Slide 1 Placebo Response Nick Holford University of Auckland Slide 2 Clinical Pharmacology = Disease Progress + Drug Action ©NHG Holford, 2013 all rights reserved. Slide 3 Components of a Disease Progress Model • Baseline Disease State • Natural History • Active Treatment Response • Placebo Response S(t) = S0 +Nat. Hx. + Active + Placebo ©NHG Holford, 2013 all rights reserved. Disease progress models start with a baseline disease status, S0. The change from baseline in the absence of drug treatment describes the natural history of the disease (disease progression). When drugs are used then the active effect of the drug modifies disease status. In clinical trials it is also necessary to consider the placebo response as a separate component. Some disease progress models are described in Holford NHG, Mould DR, Peck CC. Disease progress models. In: Atkinson A, editor. Principles of Clinical Pharmacology. 2nd ed. San Diego: Academic Press; 2007. p. 313-21. More complex effects based on turnover models have been described in Post TM, Freijer JI, DeJongh J, Danhof M. Disease system analysis: basic disease progression models in degenerative disease. Pharm Res. 2005 Jul;22(7):1038-49. Slide 4 Response to Inactive Treatment • PLACEBO “I will please” -- Response improvement • NOCEBO “I will harm” -- Response worsens ©NHG Holford, 2013 all rights reserved. Slide 5 Placebo Response HAM-D 17 point Hamilton Depression HAM-D 20 10 0 2 4 6 8 Week ©NHG Holford, 2013 all rights reserved. Slide 6 Placebo Response “Constant input with first order elimination” Tlag=Lag time 25 S0=Baseline Drem=Remission “Dose Rate” HAM-D 20 15 Trem=Remission Half-Life 10 0 14 28 42 56 70 84 Time (days) ©NHG Holford, 2013 all rights reserved. 98 112 126 Some clinical responses will show a natural history pattern which approaches an asymptote. For example, pain scores after abdominal surgery typically decrease over a few days and approach zero. The asymptote may be non-zero as shown in the figure. This illustrates the improvement in the Hamilton Depression (HAM-D) rating scale after administration of a placebo in an antidepressant clinical trial. It is a matter of personal preference whether one calls this a change due to disease progress or a change due to placebo treatment. In this particular case the two mechanisms are indistinguishable. Slide 7 Disease Progress and Placebo Models for Depression Response Models Equations Disease Progress S (t ) = S 0 Placebo Response Placebo(t ) = Drem ⋅ 1 − e − ln( 2) / Trem⋅(t −Tlag ) HAM-D Time Course HAMD(t ) = S (t ) + Placebo(t ) ( ) An application of an exponential model with a nonzero asymptote is shown here. The disease progress model is assumed to remain constant and the change with time is attributed to a placebo response. An exponential model with an asymptote of Drem (the size of the remission expressed as the placebo ‘dose’) and a half-life Trem (the halflife of remission induced by placebo) is used to describe the placebo response. There is a delay before the onset of the placebo effect which can be described with Tlag (lag time). ©NHG Holford, 2013 all rights reserved. Slide 8 The placebo response in anti-depressant trials is not always monophasic. Sometimes it is possible to discern a relapse (i.e. worsening of HAM-D) during the trial. The relapse component of the response can be described by a simple change to the asymptotic progress model. Placebo ID 2006 40 60 HAMD 10 -0 -0 20 40 60 20 40 60 -0 20 40 Days 2036 2044 