Math 132 Fall 2006 Final Exam 2 ⌠ 2 1. Calculate 9x ⌡ 0 a) 20 f) 40 b) 24 g) 44 3 1 + x dx. c) 28 h) 48 d) 32 i) 52 e) 36 j) 56 Solution: i > with(student): > J := Int(9*x^2*sqrt(1+x^3),x = 0 .. 2); 2 ⌠ 2 J := 9x ⌡ 1 + x 3 dx 0 > K := changevar(1+x^3 = u, J, u); 9 ⌠ K := 3 ⌡ u du 1 > antiderivative := int(integrand(K), u); (3 / 2) antiderivative := 2 u > Answer = simplify( subs( u = 9, antiderivative) - subs( u = 1, antiderivative) ); Answer = 52 x ⌠ 2. Let F( x ) = ⌡ t3 − 2 dt. Calculate the derivative D( F )( 3 ) of F at 3. 2 a) 3 b) 4 f) 3 − 3 g) 4 − 5 c) 5 h) 5 − 6 d) 6 e) 7 i) 6 − 7 j) 7 − 2 2 Solution: c > F := (x) -> Int(sqrt(t^3-2),t = 2 .. x); ⌠ F := x → ⌡ x 2 t 3 − 2 dt > D(F)(x); # By the Fundamental Theorem of Calculus (i.e., no integral is calculated) x3 − 2 > D(F)(3); 25 3. Calculate 1 ⌠ x+4 ( x + 1 ) ( x + 2 ) dx . ⌡ 0 4 a) ln 3 8 b) ln 3 16 c) ln 3 25 d) ln 3 28 e) ln 3 25 f) ln 9 32 g) ln 9 35 h) ln 6 35 i) ln 9 36 j) ln 5 Solution: g > J := Int((x+4)/(x+1)/(x+2),x = 0 .. 1); 1 ⌠ x+4 J := dx (x + 1) (x + 2) ⌡ 0 > processedIntegrand := convert( integrand(J), parfrac, x); processedIntegrand := 3 − 2 x+1 x+2 > antiderivative := int(processedIntegrand, x); antiderivative := 3 ln( x + 1 ) − 2 ln( x + 2 ) > answer := simplify(subs(x = 1, antiderivative) - subs(x = 0, antiderivative)); answer := 5 ln( 2 ) − 2 ln( 3 ) > combine(answer, ln); 32 ln 9 2 ⌠ 2 5x +6 4. Calculate dx. 2 (2 + x ) x ⌡ 1 a) π + ln( 2 ) b) 4 f) 4 ln( 2 ) π + 2 ln( 2 ) 4 g) 8 ln( 2 ) π + ln( 3 ) 4 h) ln( 3 ) c) d) ln( 2 ) e) 2 ln( 2 ) i) 2 ln( 3 ) j) ln( 6 ) Solution: f > J := Int( (5*x^2+6)/(2+x^2)/x, x = 1 .. 2); 2 ⌠ 5 x2 + 6 J := dx 2 (2 + x ) x ⌡ 1 > processedIntegrand := convert( integrand(J), parfrac, x); processedIntegrand := 2x + 3 2 + x2 x > antiderivative := int(processedIntegrand, x); antiderivative := ln( 2 + x2 ) + 3 ln( x ) > answer := simplify(subs(x = 2, antiderivative) - subs(x = 1, antiderivative)); answer := 4 ln( 2 ) 1 ⌠ 5. Calculate ⌡ 0 a) π b) f) 2 π g) π 2 3π 2 x 2 1−x 2 dx. π 3 2π h) 3 c) d) i) π 4 3π 4 e) j) π 6 5π 6 Solution: d > J := Int(x^2/sqrt(1-x^2),x = 0 .. 1); ⌠ J := ⌡ 1 x2 1 − x2 dx 0 > K := student[changevar](x=sin(t), J, t); #Note: denominator of K is cos(t) π 2 ⌠ sin( t )2 cos( t ) K := dt 1 − sin( t )2 ⌡ 0 > int(sin(t)^2, t = 0 .. Pi/2); π 4 6. A radioactive substance has a half-life equal to ln( 8 ) years. If m(t) is the mass of the substance at time t, measured in years, then what is the logarithmic derivative of m(t) ? a) 1 2 1 f) − 2 1 3 1 g) − 3 b) 1 c) d) 2 h) − 1 i) − 2 1 e) 3 1 j) − 3 1 2 2 1 2 2 Solution: g > k := ln(2)/ln(8); #Solve for decay constant in terms of half-life k := ln( 2 ) ln( 8 ) > simplify( diff( ln(A*exp(-k*t) ) , t) ); -1 3 > #Note: -ln(2)/ln(8) = -ln(2)/ln(2^3) = -ln(2)/(3*ln(2)) = -1/3 ⌠ 7. Calculate ⌡ 1 