University of South Carolina Scholar Commons Faculty Publications Earth and Ocean Sciences, Department of 12-10-1998 Distribution of Isolated Volcanoes on the Flanks of the East Pacific Rise, 15.3°-20°S Scott M. White University of South Carolina - Columbia, [email protected] Ken C. Macdonald University of California - Santa Barbara Daniel S. Scheirer Brown University Marie-Helene Cormier Follow this and additional works at: http://scholarcommons.sc.edu/geol_facpub Part of the Earth Sciences Commons Publication Info Published in Journal of Geophysical Research, Volume 103, Issue B12, 1998, pages 30371-30384. White, S. M., Macdonald, K. C., Scheirer, D. S., & Cormier, M. (1998). Distribution of isolated volcanoes on the flanks of the East Pacific Rise, 15.3°-20°S. Journal of Geophysical Research, 103 (B12), 30371-30384. © Journal of Geophysical Research 1998, American Geophysical Union This Article is brought to you for free and open access by the Earth and Ocean Sciences, Department of at Scholar Commons. It has been accepted for inclusion in Faculty Publications by an authorized administrator of Scholar Commons. For more information, please contact [email protected]. JOURNAL Distribution OF GEOPHYSICAL of isolated RESEARCH, volcanoes VOL. 103, NO. B12, PAGES 30,371-30,384, DECEMBER on the flanks 10, 1998 of the East Pacific Rise, 15.3øS-20øS Scott M. White and Ken C. Macdonald Departmentof GeologicalSciencesand Marine ScienceInstitute,Universityof California,SantaBarbara Daniel S. Scheirer Departmentof GeologicalSciences,Brown University,Providence,RhodeIsland Marie-Hel•ne Cormier Lamont-DohertyEarth Observatoryof ColumbiaUniversity,Palisades,New York Abstract. Volcanic constructions,not associatedwith seamount(or volcano) chains, are abundanton the flanksof the EastPacific Rise (EPR) but are rare alongthe axial high. The distributionof isolatedvolcanoes,basedon multibeambathymetricmaps,is approximately symmetricaboutthe EPR axis. This symmetrycontrastswith the asymmetriesin the distribution of volcano chains (more abundanton the west flank), the seafloor subsidencerates (slower on the westflank), and the distributionof plate-motion-parallelgravity lineaments(more prominenton the west flank). Most of the isolatedvolcanoescompletetheir growth within -14 km of the axis on crustyoungerthan 0.2 Ma, while seamountchain volcanoescontinueto be active on older crust. Volcanic edificeswithin 6 km of the ridge axis are primarily foundadjacentto axial discontinuities,suggestinga more sporadicmagmasupplyand strongerlithosphereable to supportvolcanicconstructions nearaxial discontinuities.The volume of isolatednear-axis volcanoescorrelateswith ridge axis cross-sectional area,suggestinga link betweenthe magma budgetof the ridge andthe eruptionof near-axisvolcanoes.Within the studyarea,off-axis volcanic edifices cover at least 6% of the seafloor and contribute more than 0.2% to the volume of the crust. The inferredwidth of the zone whereisolatedvolcanoesinitially form increaseswith spreadingrate for the Mid-Atlantic Ridge (<4 km), northernEPR (<20 km), and southernEPR (<28 km), so that isolatedvolcanoesform primarily on lithosphereyoungerthan 0.2 Ma (< 4-6 km brittle thickness),independentof spreadingrate. This suggestssomeform of lithosphericcontrol on the eruptionof isolatedoff-axis volcanoesdue to brittle thickness,increasednormal stresses acrosscracksimpedingdike injection,or thermal stresseswithin the newly forming lithosphere. 1. Introduction At slow to intermediatespreadingrates, volcanic edifices are built on the ridge axis itself [e.g., Smith and Cann, 1992; Off-axis volcanoes created near fast-spreadingmid-ocean Kleinrock et al., 1994; Magde and Smith, 1995; Smith et al., ridgesprovideinsightaboutthe processes occurringin the early 1995]. In contrast, the only previous study of near-axis stagesof oceaniclithosphereformation. The distributionof the volcanoes along a fast spreading ridge, EPR at 9ø-10øN, chainsof large volcanoes( > 200 m high ) hasbeendocumented concluded that small isolated volcanoes form outside the alongthe southernEastPacific Rise (EPR) in a variety of studies [e.g., Batiza, 1982; Smith and Jordan, 1988; Bemis and Smith, neovolcaniczone,5-10 km from the ridgeaxis,on crustalagesof 1993; Scheirer and Macdonald, 1995; Shen et al., 1995; Scheirer 0.1-0.2 Ma [Alexanderand Macdonald, 1996]. The EPR from 15øS to 20øS has been the focus of numerous et al., 1996b; Rappaportet al., 1997]. Smaller volcanoeshave not been well documentedpreviously,as their size makesthem studies,including bathymetric mapping, seismic surveys,the difficult to detectin abyssalhill terrainwithouthigh-resolution, MELT experiment, petrologic investigations, and deepfull-coverage multibeam bathymetry which has only recently submergencevehicle operationson the ridge axis (Figure 1) become available [Scheirer et al., 1996a,c]. Also, recent advances in understanding the structure of abyssal hills [Macdonald et al., 1996] make it possibleto distinguishsmall volcanicconstructionsfrom the seafloorfabric of abyssalhills. Copyright1998by theAmericanGeophysical Union. Papernumber98JB02791. 0148-0227/98/98JB-02791 $09.00 [Forsyth etal., 1991•; MELTSeismic Team,1998;Scheirer etal., 1998]. This studyfocuseson near-axisvolcanoes,catalogingall the topographichighs with at least 50 m relief and a quasicircular base, on crust out to magnetic anomaly 2 (-1.9 Ma) along520 km of the EPR (Figure2). We mapthe distributionof near-axisisolatedvolcanoesalong and acrossthe ridge axis and thenplacetheseobservations in the contextof geneticmodelsfor off-axis volcanismnear fast-spreadingridges. Volcanoesunder 200 m high havenot beenincludedin previousstudiesof the offaxis volcanismalongthe southernEPR (SEPR), and many of the 30,371 WHITE 30,372 ET AL.' ISOLATED VOLCANOES NEAR SEPR Figure 1. Shadedrelief map,from a 1 km grid illuminatedfrom northwest,of the bathymetriccoveragefor the flanks of the southernEast Pacific Rise. The studyarea is outlined,and the generallocationof Rano Rahi Seamount Fieldis labeled.Insetshowstheoceanicplatesof theeasternPacificwith thestudyareashaded. volcanoeseastof the ridge were mappedin 1996 [Scheireret al., 1998] after the initial study of the Rano Rahi SeamountField [Scheireret al., 1996b]. 