Table S1: Reactions modified in the secondary mechanisms of

Table S1: Reactions modified in the secondary mechanisms of toluene.
Reactions
A
n
Ea
References
n°
2.5
36.3
5.65
3.2
15.2
-5.13
estimateda
estimatedb
estimatedc
estimatedd
estimatede
estimatedf
(24)
(25)
(26)
(27)
(28)
(29)
1.43
2.88
0.0
5.65
3.2
5.9
estimatedc
estimatedd
estimatedg
(30)
(31)
(32)
Added submechanism for phenylbenzyl ether (C6H5OCH2C6H5)
C6H5CH2O+toluene=C6H5OCH2C6H5+CH3
7.8x102
2.88
C6H5O+benzyl=C6H5OCH2C6H5
1.0x1011
0.0
C6H5OCH2C6H5+H=C6H5CH2O+C6H6
8.5x1012
0.0
C6H5OCH2C6H5+OH=>C6H5+C6H5CHO+H2O
3.5x109
1.0
C6H5OCH2C6H5+H=>C6H5+C6H5CHO+H2
1.95x106
2.37
C6H5OCH2C6H5+O=>C6H5+C6H5CHO+OH
4.2x1011
0.0
3.22
0.00
5.81
0.87
5.81
0.00
estimatedd
estimatedi
Estimatedh
estimatedj
estimatedc
estimatedj
(33)
(34)
(35)
(36)
(37)
(38)
Added submechanism for methylphenylbenzylether (TolOCH2C6H5)
OC6H4CH3+benzyl=TolOCH2C6H5
1.0x1011
0.0
0.00
C6H4CH3+C6H5CH2O=TolOCH2C6H5
1.0x1011
0.0
0.00
TolOCH2C6H5+H=toluene+C6H5CH2O
8.5x1012
0.0
5.81
TolOCH2C6H5+OH=>C6H4CH3+C6H5CHO+H2O
8.7x1011
1.0
0.87
TolOCH2C6H5+H=>C6H4CH3+C6H5CHO+H2
4.9x106
2.37
5.81
TolOCH2C6H5+O=>C6H4CH3+C6H5CHO+OH
1.0x1012
0.0
0.00
estimatedi
estimatedi
Estimatedh
estimatedj
estimatedc
estimatedj
(39)
(40)
(41)
(42)
(44)
(44)
Added submechanism for ethylphenylphenol (PhenolC2H4bz)
bibenzyl+OH=PhenolC2H4bz+H
1.7x1013
0.0
C6H4OH+C8H9-1=PhenolC2H4bz
1.0x1011
0.0
HOC6H4CH2+benzyl=PhenolC2H4bz
1.0x1011
0.0
PhenolC2H4bz+OH=>styrene+C6H5O+H2O
8.7x109
1.0
PhenolC2H4bz+H=>styrene+C6H5O+H2
4.9x106
2.37
PhenolC2H4bz+O=>styrene+C6H5O+OH
1.0x1012
0.0
10.6
0.00
0.00
0.87
5.81
0.0
estimatedk
estimatedi
estimatedi
estimatedj
estimatedc
estimatedj
(45)
(46)
(47)
(48)
(49)
(50)
Added submechanism for 1-butenylbenzene (C6H5C4H7)
benzyl+C3H5=C6H5C4H7
5.0x1012
C6H5C4H7+OH=>benzyl+pC3H4+H2O
5.2x109
C6H5C4H7+H=>benzyl+pC3H4+H2
2.9x106
C6H5C4H7+O=>benzyl+pC3H4+OH
6.3x1011
C6H5C4H7+OH=>benzyl+pC3H4+H2O
3.0x106
C6H5C4H7+H=>benzyl+pC3H4+H2
5.4x104
C6H5C4H7+O=>benzyl+pC3H4+OH
8.8x1010
0.00
0.87
5.81
0.0
-1.52
-1.9
3.25
estimatedi
estimatedj
estimatedc
estimatedj
estimatede
estimatede
estimatede
(51)
(52)
(53)
(54)
(55)
(56)
(57)
Reactions modified in the secondary mechanism toluene
C6H5CHO+CH3=C6H5CO+CH4
2.0x10-6
5.6
C6H5CHOH=C6H5CHO+H
2.0x1013
0.0
bibenzyl+H=C6H6+C8H9-1
5.6x108
1.43
bibenzyl+OH=C6H5OH+C8H9-1
7.8x102
2.88
C14H13+O2= stilbene+HO2
1.6x1012
0.00
C14H13+OOH=>R2OH+C6H5CHO+benzyl
8.2x104
2.20
C14H13 is C6H5•CHCH2C6H5
Added submechanism for stilbene (C6H5CHCHC6H5)
stilbene+H=>C6H6+C2H2+C6H5
5.7x108
stilbene+OH=C6H5OH+C6H5C2H2
7.8x102
stilbene+OH=C6H5CHO+benzyl
1.0x1013
0.00
1.0
2.37
0.0
2.0
2.5
0.7
Notes: The rate constants are given at 1 atm (k= ATnexp(-Ea/RT)) in cm3, mol, s, kcal units.