2050 30 20 20 10 10 -0 -0 -0 40 60 -0 20 40 60 -0 20 40 60 20 10 -0 -0 20 40 60 -0 20 40 Days Days Days Days Days 2051 2062 2069 2071 2077 10 10 -0 10 -0 40 60 30 20 20 40 60 20 10 -0 -0 20 40 60 20 10 -0 -0 -0 -0 20 40 60 -0 20 40 Days Days Days Days Days 2081 2087 2092 2102 2107 10 60 Days 20 10 -0 40 HAMD 20 10 -0 30 30 HAMD 20 20 40 60 20 40 60 20 10 -0 -0 Days 20 10 -0 -0 -0 -0 20 Days 40 60 Days -0 20 40 Days ©NHG Holford, 2013 all rights reserved. Slide 9 Placebo Response Model Bateman “first order absorption and elimination” Tlag Remission “Dose” 30 25 HAM-D 20 15 Relapse Half-Life 10 Remission Half-Life 5 0 0 50 100 150 Time (days) ©NHG Holford, 2013 all rights reserved. 60 30 HAMD 30 HAMD 30 60 30 HAMD 30 20 HAMD 20 HAMD 30 HAMD 30 60 30 HAMD HAMD HAMD 30 20 10 20 60 2033 30 -0 40 2030 -0 20 20 Days 10 -0 -0 -0 Days 20 20 10 -0 -0 20 Days 30 -0 2023 30 20 Days HAMD 20 2017 30 20 10 -0 -0 HAMD 20 10 -0 HAMD HAMD HAMD HAMD 20 10 HAMD 2013 30 30 HAMD 2004 30 200 250 300 60 Slide 10 A two exponential model with a biphasic pattern is known as the Bateman function. Placebo Bateman Model Drem ⋅ Krem ⋅ (e − Krel ⋅( t −Tlag ) − e − Krem⋅( t −Tlag ) ) ( Krem − Krel ) HAMD(t ) = S 0 + Placebo(t ) Placebo(t ) = S0 = Baseline HAM − D Tlag = Placebo onset lag - time Drem = Remission Dose ln(2) Trem ln(2) Krel = Trel Krem = Trem = Remission Half − life Trel = Relapse Half − life ©NHG Holford, 2013 all rights reserved. Slide 11 Inverse Bateman Placebo Response Profiles 30 Standard Placebo Response 25 HAM-D 20 15 Bigger Remission “Dose” 10 5 Faster 0 Remission Half-life 0 50 100 150 200 250 Time (days) ©NHG Holford, 2013 all rights reserved. Slide 12 What is the Time Course of Placebo Response? • Placebo Arm of Double Blind Randomized Phase II Study of New Potential AntiDepressants – Total 582 patients, 3864 observations • • • • ©NHG Holford, 2013 all rights reserved. Drug X, Study A (154 patients) Drug X, Study B (141 patients) Drug Y, Study C (149 patients) Drug Y, Study D (138 patients) 300 Slide 13 Time Course of Placebo Response in Depression Parameter Estimate Units 24 HAM-D Baseline Lag time 4.7 days Remission amplitude 20.6 HAM-D Remission half-life 60 days Relapse half-life 280 days iba_plaro_sdymixfix_s0sexwtsdyfix_tlwt_teme ©NHG Holford, 2013 all rights reserved. Slide 14 Drug X ID 40 60 40 20 40 60 HAMD 60 -0 20 40 Days 2036 2044 2050 60 20 -0 -0 20 40 60 20 10 10 20 40 60 20 10 -0 -0 -0 -0 20 40 60 -0 20 40 Days Days Days Days Days 2051 2062 2069 2071 2077 30 30 HAMD 20 20 20 20 10 10 10 10 -0 -0 -0 -0 40 60 -0 20 40 60 -0 20 40 60 20 10 -0 -0 20 40 60 -0 20 40 Days Days Days Days Days 2081 2087 2092 2102 2107 20 20 10 10 10 10 -0 -0 -0 -0 40 60 -0 20 Days 40 -0 60 20 40 60 20 10 -0 -0 20 Days Days 60 30 30 20 HAMD 30 HAMD HAMD 30 20 HAMD 30 60 30 HAMD 30 HAMD 30 60 30 HAMD HAMD 20 -0 40 30 30 HAMD HAMD -0 20 40 2033 10 -0 20 2030 30 20 -0 -0 Days 10 -0 10 -0 -0 60 Days 20 20 10 -0 20 20 Days 30 -0 HAMD 10 -0 30 20 Days HAMD 20 2023 30 20 -0 -0 HAMD 20 10 -0 HAMD HAMD HAMD HAMD 20 2017 30 30 10 HAMD 2013 2006 2004 30 40 -0 60 20 Days 40 60 Days Inverse Bateman ©NHG Holford, 2013 all rights reserved. Slide 15 Drug Y ID 5128 40 60 40 60 40 60 -0 20 40 HAMD Days 5161 5168 40 60 30 20 20 40 60 -0 20 40 60 20 10 -0 -0 -0 20 10 10 -0 -0 20 40 60 -0 20 40 Days Days Days Days Days 5172 5178 5185 5187 5192 10 10 -0 10 -0 40 60 30 20 20 40 60 20 10 -0 -0 20 40 60 20 10 -0 -0 -0 -0 20 40 60 -0 20 40 Days Days Days Days Days 5195 5198 