2. GeologicalFramework of the Study Area: Overview of the EPR From 15 ø to 20øS Located between the Easter Microplate and the Garrett Fracture Zond, the EPR within the study area is an ultra-fast spreadingridge (Figure 1). Since 1 Ma, the Pacific plate has been spreading slightly faster than the Nazca plate north of 17ø15'S, at a half-rate of 75 mm/yr versus 65 mm/yr. The asymmetryreversesjust southof 17ø15'S,so that the NazcaPlate is spreadingeastwardat a half-rate of 80 mm/yr, roughly 20 mm/yr faster than the Pacific plate half-rate [Cormier et al., 1996; D. Wilson, personalcommunication,1997]. Bathymetric mappingrevealsthat the seaflooron the Pacific plate subsidesat a slowerrate thanpredictedby the globalaverageof lithospheric cooling with crustal age, implying hotter mantle and thinner lithosphereon the west flank [Cochran, 1986; Scheirer et al., 1998]. Sevensmall overlappingspreadingcenters(OSCs) are located within the studyareaat approximately15ø55'S,16ø30'S,17ø56'S, 18ø22'S,18ø37'S,19ø05'S,and 19ø50'S[Lonsdale,1989; Scheirer et al., 1996a](Figure2). TheseOSCs are all left-steppingoffsets whose propagation history explains most of the spreading asymmetry [Cormier and Macdonald, 1994; Cormier et al., 1996]. The 15ø55'SOSC hasremainedrelativelystationary,the 16ø30'SOSC hasmigratednorthward,and the otherOSCs have been rapidly migrating south [Cormier et al., 1996]. The presenceof a long-lived axial magma chamber(AMC) has been inferred from the continuity of a midcrustalseismicreflector underthe ridgethroughmostof thisregion,exceptnearOSCs [Detrick et al., 1993; Kent et al., 1994; Mutter et al., 1995]. Petrologicevidencefor fractionation-controlled compositional variations alongthispartof theEPR alsoimpliestheexistence of a long-livedAMC [Sintonet al., 1991]. Axial lavassampled in the study area also show spatialvariationsin geochemistry corresponding to thestructural segmentation of theridge[Sinton et al., 1991' Mahoneyet al., 1994]. Ridge axis morphologyappearsto be an indicatorof magma budgeton fast spreadingcenters[Macdonaldand Fox, 1988; Scheirerand Macdonald,1993]. The ridge axisdepthis shallow (< 2700 m deep) and relatively uniform (--2600-2800 m) from 15ø to 19øS, then deepens rapidly approaching the large overlapping spreading centerat 20.7øS[ScheirerandMacdonald, 1993]. The cross-sectional areaof the axial high increasesfrom a small,triangularhigh at near 15øSto a large,domalhighwith one of thelargestcross-sectional areasof anymid-ocean ridgeat 17ø18øS,suggesting a correspondingly highmagmabudget,andthen decreasesto a small, triangularhigh towardthe southernend of the studyarea [Scheirer and Macdonald, 1993]. The off-axis thicknessof seismiclayer 2A weakly correlateswith ridge crosssectionalarea at 17ø-18øS [Carbotte et al., 1997]. However, this correlation is less certain for the EPR 13ø-21øS [Hooft et al., ß1997]. The numerous seamount chains in the Rano Rahi Seamount Field, at 16ø-19øS,indicate unusually high off-axis magmasupplyin the studyarea[Scheireret al., 1996b]. . 3. Methods and Definitions This study cataloguesall conical edifices on crust younger than about 1.5-2 Ma on the southern East Pacific Rise from 15.3øSto 20øSusing the full-coveragemultibeambathymetric WHITE ET AL.' ISOLATED VOLCANOES NEAR SEPR .114 ø -113 ø 30,373 -112 ø •11a .15ø [] -15' Axis I I I "•' !-: ;•,i.::i::;?' -19' -19' ......... VOLCANOES ol VOLCANO CHAIN I I ..... vo•c,.o..,.os,c, I ::ß; ......................................... '2OøI • •I -114' :.'•' • • • -'113'" • • • -•l -20" -'I'12' Figure2. Shaded-relief mapof 1kmgridofbat. hymetry ofthestudy area(illuminated fromNW)withtheridge axis,0.2Ma,and1.0Ma isochrons drawnassolidlines.Circles showisolated near-axis volcanoes withstars over volcanoes within6 kmof theridgeaxis.Symbols arescaled according totheapproximate basal diameter of the edifice, butsmaller edifices areshown withsymbol sizelarger thantheiractual diameter atthismapscale.Straight lines are drawn over volcano chains. 30,374 WHITE ET AL.: ISOLATED VOLCANOES NEAR SEPR data recently obtainedin this region [Scheirer et al., 1996a,c] (Figure 2). Using topographicmapsderivedfrom 200 m grids and contouredat 10 m intervals,we pickedvolcanoeshavinga minimum of five roughly circular closed contours above the surrounding seafloor(Figure3). We chosea minimumheightof 50 m based on the roughly 10 m vertical resolution of the SeaBeam 2000 multibeam system, the dominant source of bathymetrydata in the studyarea,to mitigatethe possibilityof picking small multibeam artifactsas volcanoes. Closed-contour artifactsof up to 30 m can appearnear the edgesof the -10 km wide swaths[Kleinrock et al., 1992; $cheirer et al., 1996a]. As a result, volcanic edifices under 50 m high are not part of this regional study, althoughthere are some tiny volcanic mounds, lessthan20 m highand 100 m in radius,on the axial high [ White et al., 1997; R. M. Haymon,unpublisheddata, Sojourn02R/V Melville, 1996]. For each volcano, the geographicalpositionof the center of the edifice,the lengthof baseparallelandperpendicular to ridge strike, the length of summitparallel and perpendicularto ridge strike,andthe heightweremeasured directlyfrom the maps. The volumeof eachedificeis calculatedby approximatingits shape as a truncatedright-ellipticalcone. Volcanoesare assumedto be -112' 05' nearly circular in plan view, whereasfaulted horstsare elongate parallelto the ridge, even where drapedby lava flows. Edifices with an aspectratio >2 elongatewith respectto the trend of the ridge axis are likely to be fault blocksratherthan volcanoesand were omitted. From thiscompilationof all volcanicedificesof 50 m or taller, we define a volcano chain as a group of volcanoes simultaneously satisfyingtwo criteria(Figure4). First,a volcano chain must consist of three or more edifices with colinear summit areas. Second,the distancebetweenthe edgeof the baseof two adjacentvolcanoesin a chainmustbe lessthanthe basaldiameter of the larger volcano of the pair. Classifying a volcano as belongingto a chainimpliessomeconnectionamongthe edifices, so this proximity rule was derived empirically to fit the previouslyidentifiedRano Rahi volcanochains[Scheireret al., 1996b]but preventwidely separatedbut colinearvolcanoesfrom being classified as part of the same volcano chain. The low height cutoff for the volcanoes catalogued in this study introduces a higher spatial density of off-axis volcanoes, comparedto previousvolcano distributionstudiesin regionsof abundant volcano chains [Scheirer and Macdonald, 1995; Scheirer et al., 1996b]. This high spatial density of volcanoes -112' 00' -16 ø 00' -16' 00' -16 ø05' ,½•,(,•ii, -16' 05' .. ;• -- ,,.--• .... -112' 05' -3450 -112' 00' -3350 -3250 -3150 meters Figure3a. Mapof-•410krn2on-•1.5MaNazcacrust.Typicalisolated near-axis volcanoes, atleast50minheight and roughlycircularin plan view, are outlinedin bold. Contourintervalis 10 m on a 200 m grid. Someof these small volcanoesappearto be alignedalongthe abyssalhills, althoughthey do not form a volcanochainas defined in the text. Severalof thesevolcanoesarebuilt uponplatforms,presumablyproducedby off-axiseruptions. WHITE ET AL.: ISOLATED VOLCANOESNEAR SEPR -113'10' -113'05' -15' 50' -15'55' e' ... -113' lO' -3•x)o -esso -•oo meters Figure3b. SameasFigure3a,except for-320 km2of-0.2 Ma Pacificcrust. Figure 4. A typicaleastflank volcanochainin 3-D persepective, verticalexaggeration of 5X, 100 m contours. Volcanochainsconsist of severalcolinearedifices,typicallysittingatopa plateau-like base.Thelargestvolcanois 1400m highwitha -15 km2 base. 30,375 30,376 WHITE ET AL.: ISOLATED VOLCANOES NEAR SEPR meanssomevolcanoeswill be apparentlyalignedalong any Magde and Smith, 1995; Smith et al., 1995]. Volcanoes 50 m randomline; so, thesecriteriaare essentialto definingwhich highformimmediatelyoff