' & B.Y. Choueiry Title: Logial Agents AIMA: Chapter 7 (Setions 7.4 and 7.5) 1 Introdution to Artiial Intelligene CSCE 476-876, Spring 2008 URL: www.se.unl.edu/houeiry/S08-476-876 Instrutor's notes #11 April 7, 2008 Berthe Y. Choueiry (Shu-we-ri) houeiryse.unl.edu, (402)472-5444 $ % 2 • Login in general: models and entailment • Propositional (Boolean) logi • Equivalene, validity and satisability • Inferene: Instrutor's notes #11 April 7, 2008 ' & B.Y. Choueiry Outline By model heking Using inferene rules Resolution algorithm: Conjuntive Normal form Horn theories: forward and bakward haining $ % ' & B.Y. Choueiry A logi onsists of: 1. A formal representation system: (a) Syntax: how to make sentenes (b) Semantis: systematis onstraints on how sentenes relate to the states of aairs 3 2. Proof theory: a set of rules for deduing the entailment of a set of sentenes Example: Instrutor's notes #11 April 7, 2008 √ √ Propositional logi (or Boolean logi) First-order logi FOL $ % ' & B.Y. Choueiry Models (I) A model is a world in whih a sentene is true under a partiular General denition interpretation. 4 Logiians typially think in terms of models, whih are formally strutured worlds with respet to whih truth an be evaluated We say m is a model of a sentene α if α is true in m Instrutor's notes #11 April 7, 2008 Typially, a sentene an be true in many models $ % ' & B.Y. Choueiry Models (II) M (α) is the set of all models of 5 Entailment: A sentene α α is entailed by a KB if the models of the KB are all models ofα KB |= α i all models of KB are models of Instrutor's notes #11 April 7, 2008 Then KB |= α if and only if α (i.e., M (KB) ⊆ M (α)) M (KB) ⊆ M (α) $ % • Example of inferene proedure: dedution ' & B.Y. Choueiry Inferene • Validity of a sentene: always true (i.e., under all possible interpretations) The Earth is round or not round → Tautology 6 • Satisability of a sentene: sometimes true (i.e., ∃ some interpretation(s) where it holds) Alex is on ampus • Insatisability of a sentene: never true (i.e., 6 ∃ any interpretation where it holds) Instrutor's notes #11 April 7, 2008 The Earth is round and the earth is not round → useful for refutation, as we will see later Beauty of inferene: Formal inferene allows the omputer to derive valid onlusions even when the omputer does not know the interpretation you are using $ % ' & B.Y. Choueiry Syntax of Propositional Logi Propositional logi is the simplest logiillustrates basi ideas • Symbols represent whole propositions, sentenes D says the Wumpus is dead 7 The proposition symbols • Boolean onnetives: onnet sentenes P1 , P2 , ∧, ∨, ¬, ⇒ et. are sentenes (alternatively, →, ⊃), ⇔, S1 and S2 are sentenes, the following are sentenes ¬S1 , ¬S2 , S1 ∧ S2 , S1 ∨ S2 , S1 ⇒ S2 , S1 ⇔ S2 If Instrutor's notes #11 April 7, 2008 Formal grammar of Propositional Logi: too: Bakus-Naur Form, hek Figure 7.7 page 205 in AIMA $ % ' & B.Y. Choueiry Terminology Atomi sentene: single symbol Complex sentene: Literal: ontains onnetives, parentheses atomi sentene or its negation (e.g., Sentene (P ∧ Q) ⇒ R P , ¬Q) is an impliation, onditional, rule, if-then 8 statement (P ∧ Q) is a premise, anteedent R is a onlusion, onsequene Instrutor's notes #11 April 7, 2008 Sentene (P ∧ Q) ⇔ R Preedene order is an equivalene, bionditional resolves ambiguity (highest to lowest): ¬, ∧, ∨, ⇒, ⇔ E.g., ((¬P ) ∨ (Q ∧ R)) ⇒ S A⇒B⇒C Careful: A∧B∧C and $ % ' & B.Y. Choueiry Syntax of First-order logi (Chapter 8) First-Order Logi (FOL) is expressive enough to say almost anything of interest and has a sound and omplete inferene proedure • 9 Instrutor's notes #11 April 7, 2008 • Logial symbols: parentheses onnetives (¬, ⇒, the rest an be regenerated) variables equality symbol (optional) Parameters: quantier ∀ prediate symbols onstant symbols funtion symbols $ % ' & B.Y. Choueiry Semantis of Propositional Logi Semantis is dened by speifying: Interpretation of a proposition symbols and onstants (T/F) Meaning of logial onnetives Proposition symbol means what ever you want: 10 D says the Wumpus is dead Breeze says the agent is feeling a breeze Stenh says the agent is pereiving an unpleasant smell Connetives are funtions: omplex sentenes meaning derived from the meaning of its parts Instrutor's notes #11 April 7, 2008 P Q :P False False True True False True False True True True False False P ^Q False False False True P _Q False True True True P )Q True True False True P ,Q True False False True Note: if P is true, Q is true, otherwise I am making no laim $ % P ⇒ Q: ' & B.Y. Choueiry Models in propositional logi Careful! 11 • A model is a mapping from proposition symbols diretly to • The models of a sentene are the mappings that make the truth or falsehood sentene true Example: α: Instrutor's notes #11 April 7, 2008 √ Model1: × Model2: obj1 ∧ obj2 obj1 = 1 and obj2 =1 obj1 = 0 and obj2 =1 $ % Pi,j : Bi,j : there is a pit in [i, j ℄ ' & B.Y. Choueiry Wumpus world in Propositional Logi there is a breeze in [i, j ℄ • R1 : ¬P1,1 • Pits ause breezes in adjaent squares 12 R2 : B1,1 ⇔ (P1,2 ∨ P2,1 ) R3 : B2,1 ⇔ (P1,1 ∨ P2,2 ∨ P3,1 ) Instrutor's notes #11 April 7, 2008 • Perepts: • KB: • Questions: KB R4 : ¬B1,1 R5 : B2,1 R1 ∧ R2 ∧ R3 ∧ R4 ∧ R5 |= ¬P1,2 ? KB 6|= P2,2 ? $ % ' & B.Y. Choueiry Wumpus world in Propositional Logi Given KB: R1 ∧ R2 ∧ R3 ∧ R4 ∧ R5 Number of symbols: 7 Number of models: 2 7 =128 13 <See Figure 7.9, page 209> KB is true in only 3 models P1,2 is false but Instrutor's notes #11 April 7, 2008 thus KB P2,2 ¬P1,2 holds in all 3 models of the KB, |= ¬P1,2 is true in 2 models, false in third, thus KB 6|= P2,2 $ % ' & B.Y. Choueiry Enumeration method in Propositional Logi Let α=A∨B and KB = (A ∨ C) ∧ (B ∨ ¬C) Is it the ase that KB |= α? Chek all possible modelsα must be true wherever 14 Instrutor's notes #11 April 7, 2008 A B C F F F F F T F T F F T T T F F T F T T T F T T T A∨C B ∨ ¬C KB KB is true α Complexity? Inferene is exponential in propositional logi $ % ' & B.Y. Choueiry Inferene by enumeration • Algorithm: TT-Entails?(KB, α), Figure 209 Identies all the symbols in kb Performs a reursive enumeration of all possible assignments (T/F) to symbols 15 In a depth-rst manner Instrutor's notes #11 April 7, 2008 • It terminates: there is only a nite number of models • It is sound: beause it implements denition of entailment • It is omplete, and works for any KB and • Time omplexity: • Alert: Entailment in Propositional Logi is o-NP-Complete O(2n ), for a KB with n α symbols $ % ' & B.Y. Choueiry Important onepts 16 • Logial equivalene • Validity • Dedution theorem: links validity to entailment Satisability Instrutor's notes #11 April 7, 2008 Refutation theorem: links satisability to entailment $ % Two sentenes are logially equivalent models α≡β α |= β if and only if and α⇔β i true in same ' & B.Y. Choueiry Logial equivalene β |= α 17 Instrutor's notes #11 April 7, 2008 (α ∧ β) ≡ (β ∧ α) ommutativity of ∧ (α ∨ β) ≡ (β ∨ α) ommutativity of ∨ ((α ∧ β) ∧ γ) ≡ (α ∧ (β ∧ γ)) assoiativity of ∧ ((α ∨ β) ∨ γ) ≡ (α ∨ (β ∨ γ)) assoiativity of ∨ ¬(¬α) ≡ α (α =⇒ β) ≡ (¬β =⇒ ¬α) (α =⇒ β) ≡ (¬α ∨ β) (α ⇔ β) ≡ ((α =⇒ β) ∧ (β =⇒ α)) ¬(α ∧ β) ≡ (¬α ∨ ¬β) de Morgan de Morgan double-negation elimination ontraposition impliation elimination bionditional elimination ¬(α ∨ β) ≡ (¬α ∧ ¬β) (α ∧ (β ∨ γ)) ≡ ((α ∧ β) ∨ (α ∧ γ)) distributivity of ∧ over ∨ (α ∨ (β ∧ γ)) ≡ ((α ∨ β) ∧ (α ∨ γ)) distributivity of ∨ over ∧ $ % ' & B.Y. Choueiry Validity A sentene is valid if it is true in all models e.g., P ∨ ¬P , P ⇒ P, (P ∧ (P ⇒ H)) ⇒ H To establish validity, use truth tables: 18 P H False False True True False True False True P _H (P _ H) ^:H False True True True If every row is true, then he onlusion, premises, ((P _ H) ^ :H) ) P False False True False P, True True True True is entailed by the ((P ∨ H) ∧ ¬H) Instrutor's notes #11 April 7, 2008 Use of validity: Dedution Theorem: ⇒ α) TT-Entails?