Ligand Accelerated Catalysis (LAC) Chris Borths MacMillan Group Meeting October 3, 2001 I. Definition II. Oxidations III. Reductions IV. Alkylations V. Lewis base catalysis Reviews: LAC: Berrisford, D.J.; Bolm, C.; Sharpless, K.B. Ang. Chem. Int. Ed. Engl. 1995, 34, 1059. Non-Linear Effects: Girard, C.; Kagan, H.B. Angew. Chem. Int. Ed. Engl. 1998, 37, 2922. Blackmond, D.G. J. Am. Chem. Soc. 1997, 119, 12934. Asymmetric Activation: Mikami, K.; Terada, M.; Korenaga, T.; Matsumoto, Y.; Ueki, M.; Angelaud, R. Angew. Chem. Int. Ed. Engl. 2000, 112, 3532. A Definition of LAC catalyst A+B P k0 catalyst + ligand A+B P k1 ! Ligand accelerated catalysis can be most simply defined as any reaction where ! Ligand acceleration effect (LAE) is defined by !ML >1 !M k1Keq[ligand] k0 ! Useful levels of selectivity can be achieved when the LAE is 20 or higher. ! If ligand exchange occurs faster than or on the same time scale as the transormation, asymmetric catalysis becomes viable at high levels of LAE. Berrisford, D.J.; Bolm, C.; Sharpless, K.B. Angew. Cem. Int. Ed. Engl. 1995, 34, 1059. Titanium-Catalyzed Asymmetric Epoxidation OH O OH ! Titanium exhibits complex metal ligand association in solution. Metal-ligand species detected in solution: Ti(OiPr)4 (M) and diisopropyl tartrate (L) M1L0, M2L0, M2L1, M3L1, M2L2, M3L2, M3L3, M4L4 (evidence for existence based on NMR, MS, or XRD) ! Multiple metal-ligand species are active epoxidation catalysts RO RO O OR OR RO Ti OR OR O RO Ti RO O O ER Ti OR O O O RO OR Ti RO E O O Ti OR OR O OR E solution fraction (1:1 M:L) relative epoxidation rate enantioselectivity M1L0 ~ 10% 1.4 none M2L1 ~ 10% 1.0 low M2L2 ~ 80% 3.6 high ! The standard SAE receipe calls for a 20% excess of tartrate, practically removing the unwanted epoxidation catalysts from solution. Berrisford, D.J.; Bolm, C.; Sharpless, K.B. Angew. Cem. Int. Ed. Engl. 1995, 34, 1059. Titanium-Catalyzed Asymmetric Epoxidation OH O E OH O OR RO Ti O O E O Ti O E O O O R RO ! Sharpless system shows excellent enatioselectivity. (Ligand DET or DIPT) R R R OH OH R OH OH R ee ! 94 ee ! 80 ee ! 95 ee ! 91 R R OP R OP ee ! 90 OP OP R ee ! 92 ee ! 90 ee ! 86 Gao, Y.; Hanson, R.M.; Klunder, J.M.; Ko, S.Y.; Masamune, H.; Sharpless, K.B. J. Am. Chem. Soc. 1987, 109, 5765. McKee, B.H.; Kalantar, T.H.; Sharpless, K.B. J. Org. Chem. 1991, 56, 6966. Osmium-Catalyzed Dihydroxylation OH OH ! This is the first reaction to show ligand acceleration by chincona alkaloids. ! The ligand acceleration effect has been demostrated to be greater than 15 and as high as 100 for stilbene at 0 °C. DHQ Et Et N RO N H RL RS OR H MeO OMe N DHQ Ph N R'O CO2R' OR' DHQD N DHQD N H RM R'O OR' IND ee 20 - 80 % PYR PHAL ee 30 - 97 % PHAL ee 90 - 99.8 % PYR PHAL 20 - 97 % PHAL ee 70 - 97 % PHAL ee 90 - 99 % N N N Ph R= PHAL IND PYR THE CATALYSTS Jacobsen, E.N.; Markó, I.; Mungall, W.S.; Schröder, G.; Sharpless, K.B. J. Am. Chem. Soc. 1988, 110, 1968. Jacobsen, E.N.; Markó, I.; France, M.B.; Svendsen, J.S.; Sharpless, K.B. J. Am. Chem. Soc. 1989, 111, 737. Sharpless, K.B.; Amberg, W.; Beller, M.; Chen, H.; Hartung, J.; Kawanami, Y.; Lübben, D.; Manoury, E.; Ogino, Y.; Shibata, T.; Ukita, T. J. Org. Chem. 1991, 56, 4585. Kolb, H.C.; Van Nieuwenhze, M.S.; Sharpless, K.B. Chem. Rev. 1994, 94, 2483. Multiple Catalytic Cycles Operate in the Osmium Dihydroxylation ! Slow addition of olefin substrate in presence of acetate can select against the second catalytic cycle. ! Use of K3Fe(CN)6 as the oxidant can eliminate the second catalytic cycle. HO L OH O Ligand-Accelerated Cycle High ee O O O O Os O O O H2O O Os O O L O O O Os L Second Cycle Low ee O O [O] O O Os O O O [O] L HO 81% ee in first cycle OH Os O O O H2O, L -7% ee in second cycle Wai, J.S.M.; Markó, I.; Svendsen, J.S.; Finn, M.G.; Jacobsen, E.N.; Sharpless, K.B. J. Am . Chem. Soc. 1989, 111, 1123. Kwong, H.L.; Sarato, C.; Ogino, Y.; Chen, H.; Sharpless, K.B. Tetrahedron Letters 1990, 31, 2999. Mechanism of Osmium Dihydroxylation A concerted [ 3 + 2 ] mechanism is beleived to be correct O O +L Os O O -L O O Os O O L O [3+2] O O Os O O L O O Os O L [2+2] O O Os O O +L O -L O O O Os L ! Hammett studies favor the existence of a concerted mechanism ! Frontier molecular orbital calculations favor a concerted [ 3 + 2 ] mechanism. ! Transition state models with chiral chelating dinitrogen ligands are inconclusive. ! Kinetic isotope effects match the predicted [ 3 + 2 ] calculations and do not match the predicted [ 2 + 2 ] calculations. ! Quantum mechanical modelling based on the [ 3 + 2 ] mechanism (using MM3* calculations) can predict the experimental enantioselectivities to within a few percentage points. Norrby, P.O.; Becker, H.; Sharpless, K.B. J. Am. Chem. Soc. 1996, 118, 35. Nelson, D.W.; Gypser, A.; Ho, P.T.; Kolb, H.C.; Kondo, T.; Kwong, H.L.; McGrath, D.V.; Rubin, A.E.; Norrby, P.O.; Gable, K.P.; Sharpless, K.B. J. Am. Chem. Soc. 1997, 119, 1840. DelMonte, A.J.; Haller, J.; Houk, K.N.; Sharpless, K.B.; Singleton, D.A.; Strassner, T.; Thomas, A.A. J. Am. Chem. Soc. 1997, 119, 9907. Norrby P.O.; Rasmussen, T.; Haller. J.; Strassner, T.; Houk, K.N. J. Am. Chem. Soc. 1999, 121, 10186. Palladum-Catalyzed Oxidations ! Reaction rate accelerated by nitrogen ligands O 5 mol % Pd(OAc)2 10 mol % ligand OH H O2 Ligand none pyridine 2,6-lutidine triethylamine 2,2'-bipyridine pyridine with 3ÅMS Conversion (2h) 5% 86 % 82 % 78 % 5% quantitative ! Reaction rate shows a marked dependence on ligand concentration; efficient oxidations at 4 eq ligand / Pd 5 mol % Pd(OAc)2 20 mol % pyr 3ÅMS OH R R O R O2 R = alkyl, aryl, alkenyl, H, keto, cyclic R yields ! 