a: Rate constant taken equal to that proposed by Baulch et al. [32] for acetaldehyde.
b:
-factor taken equal to that proposed Heyberger et al. [33] and activation energy estimated using the Evans-Polyany correlation
proposed by Sirjean et al. [35] for -scissions of alkyl radicals.
c: Rate constant taken equal to that theoretically calculated with CBS-QB3 method with Gausssian03 [16] by Tian et al. [21], with when
needed A-factor multiplied by a factor taking into account the number abstractable H atoms.
d: Rate constant taken equal to that of the similar reaction of toluene proposed by Seta et al. [34].
e: Rate constant taken equal to that proposed by Touchard et al. [35] in the case of allylic radicals.
f: Rate constant taken equal to that used for the similar reaction of benzyl radicals [25].
g: Rate constant taken equal to that of the similar reaction for ethylene proposed by Baulch et al. [32].
h: Rate constant taken equal to that proposed by Manion and Louw [36] for the same reaction for phenol.
i: Rate constants of unimolecular initiations or combinations calculated using software KINGAS [29].
j: Rate constant taken equal to that of the similar reaction in the case of toluene [19] with A-factor multiplied by a factor taking into
account the number abstractable H atoms.
k: Rate constant taken equal to that of the similar reaction in the case of toluene [19] .
1
Validation of the mechanism on benzene and toluene data (JSR):
► Benzene (experimental data from Da Costa et al. [20])
Operating conditions:
(1)
T = 923 K
Ф = 1.9
x benzene = 0.04
τ = 1.6 – 8.8 s
P = 800 Torr
(2)
T = 923 K
Ф = 3.6
x benzene = 0.045
τ = 1.6 – 8.8 s
P = 800 Torr
(1) At an equivalence ratio of 1.9
-3
30
20
10
0
0.15
0.10
0.05
-3
2
4
0
4
6
Residence time (s)
Mole Fraction
15
10
5
0
20
2
4
6
Residence time (s)
8
-3
0.8
0.4
Ethylene+Acetylene
0.8
0.4
0.0
2
4x10
Propyne
40
1.2x10
Methane
8
-6
Carbon Monoxide
60
8
0.0
2
Mole Fraction
4
6
Residence time (s)
-3
1.2x10
Carbon Dioxide
-3
0
8
Mole Fraction
Mole Fraction
4
6
Residence time (s)
8
20x10
80x10
0.00
2
12x10
Oxygen
Mole Fraction
Mole Fraction
40
0.20
Mole Fraction
Benzene
Mole Fraction
50x10
4
6
Residence time (s)
8
2
4
6
Residence time (s)
8
-3
Phenol
3
2
1
0
2
4
6
Residence time (s)
8
2
4
6
Residence time (s)
8
Figure 1: Oxidation of benzene in a Jet-Stirred Reactor (T = 923K; φ = 1.9; P = 800 Torr;
τ = 1.6-8.8; x benzene = 0.04). Points ● are experiments [20], lines are simulations with the
mechanism presented in the attached paper.