(KB, α) KB |= α i (KB is valid heks the validity of (KB ⇒ α) $ % ' & B.Y. Choueiry Satisability A sentene is satisable if it is true in some model e.g., A ∨ B, C Satisability an be heked by enumerating the possible models until one is found that satises the sentene (e.g., SAT!) 19 A sentene is unsatisable if it is true in no models e.g., A ∧ ¬A Satisability and validity are onneted: Instrutor's notes #11 April 7, 2008 α valid i ¬α is unsatisable and α satisable i ¬α is not valid Use of satisability: refutation KB |= α i.e., prove i (KB α ∧¬α) is unsatisable by redutio ad absurdum $ % Proof methods divide into (roughly) two kinds ' & B.Y. Choueiry Proof methods Model heking • Truth-table enumeration (sound & omplete but exponential) • Baktrak searh in model spae (sound & omplete) 20 • e.g., Davis-Putnam Algorithm (DPLL) (Setion 7.6) Heuristi searh in model spae (sound but inomplete) e.g., the GSAT algorithm, the WalkSat algorithm (Setion 7.6) Appliation of inferene rules Instrutor's notes #11 April 7, 2008 • Legitimate (sound) generation of new sentenes from old • Proof = a sequene of inferene rule appliations, an use • inferene rules as operators in a standard searh algorithm Typially require translation of sentenes into a normal form $ % ' & B.Y. Choueiry Inferene rules for Propositional Logi (I) Reasoning patterns • Modus Ponens (Impliation-Elimination) α ⇒ β, α β 21 Instrutor's notes #11 April 7, 2008 • And-Elimination • We an also use all logial equivalenes as inferene rules: α1 ∧ α2 ∧ . . . ∧ αn αi (α⇒β)∧(β⇒α) α⇔β (α⇒β)∧(β⇒α) and α⇔β Soundness of an inferene rule an be veried by building a truth table $ % Given KB: Prove: R1 ∧ R2 ∧ R3 ∧ R4 ∧ R5 ' & B.Y. Choueiry Inferene rules and equivalenes in the wumpus world ¬P1,2 R2 : B1,1 ⇔ (P1,2 ∨ P2,1 ) ⇒ (P1,2 ∨ P2,1 )) ∧ ((P1,2 ∨ P2,1 ) ⇒ B1,1 ) 22 Instrutor's notes #11 April 7, 2008 • Bionditional elimination to • And elimination to • Logial equivalene of ontrapositives: • Modus ponens on • De Morgan's rules: R6 : (B1,1 R6 : R7 : ((P1,2 ∨ P2,1 ) ⇒ B1,1 ) R8 : (¬B1,1 ⇒ ¬(P1,2 ∨ P2,1 )) R8 R9 : ¬(P1,2 ∨ P2,1 ) and R4 : ¬B1,1 R10 : ¬P1,2 ∧ ¬P2,1 $ % ' & B.Y. Choueiry The job of an inferene proedure is to onstrut proofs by nding appropriate sequenes of appliations of inferene rules 23 starting with sentenes initially in KB and ulminating in the generation of the sentene whose proof is desired Instrutor's notes #11 April 7, 2008 $ % ' & B.Y. Choueiry Complexity of propositional inferene Truth-table: n 2 Sound and omplete. rows: exponential, thus impratial 24 Entailment is o-NP-Complete in Propositional Logi Inferene rules: sound (resolution gives ompleteness) NP-omplete in general However, we an fous on the sentenes and propositions of Instrutor's notes #11 April 7, 2008 interest: The truth values of all propositions need not be onsidered $ % ' & B.Y. Choueiry Monotoniity the set of entailed sentenes an only inrease as information (new sentenes) is added to the KB: if KB |= α then (KB∧β )|= α 25 Monotoniity allows us to apply inferene rules whenever suitable premises appear in the KB: the onlusion of the rule follow regardless of what else is in the KB Instrutor's notes #11 April 7, 2008 PL, FOL are monotoni, probability theory is not Monotoniity essential for