63 % most ! 80 % Nishimura, T.; Onoue, T.; Ohe, K.; Uemura, S. Tetrahedron Letters 1998, 39, 6011. Nishimura, T.; Onoue, T.; Ohe, K.; Uemura, S. J. Org. Chem. 1999, 64, 6750. Palladum-Catalyzed Oxidations: Kinetic Resolution ! (-)-Sparteine is most selective ligand. 5 mol % Pd(II) 20 mol % (-)-sparteine OH R R O2 R O N N R (-)-sparteine OH OH OH Me Me Et MeO krel = 17.5 / 23.1 krel = 11.6 / 14.8 OH krel = 15.1 / 12.3 OH Me Me F krel = 12.2 / 14.4 krel = 10.1 / 47.1 (Note: first krel is from Sigman paper, second krel is from Stoltz paper) Jensen, D.R.; Pugsley, J.S.; Sigman, M.S. J. Am. Chem. Soc. 2001, 123, 7475. Ferreira, E.M.; Stoltz, B.M. J. Am. Chem. Soc. 2001, 123, 7725. Zirconium-Catalyzed !"Cyanohydrin Synthesis ! Reaction shows significant ligand acceleration. TMS + O + O TMSCN 1) 20 mol % Zr catalyst ClCH2CH2Cl OH 2) KF, MeOH CN TMS (BTSP) Zr catalyst time yield (%) Zr(OnBu)4 84 h 62 63 h 63 38 h 63 alone 15 h 68 + Ph3PO 1.5 h 94 Zr(OiPr)4 Ph Zr(OtBu)4 Ph O Zr(OtBu)2 O Ph Ph ! Mono-, di-, and tri-substituted olefins are good substrates for this reaction. R R R R R OH R CN yields ! 53 Yamasaki, S.; Kanai, M.; Shibasaki, M. J. Am. Chem. Soc. 2001, 123, 1256. Zirconium-Catalyzed !"Cyanohydrin Mechanism ! Mechanism proposal based on Ti-catalyzed epoxidation and Yb-catalyzed epoxide opening Zr(OtBu)4 + TMSCN + Ph3PO + OH OH Ph3P BTSP Ph3P O O Zr CN O CN TMSCN TMSCN TMSOTMS OTMS TMSCN O TMS CN O Zr O Zr OH O O O O TMS CN NC Ph3P O O Zr CN O O O Ph3P Ph3P O TMS CN O Zr O Zr O O O O CN TMS O O Zr CN OTMS O TMS Ph3P O O Zr CN O O O TMS Ph3P O O TMS CN O Zr O Zr O O O O NC O TMS Yamasaki, S.; Kanai, M.; Shibasaki, M. J. Am. Chem. Soc. 2001, 123, 1256. Enantioselective Zr-Catalyzed !"Cyanohydrin Synthesis ! An enantioselective variant has been proposed and is under development. 1) Zr(OtBu)4 : ligand : H2O (1:1:1) ClCH2CH2Cl + BTSP + TMSCN OH 2) KF, MeOH CN 85% yield 62% ee Ph Et Et Ph O OH OH O Ph Ph LIGAND Yamasaki, S.; Kanai, M.; Shibasaki, M. J. Am. Chem. Soc. 2001, 123, 1256. Platinum-Catalyzed Hydrogenation of Ethyl Pyruvate O Me OH Pt/Al2O3, H2 CO2Et modifier Me CO2Et ! Chincona alkaloids have been shown to adsorb to Pt surfaces in an ordered pattern with uniformly shaped pores. ! Relative reaction rates from kinetic data suggest a ligand acceleration effect of !13. Et ! Author's rendition of proposed transition states Et N N OMe H OH H Me N RO N N ee 93% ee 20% H H EtO O N Me O Pt Pt Pt R HO N NH2 N RO H H EtO Pt Pt ee 75% O O Me Pt ee 82% Pt Surface Modifiers Blaser, H.U.; Jalett, H.P.; Lottenbach, W.; Studer, M. J. Am. Chem. Soc. 2000, 122, 12675. Thomas, J.M. Angew. Chem. Int. Ed. Engl. Adv. Mater. 