2
(2) At an equivalence ratio of 3.6
Oxygen
Mole Fraction
Mole Fraction
80
50x10
60
40
20
-3
40
30
20
10
0
0
4
2
0
-6
0.4
12
8
4
0
2
4
6
Residence time (s)
8
Ethylene+Acetylene
0.8
0.4
0.0
0
4x10
Propyne
10
-3
0.8
8
Mole Fraction
Mole Fraction
4
6
Residence time (s)
20
1.2x10
Methane
0.0
2
Carbon Monoxide
30
8
-3
6
16x10
2
4
6
Residence time (s)
1.2x10
Carbon Dioxide
-3
0
8
Mole Fraction
Mole Fraction
2
4
6
Residence time (s)
-3
8
40x10
0
0
10x10
Benzene
Mole Fraction
-3
Mole Fraction
100x10
2
4
6
Residence time (s)
8
0
2
4
6
Residence time (s)
8
-3
Phenol
3
2
1
0
0
2
4
6
Residence time (s)
8
0
2
4
6
Residence time (s)
8
Figure 2: Oxidation of benzene in a Jet-Stirred Reactor (T = 923K; φ = 3.6; P = 800 Torr;
τ = 1.6-8.8; x benzene = 0.045). Points ● are experiments [20], lines are simulations with the
mechanism presented in the attached paper.
3
► Toluene (experimental data from Bounaceur et al. [19])
Operating conditions:
Ф = 0.9
-3
0.20
Toluene
Mole Fraction
15
10
5
0
4
6
8
10
Residence time (s)
0.10
0.05
-3
10
5
40
20
0
2
4
6
8
10
Residence time (s)
1.5
1.0
0.5
12
-3
1.6x10
0.8
0.4
2
4
6
8 10
Residence time (s)
-6
0
40
20
0
2
4
6
8 10
Residence time (s)
12
-6
80x10
Mole Fraction
Benzaldehyde
600
400
200
0
2
4
6
8 10
Residence time (s)
2
4
6
8 10
Residence time (s)
12
-6
Ethylbenzene
120
80
40
12
-6
0
-3
1.6x10
Benzylalcool
60
40
20
0
0
2
4
6
8 10
Residence time (s)
0
0
Mole Fraction
0
Acetylene+Ethylene
0.4
160x10
Styrene
60
0.0
12
0.8
12
80
Mole Fraction
1.2
4
6
8
10
Residence time (s)
0.0
0
100x10
Benzene
2
-3
1.2x10
Methane
0.0
0
Carbon Monoxide
60
12
Mole Fraction
15
0
Mole Fraction
2
4
6
8 10
Residence time (s)
-3
2.0x10
Carbon Dioxide
20
800x10
80x10
0
0
12
Mole Fraction
Mole Fraction
2
-3
Mole Fraction
0.15
P = 800Torr
0.00
0
25x10
Oxygen
Mole Fraction
Mole Fraction
20x10
xtoluene = 0.017 τ = 2.5 – 12 s
Mole Fraction
T = 923 K
2
4
6
8 10
Residence time (s)
12
Phenol
1.2
0.8
0.4
0.0
12
0
2
4
6
8
10
Residence time (s)
12
0
2
4
6
8 10
Residence time (s)
12
-3
Mole Fraction
1.2x10
Bibenzyl
0.8
0.4
0.0
0
2
4
6
8 10
Residence time (s)
12
Figure 4: Oxidation of toluene in a Jet-Stirred Reactor (T = 923K; φ = 0.9; P = 800 Torr;
τ = 2.5-12; x toluene = 0.017). Points ● are experiments [19]
mechanism presented in the attached paper.
4
REFERENCES
References until [31] are those given in the main text.
[32]
Baulch D.L., Bowman C.T., Cobos C.J., Cox R.A., Just T., Kerr J.A., Pilling M.J.,
Stocker D., Troe J., Tsang W., Walker R.W., Warnatz J., J. Phys. Chem. Ref. Data, 34
(2005) 757-1397.
[33]
B. Heyberger, N. Belmekki, V. Conraud, P.A. Glaude, R. Fournet, F. Battin-Leclerc,
Int. J. Chem. Kin., 36 (2002) 666-677.
[34]
T. Seta, M. Nakajima, A. Miyoshi, J. Phys. Chem. A 110 (2006) 5081–5090.
[35]
S. Touchard, R. Fournet, P.A. Glaude, V. Warth, F. Battin-Leclerc, G. Vanhove, M.
Ribaucour, R. Minetti, Proc. Combust. Inst. 30 (2005) 1073-1081.
[36]
J.A. Manion, R. Louw, J. Phys. Chem. 94 (1990) 4127- 4134.
5