1 1. Approximate the area under the curve y = 1+x 2 over the interval [0, 2] using a Riemann sum approximation with n = 4 rectangles and using a lower sum estimate, that is, use the right endpoint of each subinterval in the Riemann sum. (12 pts.) 2. Find an upper bound on the error |ET | of a finite sum approximation of n = 4 trapezoids. You may assume that |ET | (b a)3 M , if |f 00 (x)| M on [0, 2]. 12n2 1 R2 1 0 1+2x dx using (8 pts.) 3. Find the general anti-derivative. Z (a) sec(3x) tan(3x) dx (b) Z (c) Z (d) Z cos(⇡x) x 1 x px dx, e x/2 (6 pts. each) + ⇡ 3 dx dx p > 0. 2 4. Find the area bounded by the line y = x 6 and the curve y = 5. Find g 0 (x) if x2 + 5x + 6. (16 pts.) (8 pts.) g(x) = Z x2 x sin(3t2 ) dt. 1 3 6. Integrate. (a) Z (b) Z (c) Z (8 pts. each) p 2e p 1 p ⇡/2 1 x x p dx 3x sec2 (x2 ) dx 0 e2 1 ln(x) dx 8x 4
© Copyright 2025 Paperzz