.0x10 Carbon Dioxide 20 800x10 80x10 0 0 12 Mole Fraction Mole Fraction 2 -3 Mole Fraction 0.15 P = 800Torr 0.00 0 25x10 Oxygen Mole Fraction Mole Fraction 20x10 xtoluene = 0.017 τ = 2.5 – 12 s Mole Fraction T = 923 K 2 4 6 8 10 Residence time (s) 12 Phenol 1.2 0.8 0.4 0.0 12 0 2 4 6 8 10 Residence time (s) 12 0 2 4 6 8 10 Residence time (s) 12 -3 Mole Fraction 1.2x10 Bibenzyl 0.8 0.4 0.0 0 2 4 6 8 10 Residence time (s) 12 Figure 4: Oxidation of toluene in a Jet-Stirred Reactor (T = 923K; φ = 0.9; P = 800 Torr; τ = 2.5-12; x toluene = 0.017). Points ● are experiments [19] mechanism presented in the attached paper. 4 REFERENCES References until [31] are those given in the main text. [32] Baulch D.L., Bowman C.T., Cobos C.J., Cox R.A., Just T., Kerr J.A., Pilling M.J., Stocker D., Troe J., Tsang W., Walker R.W., Warnatz J., J. Phys. Chem. Ref. Data, 34 (2005) 757-1397. [33] B. Heyberger, N. Belmekki, V. Conraud, P.A. Glaude, R. Fournet, F. Battin-Leclerc, Int. J. Chem. Kin., 36 (2002) 666-677. [34] T. Seta, M. Nakajima, A. Miyoshi, J. Phys. Chem. A 110 (2006) 5081–5090. [35] S. Touchard, R. Fournet, P.A. Glaude, V. Warth, F. Battin-Leclerc, G. Vanhove, M. Ribaucour, R. Minetti, Proc. Combust. Inst. 30 (2005) 1073-1081. [36] J.A. Manion, R. Louw, J. Phys. Chem. 94 (1990) 4127- 4134. 5
© Copyright 2026 Paperzz