OptimizingFree-FloatingGrapheneontheSurfaceofWater SeanHackett1,2,RafaelFerreira2,3,PabloFerreira2,DavidLloyd2,Anubhav Wadehra4,Dr.ScottBunch2 HolyInnocents’EpiscopalSchool,805MountVernonHwy,Atlanta,GA1;BostonUniversity,Boston,MA0221522;Av.dosEstados,5001- Bangú,SantoAndré- SP, 09210-580,Brazil3;PECUniversityofTechnology,Chandigarh,India4 Abstract Contaminationduringgrowthandtransferphasesprovesto beamajorobstacleininvestigatingpropertiesandusesfor monolayergraphenegrownwithCVD[1].Transferof graphenewithasupportivefilmofpolymerfromCufoilsuch aspolymethyl methacrylate(PMMA),oneofthemost popularandreliablepolymersusedinwettransfers,will leaveresiduewhenremovedandpreventmanyexperiments frombeingtestedwiththegraphenecreated[2][3].We investigatepossiblemethodsofwettransferwithouttheuse ofpolymerbyfree-floatinggrapheneonthesurfaceofCu etchantandwater.Inthispaper,theprimarysuccessof monolayergraphenefree-floatingisdiscussed,aswellasthe resultsoftreatmentsonthegraphenesuchasanAr plasma treatmentandatransfermethodinvolvingacohesivelayer ofhexaneaboveCuetchantandadistillationprocess, showinginitialsuccess. Methods VariationintheGrowth Inordertochangetheinitialqualityofthemonolayergraphene,theflowratesofhydrogen andmethanegaswerealteredduringthegrowthstageoftheCVDprocess.Weusethe differentgraphenesamplesinthesamewet-transferprocesstodeterminethequalityofthe graphenegrown. VariationinDirectGrapheneTreatment EvidencesuggeststhatanAr plasmatreatmentdirectlyongraphenemaystrengthenthe sample.TheAr plasmatreatmentistestedindifferentflowrates,powers,andtimesagainst sampleswithnoAr plasmatreatmentwiththesamegrowthspecsandthesamewettransfer process,andtheresultsarecheckedwithanopticalmicroscope.ARamanspectroscopy microscopeisalsousedifthegraphenecanbeanalyzedinaspotwithmonolayergraphene. VariationinWet-TransferProcess Wetestahexanelayeronthesurfaceofthetransfersolutiontocreateafullyremovable cohesivelayerthatlimitsgraphenefrombreaking,andadistillationprocessthatlimitsthe amountofmovesfromonedishtoanothertolimitsurfaceenergyofthetransfersolution.A metalcanisterandplasticsheetingisusedtopreventhexaneevaporation. Introduction GrapheneBasics Grapheneisa1-atomthickmaterialconsistingofcarbon atomsbondedinahexagonformation.Becauseofitsunique bondingproperties,grapheneisoneofthestrongestand mostconductivematerialseverdiscovered[1].Inaddition, graphenecanbemadeatalowcost,makingitofextreme interestforstudy. Fig.1a)TEMscanofgraphene[5] Fig.1b)3Dmodelofgraphenestructure (AlexanderAlUS viaWikimediaCommons) StandardProcedure First,wecuttheCufoil,rinsewithacetone,isopropylalcohol, andDIwater,andplaceitintotheCVDfurnace,withapeak temperatureof1000˚CtodepositgrapheneontheCufoil. Afterthegrowth,wetaketheCufoilwithgraphenecoatedon bothsides,sealoffonesidewithplasticandtape,andexpose theothertoanO2plasmatreatmenttoremovetheexcess grapheneonasingleside. H2 CH4 Time(min) Heating 10 0 25 Annealing 10 0 40 Growth 5 15 10 Cooling 10 0 Cool Wehavesuccessfullyfree-floatedgraphenewithsparsepatchesofmonolayergraphenewith notreatmentorstructuralaidwithPMMA,butmuchofitwascrumpled.TreatmentswithAr plasmahavebeenshowntoimprovethestrengthofgrapheneinwater,yieldinglarger grains,butwithlarged-peaks(Fig.1).ThebestAr plasmarecipewasa100flowrate,a100W power,anda30secondexposuretime. WithoutAr plasma,thehexane-distillmethodoutlinedaboveprovidedpositiveresults.The grapheneobtainedproducedlarge,high-qualitygrainsofmonolayergrapheneandalow