1989, 28, 1079. Garland, M.; Blaser, H.U. J. Am. Chem. Soc. 1990, 112, 7048. Ruthenium-Catalyzed Transfer Hydrogenation 20 mol % RuCl2(PPh3)3 26 mol % ligand O Me OH Me iPrOH / iPrOK Ligand none time conversion 20 h 5% 6h 93 % (94% ee) Ph N Fe PPh3 O A ! Only aryl ketones are reduced enantioselectively. 20 mol % RuCl2(PPh3)3 26 mol % A O Ar R OH Ar iPrOH / iPrOK R yields ! 75 % ee (%) ! 84 96 (Ar = Ph) 88 (Ar = Ph) R Me Et iPr Sammakia, T.; Strangeland, E.L. J. Org. Chem. 1997, 62, 6104. Copper-Catalyzed Enolsilane Amination ! Evidence for LAC: Use of excess Cu(OTf)2 (50 mol %) relative to ligand (2 & 10 mol %) shows no significant decrease in enantioselectivity (99 % vs. 96 % ee). 2+ Me Me O O N X O O OTMS R + 2 OTf- N tBu O N N O Troc CF3CH2OH X = Ar, pyrrole, StBu R = Me, Et, iPr, tBu, Ph, Bn Ph Troc Ph N L2Cu N O N H N O OTMS R O N N O O yield ! 64 ee ! 96 OTMS R R X tBu 1-10 mol % N Troc Cu Troc N O N ROH O O N O ROTMS proposed intermediates ! Amination reaction allows access to chiral building blocks: protected chiral hydrazines, hydrazino alcohols, and oxazolidones. Evans, D.A.; Johnson, D.S. Org. Lett. 1999, 1, 595. Conjugate Additions of Dialkylzinc Reagents ! Diamines and amino-alcohols accelerate the reaction of dialklzinc reagents with aldehydes. ! Without catalyst, no product is generated under reaction conditions. OH Et NMe2 98 % ee OH Me Me O Catalyst OH 99 % ee (using (C5H11)2Zn) O R H 2 mol % catalyst + Et2Zn Me OH 96 % ee Me Me O Me Me2 O N Zn RH R Zn R OH 90 % ee OH Ph proposed T.S. Me Me 61 % ee Noyori, R.; Suga, S.; Kawai, K.; Okada, S.; Kitamura, M.; Oguni, N.; Hayashi, M.; Kaneko, T.; Matsuda, Y. J. Organomet. Chem. 1990, 382, 19. Noyori, R. Asymmetric Catalysis in Organic Synthesis; John Wiley and Sons, Inc.: New York, 1994. Titanium-Catalyzed Enantioselective Alkylation of Aldehydes ! Catalytic ligand loading can be used with stiochiometric titanium ! Taddol prevents titanium oligomerization. Ph O Ph H + Et2Zn OH 20 mol% B 1.2 equiv Ti(OiPr)4 Ph Me Et 96% yield 98% ee Me Ph O O O O Ti(OiPr)2 Ph Ph ! Diamine ligand increases titanium's Lewis acidity. O R1 OH R2Zn, Ti(OiPr)4 H R1 = alkyl, !,"-unsat, aryl 8 mol% cat R1 Tf N R 56-95% yield 68-98 %ee Ti(OiPr)2 N Tf Weber, B.; Seebach, D. Tetrahedron 1994, 50, 7473. Rozema, M.J.; Sidduri, A.; Knochel, P.; J. Org. Chem.; 1992; 57; 1956. Rozema, M.J.; Eisenberg, C.; Lütjens, H.; Ostwald, R.; Belyk, K.; Knochel, P.; Tet. Lett.; 1993; 34; 3115. Lewis Base-Catalyzed Aldol Reactions ! Phosphoramide ligands greatly increase the reactivity of silicon as a Lewis acid. OSiCl3 O MeO H O CD2Cl2, -80 °C + OSiCl3 MeO tBu Additive time tBu Conversion none 2h 50 % 10 mol % HMPA <3 min 100 % ! Enantioselective methyl ketone aldol reactions: OSiCl3 O R1 OH R1 CH2Cl2, -78 °C R2 H O 5-10 mol % catalyst + Me R2 N yields ! 