the SEPRaxialhigh,ascloseas 1 km volcanoescomprise chains independentof the size of the from the ridge axis, but volcanoesfoundwithin 6 km of the axis volcanoes or the orientation of the chain. are mostly adjacent to OSCs. Only 3 of 15 volcanoesfound Isolatedvolcanoes are definedin this studyas topographic within 6 km of the axis are farther than 15 km from the nearest highswith a minimumheightof 50 m, with an aspectratio_<2, OSC (Figure2). Beyond6 km from the ridgeaxis,volcanoesare and not identified as a chain-volcano based on the criteria explainedabove(Figure3). Althoughnearlycompletebathymetryis availablewithin the scatteredthroughoutthe studyarea. This study catalogued1070 volcanoes(includingthose in chains)with heightsof at least50 m on -113,000k m2 of survey area, the abundance and volume of isolated volcanoes seafloor.Thesevolcanoescover6% of the seafloorin the study werenormalized to valuesper 1000km2, excluding the area area. A total of 680 isolated near-axis volcanoeswere identified, coveredby seamountchains.This minimizes effects of burial of and555 of thesevolcanoeswerelessthan100 m high. We found isolatedvolcanoes by lava flows andmasswastingassociated with seamountchains. To determinethe age of the crusta volcanoresidesupon,themagnetic isochron picksin the study areaweregriddedusinga minimumcurvaturespline[Smithand Wessel, 1990]to obtaina gridof thecrustalagewithinthestudy only four isolated near-axis seamounts(volcanoestaller than 1000 m), all locatedon the Nazcaplatefrom 17øto 18øSbeyond 25 km from the axis (Figure 5a). Theseseamounts contributea disproportionateamountto the total volume of the isolatednearaxisvolcanism(Figure 5b). Becausethe isolatedvolcanoeshave suchan unevensize distribution,the medianvolumerepresents the typical size of the volcanoes better than the mean. The medianvolumeis usedfor this reasonin all subsequent analyses of isolatedvolcanosizeandgrowthpatterns. areaincorporating all knownmagneticisochrons[Cormieret al., 1996; D. Wilson, personalcommunication,1997]. The seafloor ageat thelocationof eachvolcanowastheninterpolated fromthe crustalage grid. In contrast to isolated volcanoes, volcano chains have a much 4. GeneralDescriptionof the VolcanoPopulation Near the SEPR greaterproportionof large volcanoes. Over half the 390 chain volcanoescountedin this studyare taller than 100 m and 85% of the seamounts(>1000 m high) in the area occur in volcano chains. No conical edifices taller than 50 m exist at the summit of the The seamount chains of the Rano Rahi Seamount Field all have more than one volcanic edifice over 500 m high axial high alongthe entirelengthof the EPR [Macdonaldet al., [Scheirer et al., 1996b]. However, we identified a few new 1992; Scheirer chainson the east flank that are composedentirely of volcanic edificesunder500 m high. Eruptionsfrom all off-axis volcanoeson crust <2 Ma have increasedthe volumeof the crustby 0.2%, assuminga uniform6 and Macdonald, 1993; Alexander and Macdonald,1996], in strikingcontrastto the abundantvolcanic edifices in the neovolcanic zone of slow or intermediate spreadingcenters[Smith and Cann, 1992; Kleinrocket al., 1994; 1200 -'::;---:i---:i::::?i::::i-:-:i::: ::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: .... r----r--'-r'-"1 .... 1.... 1'-"1 ........ •---~• ..... r---T--*-r'---r----r----r----r .... r .... • .... ....h'-'h---f----f .... ',.... I----•........ •---'I.....,•"-•----,•--'-,•----,•----,•--"• ....h-'-f.... -'; ' :- { ' : •..... :- • ....:.....l.... ';-'c---'c---l-----'; .... '•.... •.... •ooo- ' ....i----i---, ......... i......... ,----, ......... •---i--- ....',....1 ....l....l....l.... J....;.............................................................. ....::::::::::::::::::::::::::::::::::::: :::::::::::::::::::::::::::::::::::::::::::::::::::::: ....•.... '•.... ;-- -;.... {.... {----4 ........ 4-----• .....;-----l-----l-----•-----•----•-----h---• .... ',--, 800" • _t ' -"" ............. , , , , , • ' ' -J J -4•-- x_ _-L__._L.. L- -L L _ L_ _L_ , ' , , ' , 1__,'_.._:._.1_.[__21_1 .1. , , , , , , , , , , : ....,,....., ....:....: ....:....:..... •, ::::::::::::::::::::::::::::::::::: ....!:::•:-. • ::::::::::::?.:::::::&::::•;::::::::::::::::::::: .... ........................................ ..s .... •-i.... i-i- '• ?'-"! i,i..... -,! -+---•--i---i-':i-i-': -:4...... !"'T•""!""!*-!'-'! ....!.... !.... !• ! i ': ':• -"'i-"i'-?-"i-'!--!',*• • ? !' !!!!:::'..'•.::•i!!i::'•!::i!:::':!Z!!:: :'"; :._•:4:.' .'-•:-•:.4:"•-':;•' 400- •s :*•,:,,z .... -•- -' ' ' •*• •t; .... ---,4• -r...m.- • a. •.• ......... _- _ ':::i:*i •-.::•' -i•::. •1•.'-•"• .... : km east of axis .... ':.... :---, km east of axis Figure5. Scattergraphs of (a) heightof individual edifices versus distance fromtheaxisand(b) semilog volumes of eachedificeversusdistancefromtheaxis. Negativedistancefromtheridgecorresponds to west(Pacific)flank. Mostof theisolatednear-axis volcanoes aresmalledifices,onlya fewof whichhavebeencatalogued in previous studies. WHITE ET AL.' ISOLATED VOLCANOES NEAR SEPR 30,377 to of 100m3/s.At leastsomeof thesevolcanoes probably formin a the crust is a lower limit because lava flows that do not create a seriesof eruptionspunctuatedby pausesor intrusive activity [Lonsdale, 1983]. While submarineeruptionshave never been observed,subaerialcindercones,spattercones,littoral cones,and km thick crust. This estimate of off-axis volcanic contribution volcanic edifice at least 50 m high are not included in these values. Many of the larger volcanoes,especially the volcano chains,are built uponplatforms,up to a few tensof metershigh, presumablymade up of basalticflows relatedto the edificesthat sit atop them (Figures 3 and 4). These platforms were not includedin the our volume or area estimatesbecausethey failed to meet the closed-contouror aspect-ratiocriteria for volcanoes. However, days[e.g., Thorarinsson, 1969;Holcomb,1987;Lockwoodet al., 1987]. Formation of similar-sized submarine volcanoes may occuron a generallysimilartimescale,makinga periodof 2-10 daysa reasonable order-of-magnitude estimate. a conservative estimate of their areal extent would doublethe amountof seafloorcoveredby flows from the isolated volcanoes, and significantly increase our estimate of the contribution vent craters have been observed to form in a matter of hours to from near-axis volcanoes to the volume of the crust. Of the 555 volcanoes50-100 m in height,9 have craterslarge enoughto show up on 200 m gridded bathymetrymaps, 85 are 5. Distribution of Isolated Volcanoes Acrossand Along the Axis Owing to asymmetricspreadingin the study area, seafloor crustalagedoesnot correspond directlyto thedistanceoff-axisin the studyarea(Figure2). Thereforewe binnedthe populationof small off-axis volcanoesform entirely by the eruption of basalt isolated near-axis volcanoesin 0.1 Myr crustal age intervals, with pillow morphology(ratherthanby mixed intrusive/extrusive overlappingby 0.05 Myr, runningthe lengthof the studyarea, incorporatingthe local spreadingasymmetries[Cormier et al., activity), we