5207 5212 5216 30 20 30 20 20 10 10 10 10 -0 -0 -0 -0 40 60 Days ©NHG Holford, 2013 all rights reserved. -0 20 40 Days 60 -0 20 40 Days 60 60 30 HAMD 20 HAMD 30 HAMD 30 60 30 HAMD 30 20 HAMD 20 HAMD 30 HAMD 30 60 30 HAMD HAMD HAMD 30 20 -0 -0 20 20 5155 10 -0 -0 -0 60 5150 30 20 40 5149 10 -0 20 Days 20 20 10 -0 -0 Days HAMD HAMD 20 20 Days 30 -0 10 -0 -0 30 20 Days HAMD 20 5140 30 20 10 -0 -0 HAMD 20 10 -0 5135 30 HAMD HAMD HAMD 20 10 HAMD 5130 30 HAMD 5124 30 20 10 -0 -0 20 40 60 -0 20 Days Inverse Bateman 40 Days 60 Slide 16 Relapse Mixture Model • Assume some patients relapse (get worse while on placebo treatment) • Assume patients who do not relapse have infinite relapse half-life • Probability of patient having a relapse is estimated using a mixture model ©NHG Holford, 2013 all rights reserved. Slide 17 Relapse Probability Study A 98% Study B 45% Study C 29% Study D 18% Why are relapse probabilities different? iba_plaro_sdymixfix_s0sexwtsdyfix_tlwt_teme ©NHG Holford, 2013 all rights reserved. Slide 18 Is It a Design Issue? HAM-D Observation Times Study B 24 18 12 6 0 0 14 28 42 56 70 84 OBS Day Study C Study D 24 24 18 18 12 12 6 6 0 0 0 28 56 84 112 OBS Day ©NHG Holford, 2013 all rights reserved. 140 168 196 0 28 56 84 112 OBS Day 140 168 196 224 Slide 19 Observation Effect Model • Each HAM-D observation is a “dose” of placebo • Placebo “conc” rises and falls like oral drug absorption model • Placebo “conc” shortens remission and relapse half-lives ©NHG Holford, 2013 all rights reserved. Slide 20 Observation Effect on Placebo Response Parameter Estimate Placebo onset half-life 0.12 days Placebo elimination half-life 31 days Placebo effect on remission -40% Placebo effect on relapse -64% ©NHG Holford, 2013 all rights reserved. iba_plaro_sdymixfix_s0sexwtsdyfix_tlwt_teme Slide 21 Disease Progression and Placebo Response • Requires assumption about shape of disease progression (natural history) • Commonly disease progression is linear • Placebo (or nocebo) observed response will be the sum of disease progression and the placebo (nocebo) time course ©NHG Holford, 2013 all rights reserved. Slide 22 Linear + Offset (Symptomatic) S (t ) = (S 0 + E (t ) ) + α ⋅ t 120 Status 110 100 Temporary Improvemen 90 Natural History 80 With any disease progress model it is possible to imagine a drug action that is equivalent to a change in the baseline parameter of the model. This kind of effect on disease produces a temporary offset. When treatment is stopped the response to the drug washes out and the status returns to the baseline. In many cases it is reasonable to suppose that the processes governing a delay in onset of drug effect will also affect the loss of effect but the offset effects of levodopa treatment in Parkinson’s disease are one exception to this assumption. 70 0 13 26 39 52 Time Natural History Offset Effect ©NHG Holford, 2013 all rights reserved. Slide 23 Linear + Offset + Placebo Griggs RC, Moxley RT, Mendell JR, Fenichel GM, Brooke MH, Pestronk A, et al. Prednisone in Duchenne Dystrophy: A randomized, controlled trial defining the time course and dose response. Archives of Neurology 1991;48:383-88 ©NHG Holford, 2013 all rights reserved. Slide 24 DATATOP ELLDOPA TEMPO ©NHG Holford, 2013 all rights reserved. Parkinson’s Disease Inactive Treatment Clinical Trials • DATATOP cohort: early untreated PD patients to determine if deprenyl and/or tocopherol administration will prolong time before levodopa rescue. Multicenter, randomized, double-blind, placebo-controlled. 