d-peak. 8000 Furthermore,thehexane-distillmethodforafree-floating graphenewet-transferprovedtobemoresuccessfulthan previousmethodswithoutPMMA.Thehexane-distill methodalsoshowspromiseforbeingaviablepolymer-free wet-transfertechniqueandallowlaboratoriestoperform experimentsonresidue-freemonolayergrapheneinthe future. References Counts Counts Fig.4b)HexaneDistillMethod (LowD-Peak) [3]Bhaviripudi, S.;Jia,X.;Dresselhaus, M.S.;Kong,J.NanoLettersNanoLett.2010,10(10),4128–4133. [5]Suh, Y.;Park,S.;Kim, M.Microscopy andMicroanalysisMicrosc Microanal 2009,15(S2), 1168–1169. [6]Zheng YanAndrew R.Barron,CharacterizationofGraphenebyRamanSpectroscopy. OpenStax CNX. [7]Zhang,G.;Güell, A.G.;Kirkman,P.M.;Lazenby,R.A.;Miller,T.S.;Unwin, P.R.ACSAppl.Mater.Interfaces ACSApplied Materials&Interfaces2016,8(12), 8008–8016. 1500 2000 RamanShift(cm-1) 2500 3000 Acknowledgements 3000 2000 4000 Fig.4c)Ideal monolayer graphene[6] [2]Deokar,G.;Avila,J.;Razado-Colambo, I.;Codron, J.-L.;Boyaval,C.;Galopin, E.;Asensio, M.-C.;Vignaud, D. Carbon2015, 89,82–92. 4000 1000 Fig.2e)PMMAisreducedwith UVradiation, butnotfully removed Conclusions 6000 4000 Counts ToreducetheamountofPMMA,we thenplacethesampleindirect exposuretoUVrays.However,the PMMAwillnotbefullyremoved, whichlowerstheconductivityofthe graphene.Ourmethodwill drasticallyreducetheresidueon graphenethroughamethodthat doesnotusePMMA[2]. Thehexane-distillmethod(Fig.3a-3c)ismoresuccessfulin producingmonolayergraphenewithalowd-peakmethod overothermethodsthatdonotusePMMAbecauseofits abilitytolimitthesurfaceenergyandminimizegraphene contactwiththeCuetchantandairthatcanripapart grapheneinanormalsystem. Becausehexaneismucheasier toremovefromgraphenethan PMMA,thereissignificantly lessresidue,ifany,onthe graphene[7].Theabilityto transfergraphenetoaSiwafer orothersubstratewithout Fig.6)Graphenefilmproduced residueallowsexperiments byhexane-distillmethod(Fig. involvingconductivityand 4),approximately4mmacross wrappingwiththegraphene. [4]López-Polín, G.;Gómez-Navarro,C.;Parente,V.;Guinea,F.;Katsnelson, M.I.;Pérez-Murano,F.; Gómez-Herrero,J.NaturePhysics 2014,11(1),26–31. D-Peak 2000 Fig.2d)Graphenetransferredto waterwithspoon, scoopedoffwith Siwafer Theresultsofthehexanedistillmethod(Fig.3a-3c) areverysimilartothe Ramanspectrumas pristinemonolayer graphene(inblue) (Fig.4c) [1]Her,M.;Beams,R.;Novotny, L.Physics LettersA2013,377(21-22), 1455–1458. Fig.4a) Argontreated graphene (HighD-Peak) Fig.2c) PMMAisspunon graphene,windowiscreated, placedonCuetchant Fig.5)TheresultsofAr plasmatreatedgraphene (inred)[4]matchour results(Fig.4a) AlthoughAr plasmatreatedgraphenebecomesmorerigid andcohesivewhenfree-floatinginCuetchantandwater,it hasahighd-peakwhenthetransferiscompleted. Results Underthegrowth: Fig.2b)O2plasma removesexcess graphene Next,weremovethetapeandplastic,andweuseaspinnerto coattheremainingsurface(withgraphene)witha200nm layerofPMMA.Next,wecutoutawindowmadeoutofa plasticadhesiveintheshapeofthesubstrate,andstickit directlyonthesurfaceofthePMMA-coatedsideoftheCu foil.Wethenplacethefoilina20mLCuetchantand40mL waterbathtoetchawaytheCufoilfor5hours.Next,we transfertheplasticwindowwiththePMMAandgrapheneto aDIwaterbathandletitsoakfor2hours.Lastly,wetakea cleanSiwafer(cleansedwithacetone,isopropylalcohol,and DIwater)toextractthePMMAandgraphene. MeasuringtheResults Weremovethesamplesfromthe wet-transferprocessbyscooping