can estimatea minimum time of formation of 2-10 days of continuouseruptiongiven a typical lava flux of 10-100 1996]. When plottedin 0.1 Myr binsas a functionof crustalage, m3/sforpillowsto form[GreggandFink,1995]. Thelargest the numbersof isolatedvolcanoesreachtheir long-termaverages isolated volcanoes withvolumes exceeding 30km3 wouldtakeat by 0.2 Myr (Figure 6a). Also, the overall abundanceof isolated least10 yearsof continuous eruptionto form at a lava flow rate near-axisvolcanoesis symmetricabout the ridge, in contrastto irregularor "hat-shaped" [Smithet al., 1995;Head et al., 1996], and the remainingare domeshaped(Figure 3b). Assumingthese a 15 10 0 (1.0) (0.5) WEST 0.0 0.5 crustal age (Ma) 1.0 EAST b0.15 0.1 o.o5 o (1.0) WEST (0.5) 0.0 crustal age(Ma) 0.5 •.0 EAST Figure6. (a) Numberof volcanicedificesfoundon 1000km2 of seafloornot coveredby volcanochains. Histogrambinsare 0.1 Myr wide andoverlapby 0.05 Myr. (b) The medianvolumeof volcanicedificesin the same bins usedpreviouslyfor volcanoabundance.Vertical barsshowthe rangefrom the 25th to 75th percentilesof edifice volumes,illustratingboth the wide scatterand the skewnessin the volume distributionof isolatedvolcanoes. The medianvolumeshowsno significantchanges,suggesting isolatedvolcanoestypicallyform in <0.1 Myr, then do not continue to erow. 30,378 WHITE ET AL.: ISOLATED VOLCANOES NEAR SEPR the extremely asymmetric distribution of the volcano chains (Figure 2). Althoughthe dataare noisy,a steadymedianvolume is reachedin the first bin from the ridge axis (Figure 6b). The observation that the median volume of isolated near-axis volcanoes remains constant with distance from the axis indicates that typical isolatedvolcanoeserupt mostof their volume within the time spanof one agebin, lessthan0.1 Myr (Figure 6b). That the timespanof the edifice building stageis not resolvablewith 0.1 Myr bins is not surprisingbasedon our inferenceof a time spanof days to weeks for the main eruptive activity of typical isolated volcanoes. Severalcomplicationscan obscurethe distributionof isolated volcanoeswith respectto crustalage. Seamountchainsand their debris apronsmay overprint the isolated volcanoes[Scheirer et al., 1996b],as dealtwith previously.Also, largelyuninvestigated basaltic sheet flows and normal faulting may contribute to an apparentdecreasein abundanceof volcanoesbeyondtheir initial zoneof formationby masswastingand burial. Finally, sediment accumulation could bury volcanic edifices, but this is not a significantfactor in our study area. Sedimentationrates of 3-6 m/Myr are typical of recent estimatesfor this area [Marchig et al., 1986; Lyle et al., 1987; Dekov and Kuptsov, 1992]. This could lead to undersamplingof smalleredifices at the outer edge of the studyarea, where 10 m of sedimentscould be deposited. Forcrustyounger dian1 Ma, thedeposition of lessthan6 m of sedimentis not likely to changethe overall distributionof >50 m high edifices. No systematic correction to the across-axis Abundance of IsolatedVolcanoes (~40 kin. centered on the axiS) 15 min. x 0.25 Ma crustalage bins distribution data was made for increasing sedimentthickness becausethe < 5 m uncertaintyis beyond the resolutionof the multibeam bathymetrydata. Along the axis, there is a transitionat 19øSfrom abundant seamount chains to the north to an area without any volcano chainsto the southwhereonly small isolatedvolcanoesare found (Figure 2). The ridge axis depth increases, and the crosssectional area, a proxy for axial magma budget, decreases significantly near this transition [Scheirer and Macdonald, 1993](Figure7). A similar correlationbetweengreaterseamount volcanismand larger cross-sectionalarea of the axial high was also found for the EPR 8ø-18øN [Scheirer and Macdonald, 1995] and for the EPR near the Wilkes Fracture Zone [Keeley et al., 1995]. Isolatednear-axisvolcanoesoccur everywherealong the axison bothsidesof the ridge, 15ø-20øS,andthe magmasupply to boththe ridgeaxis andthe isolatednear-axisvolcanoesmay be related. To investigatealong-axis correlationsbetween the isolated volcanoesand ridge-axis morphology, we used quarter-degree latitude bins (28 km) extending20 km to both sidesof the axis (crust <0.25 Ma). These bins sampleenoughvolcanoesper bin (>5) to be statisticallymeaningfulbut encompassa shortperiod of time so that we may assumethe cross-sectionalarea of the ridge has not changedsignificantly[Scheirerand Macdonald, 1993]. The total volume of isolated volcanoes correlates well with the averageaxial cross-sectional area(Figure8a). However, fewer isolatedvolcanoesper unit area are found where the axial -' 20 Isolated Volcanoes 'VolcanoChains 15 Abundance ofChainVolcanoes 15rain x0•4Macrustal age bins (-60 kin. centered on the axis) IO -20' Figure 7. (top) Total numberof volcanoesin quarter-degree latitudebins,40 km wide, and centeredon the axis. Isolatedvolcanoabundances are normalizedfor the areacoveredby seamountchainsin eachbin. (middle) Crosssectionalareaof the ridgeaxis from Scheirerand Macdonald(1993).(bottom)Map view of the axis showingthe corridor usedto correlate to theaxis.Volcano chains arefoundonlywherethecross-sectional area>4 km2, but isolatedvolcanoes arefoundalongtheentireridgeandincreasein numberfrom 19øto 20øS,whereseamount chains are absent. WHITE ET AL.' ISOLATED VOLCANOES NEAR SEPR It reflector below the axis [Detrick et al., t 993] is not related to the 10o .................... :.., ..............{............ {................ {........... g 30,379 total volume of nearbyisolatedvolcanoes. Cross-sectionalarea of the ridge axis probablyaveragesthe magmabudgetover >0.1 Myr, whereasthe depth to the AMC reflector may vary over a .... 10- :::::2::::::::::::::::.-:: ::•:: ::::.-: ::::::::: :2::::.-: ::•:: :•: :2::: :::::::::::::::::•:: :.-:.--.: ::::-.: ::::-:::: 2:::•:: :.': ::: ;:::.-: :::::::.-: ::: ::•:: :::2:":: 2:::::::::::.-• •::2::::•::•:•:•*,::•:•:2•::•:•:2:::::::•:•:•:•:•::::2:•:•:•::•:•:•::::::•:2•:• ".'•1;::::•:: shorter time [Scheirer and Macdonald, 1993; Carbotte et al., 1997; Hooft et al., 1997]. Using a 40 km wide corridorcentered on the ridge axis averagesthe off-axis volcanismover 0.25 Myr. It would be interestingto see if there is a correlation between areas of enhancedoff-axis volcanism and areas along the axis that are underlain by axial magma chambers with a high ............................ 't............................. ? ............................ •, • , ......... 'f ............................ • ............................. ....................... • .................... • ...................... ?........................... •" '•'•"-4' ...........• ................... ............................ ?............................. '.............................. 'i------•=&----q ........ '..' ............................ • ............................. percentageof melt. No correlationis evidentbasedon the small ..................... •.......................... •.......................... -: ......... i...... !"'i;" I f-•-&4 : ............ :................ area studiednear 14øS [Singh et al., 1997]. We suspectthat the ....................... i..................... '": ..................... ' ...................... •..................... •..................... timescaleof changefor the axial magmalens is shortcompared to the -0.2 Myr time interval for the eruption of near-axis ...... ;";Z ;;; ;;; ;;Z :7"7.•""X'7'7;; ;;'2 Z:: ;;.•;; 7';..... ::';"':::';: ::•;;'Z";;';; ;:;'::':;'";': ;Z;.';: :::"; Z"'..•.7•: ;Z•"'"••" .......................... -, : ..................... ,, ...................... 4 , : ..................... -• ............... -* .................. ß : ............................ ............................ ............................ ............................ ............................ ............................ volcanoesbut await further seismicanalysis. 0 1 2 3 4 5 6 avg.axialarea(kin 2) 6. Height Distribution of Near-Axis Volcanoes To comparethe distributionof volcanoesin this studywith the characteristic seamount heights and areal densities of other studies, volcano height distribution parametersare calculated using maximumlikelihoodregression[Smithand Jordan, 1988]. , An exponential distributionis fit to the isolatedvolcanoheight •0.............................. i............................. ,•.q .................. i........................................................... i............................ distribution,binned in 10 m height intervalsfrom 50 to 350 m , , with at least five volcanoes per bin. This study predicts a ' characteristicheightof 28 m with an areal densityof 31 edifices F&-I ' , • • • i• , , per1000km2forthepopulation of smallisolated volcanoes anda ............................. ............................................ ,..............., •A•A • • , , 0 0 2 i i 3 4 •A• •A• •A• a•. a•ialar• (kin Figure 8. Correlation of isolated near-axis volcanoesto axial mothology in 15' along-axisby 40 km wide axis-centeredbins. (a) Cumulative edifice volume and (b) abundanceof volcanoes with respectto the average axial cross-sectionalarea with 2sigmae•or barsaboutthe meanarea. Increasingvolumeof nearaxis volcanismseemsto correlatewith increasingaxial crosssectional area, and increasingnumbersof near-axis volcanoes seemto co.elate with decreasingaxial area. characteristicheightof 106 m with an areal densityof 6 edifices per1000km2 forvolcano chains, including thesmaller volcano chains. For seamounts>200 m high in the Rano Rahi Seamount Field, the maximum likelihood regression predicts a characteristic height of 295 m and areal distribution of 9.5 edificesper 1000km2 [Scheirer et al., 1996b]. The distinct distributionssuggestthat isolatedvolcanoesand volcanochains comprise two separatepopulations(Figure 10 and Table 1). Comparing their height distribution parameters, isolated volcanoeseruptingoff-axison fast spreadingridgesand the axial volcanic conesat slow spreadingridges also form two distinct populations(Table 1). 7. Isolated Volcano Formation and Lithospheric Thickness One of the controversies regarding submarine volcano formation is whether melt supply or lithosphericpenetrability controlsoff-axis volcanism[e.g., Vogt, 1974; Batiza, 1981, 1982; cross-sectional area is highest(Figure 8b). Thus a relatively narrow ridge is associatedwith many small isolatedvolcanoes, Fornari and Luckman, 1987]. The width of the zone of isolated while fatter ridge segmentshave a smallernumberof larger volcano formation may be relevant to this problem. We found volcanoeswith a greatertotal volumecontribution. In the areas that the zone of initial formation of isolated volcanoes on the with a low volumeof isolatednear-axisvolcanoesbut a large southernEPR extendsout to 0.2 Ma cruston either flank (Figure axial cross-section (Figure 8a), volcanochainsare the dominant 6a). Along a segmentof the northern EPR, Alexander and expressionof off-axis volcanism. Macdonald [1996] concludedthe zone of formation for small offIn agreementwith these correlations,volcanoesfrom 19ø to axis volcanoesis 10-20 km wide, also correspondingto a crustal 20øSaremoreabundant (10 compared to 7 per 1000km2) and age of 0.1-0.2 Ma. On the Mid-Atlantic Ridge (MAR), most generally smaller (median volumeof 0.015km3 compared to axial volcanoes occur in a zone with a total width of about 4 km, 0.026km3) thanfor thestudyareaasa whole.However, the again correspondingto a crustal age of roughly 0.2 Ma [Smith width of the isolated volcano formation zone from 19 ø to 20øS remainsthe sameas for the entirearea(Figures9a and9b). In contrast to the observed correlation between axial cross- and Cann, 1992]. The common 0.2 Ma limit on the width of isolated volcano formation suggestslithospheric penetrability controls where new isolated volcanoes form. sectionalarea and volcano volume, ridge depth and volcano volume show a weaker correlation. This may result from the small variation in axial depth along most of the study area Neither within our study area nor on the northern EPR [Alexanderand Macdonald, 1996] was there any demonstrable associationbetween the abyssalhill normal faults and off-axis [Scheirer volcanism. and Macdonald, 19931. The depth of the AMC The only obvious linear alignment of volcanoes was 30,380 WHITE ET AL.' ISOLATEDVOLCANOESNEAR SEPR a 20 15- 10d 5- 0 0.0 (0.5) (1.0) WEST b 0.5 crustal age (Ma) 1.0 EAST 19ø.20øS 0.075 0.05 0.025 o (1.0) (0.5) WEST 0.0 crustal age(Ma) 0.5 1.0 EAST Figure9. (a) Abundance and(b) medianvolumeof isolatedvolcanoes from 19øSto 20øS(binnedandnormalized asin Figure6), a regionof full bathymetric coverage andnovolcanochainsor largevolcanicedifices.Thissmaller regionshowsthesamegeneraltrendsasthewholestudyareabuthasmorevolcanicedificesanda smallermedian edifice volume. found perpendicularto the trend of the seafloor fault fabric (Figure 2), suggestingthat preexistinglines of weaknessalong faults play a secondaryrole in determiningthe near-axisvolcano distribution. Stressesgeneratedby the magma source are the most probableprimary control on the distributionof isolated near-axis volcanoes. Perhapsthe depth to the brittle-ductile transition in oceanic lithospherecontrolsthe width of the zone of initiationof isolated volcanoes. Once the brittle lid reaches a sufficient thickness to prevent dikes from either initiating or erupting, new volcanoes stop forming. The ambientstressesat the dike tip and thermal diffusivity at the dike walls principallylimit the ability of magma to propagate upward through the brittle lid and erupt [Rubin, 1995]. In simple terms, the magma pressuremust overcomethe elastic stiffnessof the overlying rock and the local compressive stressperpendicularto the fractureplane to initiate a fracturefor propagationof a dike [Secorand Pollard, 1975]. Presumably,a magma body of constant size will have greater difficulty initiating a crack at the baseof thicker brittle lithospherebecause Even whenoneof thesesmallmagmalensesproducesa dike, thermalstresses generated by underplating new, hot materialto the baseof coolerlithosphere wouldcauserelativecompression at