800 subjects. DATATOP cohort followed up to 8 years (5). Tocopherol was shown to be inactive so it has been included with placebo treated patients as an inactive control treatment. • ELLDOPA: effect of early or later levodopa treatment on rate of PD progression. Multicenter, randomized, dose-ranging, double-blind, placebo-controlled washout design. 361 patients. 11 months. • TEMPO: comparison of 1 mg/d and 2 mg/d of Rasagiline in early PD patients not treated with levodopa. Multicenter, randomized, double-blind, delayed start design. 360 patients. 12 months. Muscular dystrophy causes a progressive loss of muscle strength. This graph shows the author’s belief that the natural history is essentially linear over 6 months. The effects of two doses of prednisone demonstrate a delayed onset of effect but no change in the rate of progression after the maximum effect is achieved. This seems to be an example of an offset type of drug effect. The response to placebo is also delayed but differs from prednisone by loss of effect and return to the natural history rate of progression. The difference in time course of drug action, placebo response and natural history components allows these three phenomena to distinguished. Slide 25 Disease Progression And Placebo/Nocebo in Parkinson’s Disease 70 60 UPDRS 50 40 30 20 10 0 0 0.5 1 1.5 2 2.5 3 3.5 Years Nocebo Placebo Linear Gompertz ©NHG Holford, 2013 all rights reserved. Slide 26 Parkinson’s Disease Placebo and Nocebo Parameter POP_S0 POP_ALPHA POP_PMAX POP_TAB FTEL Probability Description Baseline UPDRS Progression rate Maximum 'placebo' benefit 'Placebo absorption' half-life 'Placebo elimination' half-life fraction of POP_TAB Probability of positive response (PMAX) Units Average RSE 2.5% ile u 23.1 0.019 22.2 u/y 12.7 0.100 10.6 u -5.09 -0.288 -8.22 day 202 0.438 111 x 100 0.805 2.64 0.005 . 0.162 0.298 0.066 97.5% ile 24.0 15.6 -3.12 469 4.11 0.254 Pmax for placebo is negative to describe improvement in response with inactive treatment ©NHG Holford, 2013 all rights reserved. Slide 27 Placebo Response Summary • A part of the disease progress model • Usually requires an assumption about the natural history • May be a key part of the overall response to treatment • Quantitative models are helpful for understanding active and inactive treatment responses ©NHG Holford, 2013 all rights reserved. Slide 28 Disease Progress, Placebo/Nocebo, Termination Event $PK IF (MIXNUM.EQ.1) THEN ; Nocebo FPmax=-FPOSPmax*FPOSET ELSE ; Placebo FPmax=1 ENDIF ; Peak response PMAX=POP_PMAX*Fpmax*EXP(PPV_PMAX) ; nominal placebo ‘dose’ BPLA=PMAX*(Kab-Kel)/(Kab*(EXP(LOG(Kab/Kel)*Kel/(Kab-Kel)) - EXP(LOG(Kab/Kel)*Kab/(Kab-Kel))) ; Baseline disease status A_0(1)=S0 $DES ;Disease status (UPDRS) DDPRG=A(2) ; linear progression status DPLA= (BPLA*Kab)/(Kab-Kel)*(EXP(Kel*T)-EXP(-Kab*T)) DSTAT=DDPRG+DPLA ; progression + placebo ;Termination event hazard DADT(1)=BASDRP*EXP(BUPD*DSTAT) ;Disease progression DADT(2)=AL ; linear progression slope ©NHG Holford, 2013 all rights reserved. $ERROR CUMHAZ=A(1) NH=A(2) SRVT=EXP(-CUMHAZ); S(t) IF (DVID.EQ.1) THEN F_FLAG=0 ; Continuous ELS Y = NH + PLA + ERRSD ENDIF IF (DVID.EQ.2.AND.DV.EQ.0) THEN ; Censored F_FLAG=1 ; Likelihood Y=SRVT ENDIF IF (DVID.EQ.2.AND.DV.EQ.1) THEN ; Event F_FLAG=1 ; Likelihood Y=SRVZ-SRVT ENDIF IF (DVID.EQ.3) THEN SRVZ=SRVT ;Save S(t) for start of censor interval ELSE SRVZ=SRVZ ; Keep NM-TRAN happy ENDIF
© Copyright 2026 Paperzz