79% R1 nBu nBu nBu Me tBu Ph R2 (E)-CH=CHPh c-C6H11 tBu Ph Ph Ph O P N ee (%) 84 89 92 87 52 49 N Me CATALYST Denmark, S.E.; Stavenger, R.A. Acc. Chem. Res. 2000, 33, 432. Lewis Base-Catalyzed Aldol Reactions ! Geometry of enolate controls stereochemical outcome of reaction. OSiCl3 O O + H OH 10 mol % catalyst R R yields !90 R aryl CH=CHPh CMe=CHPh C!CPh syn/anti 1 / !61 <1 / 99 <1 / 99 1 / 5.3 ee (%) !93 88 92 82 Me N O P N N Me O OSiCl3 Ph Me + H O 15 mol % catalyst OH Ph R R CATALYST Me yields ! 89% R aryl CH=CHPh CH=CHMe C!CPh syn / anti !3 / 1 9.4 / 1 7.0 / 1 1 / 3.5 ee (%) !84 92 91 10* * anti ee Denmark, S.E.; Stavenger, R.A.; Wong, K.T.; Su, X. J. Am. Chem. Soc. 1999, 121, 4982. Denmark, S.E.; Stavenger, R.A. Acc. Chem. Res. 2000, 33, 432. Lewis Base-Catalyzed Aldol Mechanism Me ! Kinetics and a demonstrated non-linear relationship between catalyst ee and product ee N suggest two phosphoramide molecules involved in the transition state. O P ! Exerimental evidence suggests chloride dissociation is involved in the reaction. N N ! Kinetics of a more sterically encumbered catalyst suggest an alternate mechanism involving Me only one phosphoramide molecule. CATALYST P(NR2)3 Cl- O Si O Cl Cl 2 (R2N)3PO O PhCHO O Ph P(NR2)3 OPR3 OPR3 Si Cl Cl O H O OSiCl3 Ph -2 (R2N)3PO Cl- anti Chair-like T.S. high selectivity OSiCl3 H (R2N)3PO Cl- O O P(NR2)3 Ph Si Cl Cl PhCHO Cl- O Cl O Si OPR3 Cl O OSiCl3 Ph -(R2N)3PO syn Boat-like T.S. low selectivity Denmark, S.E.; Stavenger, R.A. Acc. Chem. Res. 2000, 33, 432. Silicon-Catalyzed Allylation and Propargylation of Aldehydes ! Variation in catalyst linker length affects reaction efficiency and selectivity. This supports a mechanism involving 2 phosphoramides in the transition state. OH O R H 5 mol % catalyst SnBu3 + R 110 mol % SiCl4 yields ! 65% R aryl cinnamyl C!CPh furyl ee (%) !83 65 22 62 N Me O P N N (CH2)5 Me Me 2 H O R H OH 5 mol % catalyst + H SnBu3 110 mol % SiCl4 H CATALYST R H R Ph cinnamyl 2-naphthyl ee (%) 97 87 93 yield (%) 81 90 95 Denmark, S.E.; Wynn, T. J. Am. Chem. Soc. 2001, 123, 6199. This is my Summary Slide ! Most ligand accelerated processes exhibit non-linear effects (rate and ee). ! LAC allows for highly selective transformations by selecting against an undesired pathway. ! LAC lends itself well to the development of asymmetric transformations. ! The discovery of more ligand-accelerated transformations will be a fruitful field in asymmetric catalysis.
© Copyright 2026 Paperzz