thetopof theplate,asthebaseof theplatecoolsandcontracts fasterthan the older lithosphereaboveit [Bratt et al., 1985; Wessel,1992]. This relativecompressional stressat the top of the platemay increasein magnitude with lithospheric agefor rapidlythickeninglithosphere (< 100Ma) andimpedetheascent of dikesthrougholderlithosphere.It is worthnotingthatmany volcanochainson the EPR alsoappearto initiatewithin0.2 Myr of theridgeaxis,althoughtheyexperience mostof theirvolume increase farther off-axis [Scheirer and Macdonald, 1995; Scheirer et al., 1996b]. Local heating of the lithosphere associatedwith seamountchainsmay decreasethe usualrate of lithosphericthickening,producinga meltchanneleffectthatmay allow continuedvolcanicactivityfartheroff-axisnearpreviously active eruptivecenters. To estimate the depth to the brittle-ductile transition at different spreadingrates, we use a simple one-dimensional the mean normal stress across dike-induced cracks increases with thermalmodelof lithosphericcoolingthatincreasesthe depthof depth. On the basisof the small size of mostisolatedvolcanoes, the isotherm with square root of crustal age from the axis we speculatethat they originatefrom rathersmall magmabodies [Turcotteand Schubert,1982]. The simplemodel was modified to includeinformationaboutthe axial thermal structureby adding incapableof penetratinga thick brittle lid. WHITE ET AL.: ISOLATED VOLCANOES NEAR SEPR 30,381 100 g 10 RanoRahiSeamount Field • g •'• 1 4_ • • - (Scheireret al, 1996c) "-.. t• - • X•• I •' Volcano Chain• o•th• ', '" northern EastPacific Rise '•.. (Scheirer and Macdon•d, 1995) ", Volcano.Chains (this study) •-• • •I •• volcanoes isolated n•ar-axis (4his study)".. 0.01 II 0 , .... ,t , , I I , ', .... , ß 'I 5• ß '• .... . ß 'I 1000 1500 .... .... '-.." 2000 height(m) Figure10. Maximum likelihood regression predictions of numbers of volcanoes per1000km• based on cumulative volcano heightdist•bution.T•anglesshowisolated volcanoes withsolidlinefit to datain heightrange of 50-350m. Circlesarevolcanochainscat•oguedin thisstudywith dashedline fit to datain 50-600m height range.Thedist•bution fortheRanoRahiSeamount Fieldcontains a kigherconcentration of largevolcanoes but usesa heightrangeof 200-1200m andp•ma•ly westfla• coverage. the depth to the low-velocityzone calculatedby Purdy et al. [1992], whichdisplacesthe isothermsdownward. Althoughwe acknowledgethis modelis simplistic,it givesa straightforward approximationof the thicknessof the brittle lithosphere.The model suggeststhat a brittle lid thicknessof-4-6 km (or the mean normal stressesacrosspotential cracks at the base of lithosphereof thisthickness)is sufficientto blockthe formation of new isolatedvolcanoesat all threespreadingrates(Figure 11). Table 1. SeafloorVolcanoHei[[ht Distribution StudyArea HeightRange, rn [•,km-1 In comparison, the thermalmodelof Wilsonet al. [1988] that includescoolingat the baseandthe top of a convectingmagma chamberfor the fast spreadingEPR placesthe brittle-ductile transitionat a depthof roughly3 km belowthesurfaceof 0.2 Ma lithosphere.If thethermalmodelof PhippsMorganand Chen [1993] is used at thesethree spreadingrates,the thicknessof brittlelithosphere becomes roughly8 km in thezoneof isolated volcanoes formation. So, while the exact thickness is model- CharacteristicVo,(1000 km2) -1 Source Height•rn 15.3ø-20øS EPR S. Pacific 50-350 50-210 Isolated Volcano 35.9+0.2 15.9_+0.6 "superswell" 95øW Galapagos 50-315 34.5+2.5 Areas 30 62 31.1+.1 33+2 Bemis and Smith 30 370-•_30 Kleinrock This study [1993] et al. [1994] 24ø-30øN MAR 50-650 17.2_+0.5 60 195_+9 57ø-62øN 50-300 14.3_+0.5 70 310+_20 Smith and Cann [1992] [1995] Reykjanes Seamount 15.3ø-20øS EPR 15ø-19øS EPR Magde and Smith 50-600 300-1200 Chain Areas 9.4_+0.4 110 3.4_+0.1 290 6.•.1 9.5_+0.4 This study Scheirer et al. [1996] 8ø- 17øN EPR 200-800 4.3_+0.2 230 1.9_+0.2 Scheirer and Macdonald [1995] 27ø-29øS EPR Fitting;' -- ;'o 200-1000 308 2.7_+0.15 Rappaportet al. [1997] 30,382 WHITE ET AL.' ISOLATED VOLCANOES NEAR SEPR 2 10 0 5 half-width 10 of the zone of formation 15 20 of isolated volcanoes [Macdonald et al., 1992]; 11ø45'N [Perram and Macdonald, 1990]; and 12ø54'N [Antrim et al., 1988]. Constructional volcanoesmay form at abandonedridge tips as melt pockets become isolated by the "self-decapitation"of the propagating ridge as spreadingstopson the abandonedsegment[Macdonald et al., 1987]. Geochemistryof basaltsamplesfrom OSCs along the southernEPR showsthat ridge offsets tend to erupt more fractionatedmagma[Sintonet al., 1991]. Samplingof the small volcanicconesnear OSCs would be the bestway to confirm their origin,leadingto betterunderstanding of the subcrustalprocesses at ridge discontinuities.At present,suchsamplinghasnot been doneat the resolutionnecessaryto addressthesequestions. (km from ridge axis) Figure 11. Comparison of calculated depth to the 600øC isotherm to off-axis distance for the maximum half-width of the zone of volcano formation for the isolated near-axis volcanoes on 9. Conclusions The distribution of isolated off-axis volcanoes on the ultrafast spreadingEPR, 15.3ø-20øS, suggests thatridgevolcanismat fast spreadingratesis not confinedto the axis. While the abundant volcanochainswestof the axis imply that an asymmetricoff-axis magmasupplycreatesmost seamountsand large volcanoes,nearaxis isolatedvolcanoesare equallyabundanton both sidesof the ridge. The medianvolumeof isolatedvolcanoesremainsnearly constantas a function of distancefrom the ridge, indicating the majorityof isolatedvolcanoesdo not grow significantlybeyond 0.2 Ma crustal age. The total volume of isolated volcanoes appearsto increasewhere the ridge has a larger cross-sectional specific,the influenceof lithosphericthicknesson dike-induced areaand hencehighermagmasupply. The inferredwidth of the cracking of the brittle lid may limit how far off axis isolated zone of volcanoformationincreaseswith spreadingrate for nearaxis volcanism on the MAR, northern EPR, and southern EPR, volcanoesform at all spreadingrates. such that isolated volcanoesform only on lithosphereless than 0.2 Myr old in all cases,suggestinga lithosphericcontrol on 8. Hypothesesfor the Origin of Isolated Near-Axis productionof isolatedvolcanoesnearridges. the southernEast Pacific Rise (SEPR) (this study),the northern East Pacific Rise (NEPR) [Alexanderand Macdonald, 1996] and the Mid-Atlantic Ridge (MAR) [Smith and Cann, 1992]. Assuming the brittle-ductile transition occurs at the 600øC isotherm,new isolatedvolcanoesappearto form when the brittle lid is lessthan 4-6 km thick (shadedregion). The meannormal stressacrossany cracksat a depth of 4-6 km at the base of the lithospherewould be -0.12-0.18 MPa. Volcanoes (and Suggestionsfor Future Work) On the basisof the spatialdistributionof volcanoes,formation of isolatedvolcanoesappearsto be a steadystateprocessrelated to axial magmaticupwelling,whereasvolcanochainsseemmore consistentwith formationby sporadiceruptionof lavas derived from mantleheterogeneities as envisionedby Wilson[ 1992] and Davis and