a) π b) 3 1 1+x π 2 2 dx. c) π 3 d) π 4 e) π 6 f) 5π 6 g) 5π 12 h) 2π 3 i) 3π 4 j) π 12 Solution: j > antiderivative := int(1/(1+x^2),x); antiderivative := arctan( x ) > simplify(subs(x = sqrt(3), antiderivative) - subs(x = 1, antiderivative)); π 12 x 8. Let f( x ) = ( 1 + 2 x ) . What is D( f )(1) ? (The derivative of f(x) at x = 1) ? a) 2 ln( 2 ) + 1 f) ln( 3 ) + 2 b) 3 ln( 3 ) + 2 g) ln( 2 ) + 1 c) ln( 2 ) + 2 h) ln( 3 ) + 1 d) ln( 3 ) + 3 i) 3 ln( 2 ) + 1 e) ln( 2 ) + 3 j) 3 ln( 3 ) + 1 Solution: b > f := x -> (1+2*x)^x; f := x → ( 1 + 2 x )x > D(f)(1); 3 ln( 3 ) + 2 9. Consider the following three statements about a series ∞ ∑ a with positive terms: n=1 n I: The series diverges because lim a = 1. n n→∞ II: The series diverges because ∞ n lim = 1 and ∑ b diverges. b n=1 n n→∞ n a III: The series diverges because lim a n n→∞ 1 n = 1. For each statement, determine whether the reasoning is correct ( Y ) or incorrect ( N ). a) I: Y, II: Y, b) I: Y, II: Y, III: Y III: N c) I: Y, II: N, III: Y d) I: Y, II: N, III: N e) I: N, II: Y, III: Y f) I: N, II: Y, III: N g) I: N, II: N, III: Y h) I: N, II: N, III: N i) Wrong answer j) Bonus wrong answer Solution: b The reasoning of (I) is correct by the Divergence Test. The reasoning of (II) is correct by the Limit Comparison Test. The hypothesis of (III) is the inconclusive condition in the Ratio Test. In fact, ∞ the convergence of the series ∑n n=1 1 2 , a series whose terms satisfy the stated hypothesis, shows that the reasoning must be wrong ∞ ∑ a with positive terms: 10. Consider the following three statements about a series n=1 n I: The series converges because lim a = 0. n n→∞ ∞ II: The series converges because a < b and ∑ b diverges. n n n=1 n a III: The series converges because n lim < 1. a n→∞ n+1 For each statement, determine whether the reasoning is correct ( Y ) or incorrect ( N ). a) I: Y, b) I: Y, c) I: Y, d) I: Y, e) I: N, f) I: N, g) I: N, h) I: N, II: Y, II: Y, II: N, II: N, II: Y, II: Y, II: N, II: N, III: Y III: N III: Y III: N III: Y III: N III: Y III: N i) Wrong answer j) Bonus wrong answer Solution: h The reasoning is wrong in all parts. The reasoning of (I) is most likely due to an incorrect understanding of the Divergence Test. The harmonic series is a counterexample. The reasoning of (II) results from an incorrect application of the Comparison test. 1 The example of an = and bn = 2 shows that the reasoning is false . n The reasoning of (III) results from an incorrect application of the Ratio Test in ∞ which the ratio has been inverted. The divergent series ∑2 n is a counterexample. n=1 11. Consider the three series ∞ 5n n , I: ∑ n ! n=1 II: ∞ 1 ∑ , n ln ( n ) n=3 and III: ∞ ∑ n=0 n 1 3 1+n 13 9 and the statements ( C ) The series converges ( D ) The series diverges For each series, decide