ME343 Lecture Note 5 Temperature Measurements and Sensor Characteristics Objectives: • Temperature Measurement by TC • Sensor Characteristics o Sensitivity o Signal drifting o Response time • Other methods for Temperature Measurement o RTD o Thermistor o Infrared Thermometer • Lab Report Requirement of Lab 2 (See Lecture note 3 for geeral format requirement and Grading Criteria of Lab 2 for special requirement) • Resistance Thermometer (RTD) R(T ) = R0 [1 + A(T − T0 ) + B(T − T0 ) 2 ] (1) Where, R0 is resistance at T0; A and B are coefficients. or R (T ) = α + β T + γ T 2 (2) Thus, given some calibrated oints (R1, T1), (R2, T2), (R3, T3), α, β, γ are determined from equation (2). ∴ sensitivity = dR = β + 2γ T dT (3) For small temperature span or at low temperature R (T ) = R0 [1 + A(T − T0 )] = α + β T Table 16.2 Typical RTD’s T (oc) R0 (Ω) A Platinum (Lab) -190~540 25@0 oc 0.0039 Platinum (Ind.) -200~125 25@0 oc 0.0039 10-30 Copper -70~120 10@0 oc 0.0038 20-60 nickel 0~120 100@0 oc 0.0067 20-60 Response time -18~540 Most RTD’s are metal alloys R(T) R(T) ↑as T ↑ T • Thermistor o Ceramic- type materials: R(T) ⎛ dR ⎞ ⎜ ⎟ ~ sensitivity ⎝ dT ⎠1 ⎛ dR ⎞ ⎜ ⎟ ⎝ dT ⎠2 T 1 R(T) ↑as T ↓ Highly non‐liner! T T 2 ⎡ ⎛ 1 1 ⎞⎤ R (T ) = R0 EXP ⎢ β ⎜ − ⎟ ⎥ ⎣⎢ ⎝ T T0 ⎠ ⎦⎥ Where β is a constant. OR. β R (T ) = α exp( ) T Thus, given two or more calibration points → α, β o Various forms of thermistors (See Fig. 16.7 and Table 16.3) o Self-heating (drifting in R) q = i 2 R = TR ↑⇒ RT ↓ i Concept: (∴ from ∆RT ⇒ ∆T ) RT Testing: Rfa Rfb eo ei Radj RT (1) Initially balanced by adjusting Radj (eo≈0) (2) RT is changed by changing ei (or i) (3) “self-heating” → eo≠0 R fb ⎤ eo ⎡ R fa =⎢ − ⎥ ei ⎢⎣ Radj + R fa RT + R fb ⎥⎦ R fb (dRT ) R 2fa dRT de ∴ o = ei = ei ( RT + R fb ) 2 ( R + R )2 R adj fa fb ⎛ dR ⎞ ⎛ dR ⎞ From ⎜ ⇒ dT = dRT ⋅ ⎜ ⎟ ⎟ ⎝ dT ⎠ balanced po int ⎝ dT ⎠ balanced po int • Thermocouple (TC) A T1 T2 P q B * A, B are two dissimilar metals: (1) Peltier effect: electromotive force at junction (emf) (2) Thomson effect: electromotive fore by tempereature gradient (Themoson effect << Peltier effect) * A, B junction at p: emf P A, B junction at q: A B A emf B q If T1 = T2 , (emf)p = (emf)q If T1 ≠T2 , (emf)p ≠ (emf)q → iTC ≠ 0 If T1 is a cold ( or reference) junction (e.g. icy point.) iTC = f (T2 ) * Typical Type of TC (See Table 16.4) Type T Type J Type K (Cu/Const) (Iron/ Const) (Chrom/Al) T range (oc) -180~260 -180~540 -180~1370 mV range -5.3~19 -7.5~29.5 -5.6~54.8 All output are in mV Need “ pre-amplifier” to do data-acquisition Empirical relations (see Table 16.6) Standard TC data base (e.g. TC manuals) * Transient Temperature Measurement by TC dT = hA(T∞ − T ) dt hA ⎧ d (T∞ − T ) =− (T − T ) ⎪ dt ρc ∞ ∴⎨ ⎪T = T 0 ⎩ t =0 T −T hA t) ∴ ∞ = exp(− T∞ − T0 ρc ρc Let τ ≡ ∴ ρc hA T∞ − T t = exp(− ) T∞ − T0 τ (response time) T∞ T ( Bi<<1 ) T∞ − T T∞ − T0 1 e t τ Or (1) T∞ > T0 T T∞ T0 t τ (2) T∞ < T0 T T0 T∞ t τ (3) ln( T∞ − T0 t )= τ T∞ − T ln( T∞ − T0 ) T∞ − T 1 τ t 0 • Infrared Thermometer (IR Pyrometry) o Thermal Radiation (1) Monochrometic (single wavelength) Planck’s law: Eλ = C λ (e 5 1 C2 / λ T − 1) Where, Eλ ( w / m 2 ⋅ µ m); T ( K ); λ ( µ m) C1 = 374.18MW µ m 4 / m 2 ; C2 = 14388µ mK Eλ 1100K 800K 500K λ(µm) Visible light (2) Wien displacement law ( dEλ = 0) dλ λmax ⋅ T = 2897.8µ mK Eλ λ λmax (3) Total radiation ∞ qr = ∫ Eλ d λ = σ T 4 (Stefan‐Boltzmann) 0 o IR Pyrometry (1) IR region: λ=0.75~ 1000 µm (non-visible) T oc λmax 25 oc 9.7 µm 1100 oc 2 µm -100oc ~15 µm (2) Area-averaged (not point-measurement !) (poor focusing!) I. R. (3) High-temperature (>1000 oc) Distinct peak → good sensitivity (4) Cryogenic-temperature (say < -50 oc) a. Less distinctive peak but can go to very low temperature b. Important for outer-space applications
© Copyright 2026 Paperzz