soundness of inferene $ % • Unit resolution: l1 ∨ l2 , ¬l2 l1 ' & B.Y. Choueiry Resolution for ompleteness of inferene rules More generally: 26 l1 ∨ · · · ∨ lk , m l1 ∨ · · · ∨ li−1 ∨ li+1 ∨ · · · ∨ lk where li and • m Resolution: Instrutor's notes #11 April 7, 2008 More generally: are omplementary literals l1 ∨ l2 , ¬l2 ∨ l3 l1 ∨ l3 l1 ∨ · · · ∨ lk , m1 ∨ · · · ∨ mn l1 ∨ · · · ∨ li−1 ∨ li+1 ∨ · · · ∨ lk ∨ m1 ∨ · · · ∨ mj−1 ∨ mj+1 ∨ · · · ∨ mn where li and mj are omplementary literals $ % ' & B.Y. Choueiry Resolution in the wumpus world Agent goes [1, 1℄, [2, 1℄, [1, 1℄, [1, 2℄ Agent pereives a stenh but no breeze: But R12 : B1,2 ⇔ (P1,1 ∨ P2,2 ∨ P1,3 Applying bionditional elimination to R11 : ¬B1,2 R12 , followed by and-elimination, ontraposition, and nally modus ponens with 27 R11 , we get: R13 : ¬P2,2 and R14 : ¬P1,3 R3 : B2,1 ⇔ (P1,1 ∨ P2,2 ∨ P3,1 ) R5 : B2,1 Now, applying bionditional elimination too R3 and modus ponens Instrutor's notes #11 April 7, 2008 R5 , we get: R15 : P1,1 ∨ P2,2 ∨ P3,1 Resolving R13 and R15 : R16 : P1,1 ∨ P3,1 Resolving R16 and R1 : R17 : P3,1 with $ % ' & B.Y. Choueiry Soundness of the resolution rule Resolution rule: α∨β, ¬β∨γ ¬α⇒β, β⇒γ or equivalently α∨γ ¬α⇒γ 28 Instrutor's notes #11 April 7, 2008 _ : _ _ False False False False True True True True False False True True False False True True False True False True False True False True False False True True True True True True True True False True True True False True False True False True True True True True $ % • • Inferene rules an be used as suessor funtions in a ' & B.Y. Choueiry Resolution for ompleteness of inferene rules searh-based agent Any omplete searh algorithm, applying only the resolution rule, an derive any onlusion entailed by any knowledge base in propositional logi. 29 • Refutation ompleteness: Resolution an always be used to either prove or refute a sentene Instrutor's notes #11 April 7, 2008 −→ • Resolution algorithm on CNF Caveat: Resolution annot be used to enumerate true sentenes. Given A is true, resolution annot generate A∨B $ % • Resolution applies only to disjuntions of literals • We an transform any sentene in PL in CNF • A ' & B.Y. Choueiry Conjuntive Normal Form k -CNF has exatly k literals per lause: (l1,1 ∨ · · · ∨ l1,k ) ∧ · · · ∧ (ln,1 ∨ · · · ∨ ln,k ) Conversion proedure: 30 Instrutor's notes #11 April 7, 2008 • Eliminate ⇔ using bionditional elimination • Eliminate ⇒ using impliation elimination • Move • ¬ inwards using (repeatedly) double-negation elimination and de Morgan rules Apply distributivity law, distributing possible ∨ over ∧ whenever Finally, the KB an be used as input to a resolution proedure $ % ' & B.Y. Choueiry Example of onversion to CNF R2 : B1,1 ⇔ (P1,2 ∨ P2,1 ) ⇒ using bionditional elimination ⇒ (P1,2 ∨ P2,1 )) ∧ ((P1,2 ∨ P2,1 ) ⇒ B1,1 ) 31 • Eliminate • Eliminate • Move (B1,1 ⇒ using impliation elimination (¬B1,1 ∨ (P1,2 ∨ P2,1 )) ∧ (¬(P1,2 ∨ P2,1 ) ∨ B1,1 ) ¬ inwards using (repeatedly) double-negation elimination and de Morgan rules Instrutor's notes #11 April 7, 2008 (¬B1,1 ∨ (P1,2 ∨ P2,1 )) ∧ (¬P1,2 ∧ ¬P2,1 ) ∨ B1,1 ) • ∨ over ∧ whenever (¬B1,1 ∨ P1,2 ∨ P2,1 ) ∧ (¬P1,2 ∨ B1,1 ) ∧ (¬P2,1 ∨ B1,1 ) Apply distributivity law, distributing possible $ % ' & B.Y. Choueiry Resolution algorithm • KB |= α • (KB i (KB ∧¬α) ∧¬α) is unsatisable is onverted to CNF then we apply resolution rule repeatedly, until: 32 - no lause an be added (i.e., KB - we derive the empty lause (i.e., <PL-Resolution(KB, Instrutor's notes #11 April 7, 2008 • α), |= ¬α) KB |= α) Fig 7.12, page 216> Ground resolution theorem: If a set of lauses is unsatisable, then the resolution losure of those lauses ontains the empty lause. $ %
© Copyright 2026 Paperzz