themoutwithacleanSiwaferand analyzingthesamplequalitatively underanopticalmicroscope.Ifthe samplehaspatchesofmonolayer graphenethatcanbefurther analyzed,theyareputundera Ramanspectroscopymicroscopeto quantitativelycheckthequalityof thegraphenethroughad-peak measurement. Fig.3d)Pictureofthe canisterusedtoblock lightandair Fig.3c)Cuetchantisdilutedwith watertolimitsurfaceenergyand cleansegraphene Phases Fig.2a)CVDcarbon depositsonCu foiltoformgraphene Fig.3b)Cuetchantisdrainedthrough syringe Fig.3a)Metalandplasticsheetingseal offlightandair,Cuunderhexane Discussion Ar plasmatreatedsamplesaremuchstronger,moredurable, andmorestableinthewettransferthansampleswithoutan Ar plasmatreatment.Therecipe100/100/30isthemost superiorrecipefortheCuetchantandwatersolution.The reasonforthismaybethattheAr plasmatreatmentpokes sparseenoughholesinthegraphene,tolimittheenergyin whichcarbonatomscantradeenergymakingitmorerigid, butnotenoughtoeradicatethegraphene[4].Thistheory explainstheincreasedperformanceinliquid,butalsothe highd-peak. 1500 2000 RamanShift(cm-1) 3000 2000 2500 3000 2D-Peak G-Peak 1000 1500 2000 RamanShift(cm-1) 2500 3000 IwouldliketothankDr.ScottBunchforallowingmeandotherRISEinterns toparticipateinhislab.IwouldalsoliketothankDavidLloyd,Lauren Cantley,andKailu Songforbeinginvaluablereferencesduringtheprocessof learningtheinsandoutsofthelaboratorysettingandtheBunchlabin particular.ImustgiveaspecialthankstoRafaelFerreirawhoguidedme throughtheprocessoflearninghowallthemachineryandscientificprocess worksinthelab.AverybigthanksgoesouttoDr.AnnaGreenswag ofthe RISEprogramforallowingmetospendmysummerhereandlearnallabout thelifeofascientistandtherealitiesofresearch.Lastly,Imustthankmy parentsforlettingspendanamazingsixweekshereatBostonUniversity awayfromhometoexploreapossiblescientificcareer. Optimizing Free-Floating Graphene on the Surface of Water Sean Hackett1,2, Rafael Ferreira2,3, Pablo Ferreira2, David Lloyd2, Anubhav Wadehra4, Scott Bunch2 Holy Innocents’ Episcopal School, 805 Mount Vernon Hwy, Atlanta, GA1; Boston University, Boston, MA 022152; Av. dos Estados, 5001 - Bangú, Santo André - SP, 09210-580, Brazil3; PEC University of Technology, Chandigarh, India4 Abstract: Contamination during growth and transfer phases proves to be a major obstacle in investigating properties and uses for monolayer graphene grown with CVD [1]. Transfer of graphene with a supportive film of polymer from Cu foil such as polymethyl methacrylate (PMMA), one of the most popular and reliable polymers used in wet transfers, will leave residue when removed and prevent many experiments from being tested with the graphene created [2][3]. We investigate possible methods of wet transfer without the use of polymer by free-floating graphene on the surface of Cu etchant and water. In this paper, the primary success of monolayer graphene free-floating is discussed, as well as the results of treatments on the graphene such as an Ar plasma treatment and a transfer method involving a cohesive layer of hexane above Cu etchant, showing initial success. References: [1] Her, M.; Beams, R.; Novotny, L. Physics Letters A 2013, 377 (21-22), 1455–1458. [2] Deokar, G.; Avila, J.; Razado-Colambo, I.; Codron, J.-L.; Boyaval, C.; Galopin, E.; Asensio, M.-C.; Vignaud, D. Carbon 2015, 89, 82–92. [3] Bhaviripudi, S.; Jia, X.; Dresselhaus, M. S.; Kong, J. Nano Letters Nano Lett. 2010, 10 (10), 4128–4133.
© Copyright 2026 Paperzz