Karsten [ 1986]. To explainthe distributionof isolated near-axis volcanoes, low volume eruptions must occur on an almoststeadystatebasisin the near-axisregion. We speculate that a possiblerecordof the magmaticprocesses creatingisolated near-axis volcanoesmay be preserved as late stage wehrlitic intrusionsand uppermostankaramiticlavas in ophiolites[Juteau et al., 1988; C. A. Hopsonand J. Martinson,Wehrlitic magma series and ultramafic transition zone, Point Sal remnant of the Acknowledgments. We thankeveryoneinvolvedin makingthe highresolutionbathymetricmapsof the southernEast Pacific Rise that made this work possible,andthe captains,crew,and watchstanders on the Rapa 2 and 4, Gloria 2 and 3, and Sojourn I cruises. The unpublished magnetic isochronpicks from Doug Wilson were essential. Deborah Smith kindly provided the maximum likelihood regressionscript and advice on its use. Earlier helpful reviews by R. Batiza and D. Naar encouragedus to expandour data set,greatlyimprovingthe results. We also thank J. M. Auzendeand K. Loudenfor their helpful reviews. We appreciatethe longstanding interestof C. Hopsonin our off-axismapping of the EPR. This work was supportedby NSF OCE94-15632, OCE8911587, ONR N00014-94-10678, and ONR N00014-93-10108. References Coast Range ophiolite: Implications for ocean ridge off-axis Alexander, R. T., and K. C. Macdonald, Small off-axis volcanoes on the volcanism,manuscriptin preparation,1998]. If the isolatednearEast Pacific Rise, Earth Planet. Sci. Lett., 139, 387-394, 1996. axis volcanoestap such a sourceas their magma supply, they Antrim, L., J.-C. Sempere,K. C. Macdonald,and F. N. Spiess,Fine scale study of a small overlappingspreadingcenter systemat 12ø54'N on shouldbe generallymore primitive and depletedthan tholeiitic the EastPacificRise,Mar. Geophys.Res.,9, 115-130, 1988. lavas on the adjacent ridge segment,a prediction testable by Batiza, R., Lithosphericage dependence on the rate of off-ridge volcano collectingrock samplesfrom the smallernear-axisvolcanoes. productionin the North Pacific, Geophys.Res.Lett., 8, 853-856, 1981. The first appearanceof off-axis volcanoesalongthe EPR from Batiza, R., Abundance, distribution and sizes of volcanoes in the Pacific 9ø10'-9ø50'Nis just beyond5 km from the axis; however,that Oceanandimplicationsfor the originof non-hotspot volcanoes, Earth Planet. $ci. Lett., 60, 196-206, 1982. studyexcludedseafloornear OSCs [Alexander and Macdonald, Bemis, K. G., and D. K. Smith, Production of small volcanoes in the 1996]. Along the EPR from 15.3ø to 20øS,the few volcanoes Superswellregion of the SouthPacific, Earth Planet. Sci. Lett., 118, within 6 km of the ridgeare nearOSCs(Figure2). Formationof 251-263, 1993. isolated near-axis volcanoes seems to be common within the discordantzones created by OSCs all along the EPR. For example,ridge 4 on the 20ø40'S OSC is a prominentvolcanic feature [Macdonald et al., 1988], and volcanic edifices occur on abandonedridge tips near 20øS, 114ø30'W [Macdonald et al., 1988]; 17ø05'S, 112ø20'W [Scheirer et al., 1996]; 9øN Bratt, S. R., E. A. Bergman, and S.C. Solomon,Thermoelasticstress: How important as a cause of earthquakesin young oceanic lithosphere?, J. Geophys.Res,90, 10249-10260,1985. Carbotte, S., J. C. Mutter, and L. Xu, Contribution of tectonism and volcanismto axial andflank morphologyof the southernEastPacific Risefroma studyof layer2A geometry, J. Geophys. Res.,102, 1016510185, 1997. WHITE ET AL.: ISOLATED VOLCANOES NEAR SEPR Cochran,J. R., Variationsin subsidence ratesalongintermediateand fast spreadingmid-oceanridges,Geophys.J. R. Astron.Soc.,87, 421-454, 1986. Cormier, M.-H., and K. C. Macdonald, East Pacific Rise 18øS-19øS: Asymmetricspreadingandridgereorientationby ultrafastmigrationof ridgeaxis discontinuities, J. Geophys.Res.,99, 543-564, 1994. Cormier, M.-H., D. S. Scheirer, and K. C. Macdonald, Evolution of the East PacificRise at 16ø-19øSsince5 Ma: Bisectionof OSC'sby new rapidly propagatingridge segments,Mar. Geophys.Res.. 18, 52-84, 1996. 30,383 decapitationof neighboringridge segments,Geology, 15, 993-997, 1987. Macdonald,K. C., R. M. Haymon, S. P. Miller, J.-C. Sempere,and P. J. Fox, Deep-Tow and Sea Beam studiesof duelingpropagatingridges on the East Pacific Rise near 20ø40'S, J. Geophys.Res., 93, 28752898, 1988. Macdonald, K. C., P. J. Fox, S. Carbotte, M. Eisen, S. Miller, L. Perram, D. Scheirer,S. Tighe, and C. Weiland,The East Pacific Rise and its flanks,8ø-18øN:Historyof segmentation, propagationand spreading directionbasedon SeaMARC II and Sea Beam studies,Mar. Geophys. Res., 14, 299-344, 1992. Davis, E. E., and J. L. Karsten, On the cause of the asymmetric distributionof seamounts aboutthe Juande Fuca Ridge:Ridge crest Macdonald,K. C., P. J. Fox, R. T. Alexander,R. Pockalny,and P. Gente, Volcanicgrowthfaultsand the origin of Pacificabyssalhills, Nature, migrationover a heterogenous asthenosphere, Earth Planet.Sci. Lett., 79, 385-396, 1986. Dekov, V. M., and V. M. Kuptsov, Late quarternary rates of accumulationof metal-bearingsedimentson the East Pacific Rise, Oceanology,32, 94-101, 1992. Detrick, R. S., A. J. Harding, G. M. Kent, J. A. Orcutt, J. C. Mutter, and P. Buhl, Seismic structure of the southernEast Pacific Rise, Science, 259, 499-503, 1993. Fornari, D., and M. A. Luckman, Seamount abundancesand distribution near the East Pacific Rise 0-24øN based on Seabeam data, in Seamounts,Islandsand Atolls, Geophys.Monogr. Ser., vol. 43, edited by B. Kaeting, P. Fryer, R. Batiza and T. J. Boehler, pp. 13-21, Washington,D.C., 1987. Forsyth, D. W., S. C. Webb, L. M. Dorman, and Y. Shen, Phase volocitiesof Rayleigh waves in the MELT experimenton the East Pacific Rise, Science, 280, 1235-1238, 1998. Gregg, T. K. P., and J. H. Fink, Quantification of submarinelava-flow morphologythroughanalogexperiments,Geology,23, 73-76, 1995. Head, J. W., L. Wilson, and D. K. Smith,Mid-oceanridgeeruptivevent morphologyand structure:Evidencefor dike widths,eruptionrates, andevolutionof eruptionsandaxial volcanicridges,J. Geophys.Res., 101, 28265-28280, 1996. Holcomb, R. T., Eruptive history and long-term behavior of Kilauea Volcano, in Volcanism in Hawaii, edited by R. W. Decker, T. L. Wright, and P. H. Stauffer, U.S. Geol. Surv. Prof Pap., 1350, 261350, 1987. Hooft, E. E., R. S. Detrick, and G. M. Kent, Seismic structure and indicatorsof magmabudgetalongthe SouthernEast Pacific Rise, J. Geophys.Res., 102, 27319-27340, 1997. Juteau,T., M. Ernewein,I. Rueber,H. Whitechurch,andR. Dahl, Duality of magmatismin the plutonicsequenceof the Sumail nappe,Oman, Tectonophysics, 151, 107-135, 1988. Keeley,C. D., A. Marcario,W. F. B. Ryan,andW. F. Haxby,Simulating seamount populations for the sourthernEast Pacific Rise and the Pacific/Antarctic Ridge, Eos Trans. AGU 76 (16), Spring Meet. Suppl.,273, 1995. Kent, G. M., A. J. Harding, J. A. Orcutt,R. S. Detrick, J. C. Mutter, and P. Buhl, The uniform accretion of oceanic crust south of the Garrett Transformat 14ø15'Son the East PaicificRise, J. Geophys.Res.,99, 9097-9116, 1994. Kleinrock,M. C., R. N. Hey, and