which of statements, (C) or (D), is correct. a) I: C, II: C, III: C b) I: C, II: C, III: D c) I: C, II: D, III: C d) I: C, II: D, III: D e) I: D, II: C, III: C f) I: D, II: C, III: D g) I: D, II: D, III: C h) I: D, II: D, III: D i) Wrong answer j) Bonus wrong answer Solution: c Applying the Ratio Test to series I leads to a limit of 0, which is less than 1. Hence convergence. > a := n -> n*5^n/n!; n 5n a := n → n! > ratio := simplify( a(n+1)/a(n) ); 5 ratio := n > limit(ratio, n = infinity); 0 Applying the Integral Test to series II leads to the conclusion of divergence. > Int(1/x/ln(x),x=3..infinity) = int(1/x/ln(x),x=3..infinity); ∞ ⌠ 1 dx = ∞ x ln( x ) ⌡ 3 ∞ Applying the Limit Comparison Test with ∞ ∑b =∑ 1 n n=1 n=1 n 10 9 leads to the conclusion of convergence. > a := n -> n^(1/3)/(1+n^(13/9)); b := n -> 1/n^(10/9); a := n → n (1 / 3) 1+n ( 13 / 9 ) 1 b := n → ( 10 / 9 ) n > Limit(a(n)/b(n), n = infinity) = limit(a(n)/b(n), n = infinity); lim n→∞ n ( 13 / 9 ) 1+n ( 13 / 9 ) 12. Consider the two series ∞ ( −1 )n ∞ ( − 1 ) n n3 I: ∑ and II: ∑ ln ( n ) n n=3 n=0 2 and the statements i: The series converges absolutely =1 ii: The series converges conditionally iii: The series diverges For each series, decide which of statements ($), (&), (@) is correct. a) I: i, II: i b) I: i, II: ii c) I: i, II: iii d) I: ii, II: i e) I: ii, II: ii f) I: ii, II: iii g) I: iii, II: i h) I: iii, II: ii i) I: iii, II: iii j) Wrong answer Solution: d 13. Consider the two series n ∞ ∞ 10 I: ∑ and II: ∑ n=0 n = 0 10n + n2 and the statements ( C ) The test establishes convergence ( D ) The test establishes divergence ( X ) The test is not conclusive. n 3 3 n Apply the Ratio Test to series I and the Root Test to series II. For each, decide which of statements, (C), (D), (X), is correct. a) I: C, II: C b) I: C, II: D c) I: C, II: X d) I: D, II: C e) I: D, II: D f) I: D, II: X g) I: X, h) I: X , II: D i) I: X , II: X j) Wrong answer II: C Solution: g ∞ ( n + 3 ) xn 14. Let f( x ) = ∑ . What is f ''' ( 0 ) ? 2 n = 1 n (n + 1) a) 1 f) 1/3 b) 2 g) 1/2 c) 3 h) 2/3 d) 6 i) 4/3 e) 12 j) 1/6 Solution: a > a := n -> (n+3)/(n^2*(n+1)); n+3 a := n → n (n + 1) 2 > simplify(3!*a(3)); 1 > p := x -> sum((n+3)*x^n/(n^2*(n+1)),n = 1 .. 10); 10 p := x → ( n + 3 ) xn ∑n n=1 2 (n + 1) > (D@@3)(p)(0); 1 15. Let T( x ) = a0 + a1 x + a2 x2 + a3 x3 + a4 x4 + a5 x5 be the degree 5 Taylor polynomial of f ( x ) = x2 e a) 1/5 f) - 1/5 ( −2 x ) centered about 0. What is T( 1 ) ? b) 2/5 g) - 2/5 c) 1/3 d) 2/3 h) - 1/3 i) e) 4/15 - 2/3 j) - 4/15 Solution: h > S := series(x^2*exp(-2*x), x = 0, 6); S := x2 − 2 x3 + 2 x4 − 4 x5 + O( x6 ) 3 > p := unapply(convert(S,polynom),x); p := x → x2 − 2 x3 + 2 x4 − 4 3 x5 > p(1); -1 3 ∞ 16. Calculate the interval of convergence of ∑ n=0 a) ( - 5 , 1 ] f) [ - 5 , 1 ) b) [ - 5 , 1 ] g) ( - 5 , 1 ) c) ( - 1 , 5 ] h) [ - 1 , 5 ) ( − 1 )n n ( x + 2 )n (n + 1) 3 2 d) [ - 1 , 5 ] i) ( - 1 , 5 ) n . e) [ - 2 , 2 ] j) ( −∞ , ∞ ) Solution: a Because x + 2 = x − ( −2 ), the center is c = −2. The next calculation determines the radius of convergence. > a := n -> n/(n^2+1)/(3^n); a := n → n ( n2 + 1 ) 3n > R := limit(a(n)/a(n+1), n = infinity); R := 3 The left endpoint is x = c − R, or x = −2 − 3, or x = −5. When this value ∞ is substituted in ∑ n=0 ( −1 )n n ( x + 2 )n ( n2 + 1 ) 3n ∞ , the result is ∑n n=0 n 2 +1 . This series is divergent by applying the Limit Comparison Test with the harmonic series. Thus, -5 is out. The right endpoint is x = c + R, or x = −2 + 3, or x = 1. When this value ∞ is substituted in ∑ n=0 ( −1 )n n ( x + 2 )n ( n2 + 1 ) 3n ∞ , the result is ∑ n=0 ( −1 )n n n2 + 1 . This series is convergent by the Alternating Series Test. Thus, 1 is in. 3 17. What is the coefficient of ( x − 4 ) in the Taylor series of 1 32 1 f) − 32 a) 3 64 3 g) − 64 b) 1 128 1 h) − 128 c) 3 256 3 i) − 256 d) x with base point 4? 1 512 1 j) − 512 e) Solution: e > simplify(subs(x=4,diff(sqrt(x),x$3))/3!); 1 512 > series(sqrt(x), x=4, 5); #alternative 2+ 1 4 (x − 4) − 1 64 ( x − 4 )2 + 1 512 5 ( x − 4 )3 − 16384 ( x − 4 )4 + O( ( x − 4 )5 ) 0.1 ⌠ 2 18. The Maclaurin series of sin( x ) is used to approximate 42 sin( x ) dx with an ⌡ 0 error ( −6 ) . The calculation uses only as many terms as are deemed necessary for the less than 10 required accuracy by the Alternating Series Test. What is the approximation? 2 a) 0.012 f) 0.017 b) 0.013 g) 0.018 c) 0.014 h) 0.019 d) 0.015 i) 0.020 e) 0.016 j) 0.021 Solution: c > series(42*sin(x^2),x=0,16); 42 x2 − 7 x6 + 7 20 > p := convert( %, polynom ); x10 − p := 42 x2 − 7 x6 + 1 120 x14 + O( x16 ) 7 x10 20 − x14 120 > int(subs(x=t, p), t = 0 .. x); 14 x − x + 3 7 7 x11 220 − x15 1800 > subs(x=0.1, 14*x^3); 0.014 > evalf(Int(42*sin(x^2),x = 0 .. 0.1)); 0.01399990000 19. What is the coefficient of x a) − 5 27 b) − 14 81 c) − 3 4 27 in the Maclaurin series of d) − 10 81 e) − 1 9 x ? 3+2x f) 5 27 g) 14 81 h) 4 27 10 81 i) 1 9 j) Solution: h > series(x/(3+2*x),x=0,8); 1 x− 2 4 x2 + 8 x3 − 3 9 27 81 > convert( %, polynom); x 3 − 2 x2 9 + 4 x3 27 x4 + − 16 243 8 x4 x5 − + 81 32 729 16 x5 243 − x6 + 64 2187 32 x6 729 + x7 + O( x8 ) 64 x7 2187 > coeff(%,x^3); 4 27 20. What is the coefficient of x a) − f) 5 27 5 27 b) − g) 14 81 14 81 c) − h) 3 in the Maclaurin series of 4 27 d) − 10 81 e) − i) 10 81 j) 4 27 1 1 3 (1 + x) ? 1 9 1 9 Solution: b > binomial(-1/3,3); #From Newton's Binomial Series -14 81 > series(1/(1+x)^(1/3), x = 0, 5); #direct calculation 1− 1 x+ 2 x2 − 14 x3 + 35 x4 + O( x5 ) 3 9 81 243 > product(-1/3-k,k=0..2)/3!; #calculation of binomial coefficient -14 81
© Copyright 2026 Paperzz