A. E. Theberge,Practicalgeological comparison of someseafloorsurveyinstruments, Geophys.Res.Lett., 19, 1407-1410, 1992. Kleinrock, M. C., B. A. Brooks, and D. K. Smith, Construction and destruction of volcanicknobsat the Cocos-Nazcaspreadingsystem near95øW, Geophys.Res.Lett., 21, 2307-2310, 1994. Lockwood,J. P., J. J. Dvorak, T. T. English,R. Y. Koyanagi,A. T. Okamura,M. L. Summers,and W. R. Tanigawa,Mauna Loa 19741984; A decadeof intrusiveand extrusiveactivity, in Volcanismin Hawaii, editedby R. W. Decker,T. L. Wright, andP. H. Stauffer,U.S. Geol. Surv.Prof Pap., 1350, 537-570, 1987. Lonsdale,P., Laccoliths(?)and small volcanoeson the flank of the East PacificRise,Geology,11, 706-709, 1983. Lonsdale,P., Segmentation of the Pacific-Nazcaspreadingcenter,1øN20øS,J. Geophys.Res.,94, 12197-12226,1989. Lyle, M., M. Leinen,R. M. Owen,andD. K. Rea,Late Tertiaryhistoryof hydrothermaldepositionat the East PacificRise, 19øS:Correlationto volcano-tectonic events,Geophys. Res.Lett., 14, 595-598, 1987. Macdonald,K. C., and P. J. Fox, The axial summitgrabenand crosssectionalshapeof theEastPacificRiseasindicatorsof axial magma chambersand recentvolcaniceruptions,Earth Planet. Sci. Lett., 88, 119-131, 1988. Macdonald, K. C., J.-C. Sempere,P. J. Fox, and R. Tyce, Tectonic evolutionof ridgeaxisdiscontinuities by the meeting,linking,or self- 380, 125-129, 1996. Magde, L. S., and D. K. Smith, Seamountvolcanismat the Reykjanes Ridge: Relationshipto the Iceland hot spot, J. Geophys.Res., 100, 8449-8468, 1995. Mahoney, J. J., J. M. Sinton, M. D. Kurz, J. D. Macdougall, K. J. Spencer,andG. W. Lugmair,Isotopeandtraceelementcharacteristics of a super-fastspreadingridge: East Pacific Rise, 13ø-23øS,Earth Planet. Sci. Lett., 121, 173-193, 1994. Marchig,V., J. Erzinger,and P. M. Heinze, Sedimentin the black smoker area of the East Pacific Rise, Earth Planet. Sci. Lett., 79, 93-106, 1986. MELT SeismicTeam, Imagingthe deepseismicstructurebeneatha midoceanridge: The MELT Experiment,Science,280, 1215-1218,1998. Mutter, J. C., S. M. Carbotte, W. Su, L. Xu, P. Buhl, R. S. Detrick, G. Kent, J. Orcutt, and A. Harding, Seismic images of active magma systemsbeneaththe East Pacific Rise 17ø to 17ø35'S,Science,268, 391-395, 1995. Perram, L. J., and K. C. Macdonald, A one-million-year history of the 11ø45'NEastPacificRise discontinuity,J. Geophys.Res.,95, 21,36321,381, 1990. PhippsMorgan, J., and Y. J. Chen, The genesisof oceaniccrust:Magma injection,hydrothermalcirculationand crustalflow, J. Geophys.Res., 98, 6283-6297, 1993. Purdy, G. M., L. S. L. Kong, G. L. Christeson,and S. C. Solomon, Relationshipbetweenspreadingrate and the seismicstructureof midoceanridges,Nature, 355, 815-817, 1992. Rappaport,Y., D. F. Naar, C. C. Barton, Z. J. Liu, and R. N. Hey, Morphologyand distributionof seamountssurroundingEasterIsland, J. Geophys.Res., 102, 24713-24728, 1997. Rubin, A.M., Propagationof magma-filled cracks, Annu. Rev. Earth Planet. Sci., 23, 287-336, 1995. Scheirer, D. S., and K. C. Macdonald, Variation in cross-sectionalarea of the axial ridge along the East Pacific Rise: Evidence for the magamaticbudget of a fast-spreadingcenter, J. Geophys.Res., 98, 7871-7885, 1993. Scheirer, D. S., and K. C. Macdonald, Near-axis seamountson the flanks of the East Pacific Rise, 8øN to 17øN, J. Geophys.Res., 100, 22392259, 1995. Scheirer, D. S., K. C. Macdonald, D. W. Forsyth, S. P. Miller, D. W. Wright, andM.-H. Cormier,A mapseriesof the southernEastPacific Rise and its flanks, 15øS to 19øS, Mar. Geophys.Res., 18, 1-12, 1996a. Scheirer,D. S., K. C. Macdonald,D. W. Forsyth,andY. Shen,Abundant seamounts of the Rano Rahi seamount field near the southern East PacificRise, 15øto 19øS,Mar. Geophys. Res., 18, 13-52, 1996b. Scheirer,D. S., M. H. Cormier, K. C. Macdonald,R. M. Haymon, S. M. White, and Sojn01 Sci. Party, Completingthe picture of the East Pacific Rise and its flanks in the MELT area, Eos Trans. AGU, 77(44), Fall Meet. Suppl.,663, 1996c. Scheirer,D. S., D. W. Forsyth, M.-H. Cormier, and K. C. Macdonald, Shipboardgeophysical indicationsof asymmetryandmelt production beneaththe East Pacific Rise near the MELT Experiment, Science, 280, 1221-1224, 1998. Secor, D. T., and D. D. Pollard, On the stability of open hydraulic fracturesin the Earth'scrust,Geophys.Res.Lett., 2, 510-513, 1975. Shen,Y., D. S. Scheirer,D. W. Forsyth,and K. C. Macdonald,Trade-off in productionbetweenadjacentseamountchainsnearthe EastPacific Rise, Nature, 373, 140-143, 1995. Singh,S. C., J. Collier, G. Kent, andA. Harding,Along-axisvariationsin crustalmagmapropertiesat the southernEast Pacific Rise: Melt to mush,Eos Trans.AGU, 78(46), Fall Meeting.Suppl.,670, 1997. Sinton, J. M., S. M. Smaglik, J. J. Mahoney, and K. C. Macdonald, Magmatic processesat superfastspreadingmid-oceanridges: Glass 30,384 WHITEETAL.'ISOLATED VOLCANOES NEARSEPR compositionalvariations along the East Pacific Rise 13ø-23øS,J. Geophys.Res.,96, 6133-6155, 1991. Smith, D. K., and J. R. Cann, The role of seamountvolcanismin crustal constructionat the Mid-Atlantic Ridge (24ø30'N), J. Geophys.Res., White, S. M., K. C. Macdonald,D. S. Scheirer,M.-H. Cormier, and R. M. 97, 1645-1658, 1992. Smith, D. K., and T. H. Jordan, Seamountstatisticsin the Pacific Ocean, Wilson, D. S., Focusedmantle upwelling beneathmid-oceanridges: Evidence from seamountformation and isostaticcompensationof topography, Earth Planet.Sci.Lett., 113, 41-55, 1992. Wilson,D. S., D. A. Clague,N.H. Sleep,andJ. L. Morton,Implications of magmaconvection for thesizeandtemperature of magmachambers at fastspreading ridges,J. Geophys. Res.,93, 11974-11984, 1988. J. Geophys.Res.,93, 2899-2918, 1988. Smith, D. K., J. R. Cann, M. E. Dougherty, J. Lin, S. Spencer, C. MacLeod, J. Keeton, E. McAllister, B. Brooks, R. Pascoe, and W. Robertson,Mid-Atlantic Ridge volcanismfrom deep-towedside-scan sonarimages,25-29N, J. Volc. Geotherm.Res.,67, 233-262, 1995. Smith, W. H. F., and P. Wessel, Gridding with continuouscurvature splinesin tension,Geophysics, 55, 293-205, 1990. Thorarinsson,S., The Lakagigar eruptionof 1783, Bull. Volcanol.,33, 910-927, 1969. Turcotte, D. L., and G. Schubert, GeodynamicsApplications of ContinuumPhysicsto GeologicalProblems,450 pp., JohnWiley, New York, 1982. Vogt, P. R., Volcanospacing,fractures,and thicknessof the lithosphere, Haymon, Isolated Near-Axis Volcanoes on the SEPR: Is the neovolcanic zone 28km wide?, Eos Trans. AGU, 75(46), Fall Meet. Suppl.,689, 1997. M.-H. Cormier,Lamont-Doherty EarthObservatory, Geoscience 103, • MCS Group,Palisades, NY, 10964 K. C. Macdonald and S. M. White, Department of Geological Sciences,University of California, Santa Barbara, CA 91306. ([email protected]) D. S. Scheirer, Department of Geological Sciences, BrownUniversity, Box 1846, Providence,R102912. Earth Planet. Sci. Lett., 21, 235-252, 1974. Wessel, P., Thermal stresses and the bimodal distribution of elastic thicknessestimatesof oceaniclithosphere,J. Geophys.Res., 97, 14177-14193, 1992. (ReceivedMarch 9, 1998;revisedJuly22, 1998; acceptedAugust17, 1998.)
© Copyright 2026 Paperzz