Physics 201 • Exam Information Sheet ĉ = c/c or c = c = c ĉ a = ∆v/∆t → a is the slope of velocity A · B = |A||B| cos θ v = ∆x/∆t → v is the slope of position ΣF = m a g = 9.8 m/s2 RE = 6.4 × 106 m G = 6.67 × 10−11 N·m2 /kg2 v(t) = vo + a t x(t) = xo + vo t + 12 a t2 vf 2 = vo 2 + 2 a (xf − xo ) vave = 12 (vf + vo ) N force is perpendicular to surfaces W = mg tan θ = opp / adj sin θ = opp / hyp cos θ = adj / hyp Fr = −m v 2 r̂/R a = −r ω 2 r̂ + r α θ̂ arad = − v 2 r̂/R atan = ∆|v|/∆t vC/A = vC/B + vB/A Ffric ≤ µ N, Vsphere = Asphere = 4πR2 4 3 πR3 N = normal Acircle = πR2 Ccircle = 2πR √ −b ± b2 − 4ac 2 a x + b x + c = 0 then x = 2a W = F · x = |F||x| cos θ (work) K= 1 2 2 mvcm W = ∆K ∆K = Kf − Ki = 12 m(vf2 − vi2 ) U = − F · x (potential energy) Fx = −∆U/∆x F = kx Fm = −GM m r̂/r 2 (linear spring) Usurface = mgh U = −GM m/r ∆U + ∆K + ∆Q = 0 m1 v1 + m2 v2 = (m1 + m2 )vf v1f = v1i (m1 − m2 )/(m1 + m2 ) v2f = v1i (2 m1 )/(m1 + m2 ) F = ∆p/∆t ∆p = pf − pi = mvf − mvi J ≡ F ∆t = ∆p |∆Q| = Ffric d vf = vi + vexh ln(mi /mf ) xcm = ( mi xi )/M, M = mi U = 12 k x2 P = F · v = ∆E/∆t (linear spring) (power) θ = θo + ωo t + 12 αt2 ω = ∆θ/∆t = ωo + αt ω 2 = ωo2 + 2 α (θ − θo ) α = ∆ω/∆t s = rθ v = rω a = rα Krot = 12 Iω 2 2 I= r ∆m 2 Ktotal = 12 mvcm + 12 Iω 2 Ipt mass = mr 2 Isolid sphr = 25 mr 2 Isolid cyl = 12 mr 2 Isphr shel = 23 mr 2 Ihoop = mr 2 Irod, center = 1 m2 12 Irod, end = 13 m2 Σ τ = I α , τ = r⊥ F I = Icm + m h2 L = m r × v = r × p = I ω τ = ∆L/∆t τ ∆t = ∆L ω = 2πf = 2π/T T = 2π I/κ (torsion pendulum) Li = Lf ω = k/m (spring-mass oscillator) T = 2π I/(m g xcm ) (simple pendulum) x(t) = xmax cos(ωt + φ) v(t) = −xmax ω sin(ωt + φ) a(t) = −xmax ω 2 cos(ωt + φ) x(t) = xmax cos(ω t + φ)e−bt/(2m) a(t) + ω 2 x(t) = 0 ω = k/m − b2 /(4m2 ) Etotal (t) = 12 kx2max e−bt/m xCG = ( gi mi xi )/( gi mi ) resonance: ωdriven = ω xCG = xcm = ( mi xi )/M F = Y A ∆L/Lo vesc = 2GM/R p = F/A RSchw = 2GM/c2 c = 3.0 × 108 m/s Etotal = −GM m/(2r) ∆A/∆t = constant 4π 2 r 3 = GM T 2 ρ = m/V p = po + ρgh Fbuoy = ρfld g Vdsplcd Wapp = W − Fbuoy ρ1 A1 v1 = ρ2 A2 v2 = dm/dt p1 + ρgy1 + 12 ρ v12 = p2 + ρgy2 + 12 ρ v22 y(x, t) = ymax sin(kx − ωt) k = 2π/λ v = ω/k = λ/T = λf v = F/µ , µ = m/ sin x + sin y = 2 sin[(x + y)/2] cos[(x − y)/2] fn = nv/(2L), gi =constant n = 1, 2, . . . 2 Pave = 12 µv ω 2 ymax solids: v = Y /ρ nodes: x = nλ/2 fluids: v = n = 1, 2, . . . B/ρ vsound/air = 343 m/s I = Psource /(4πr 2 ) β = 10 log10 (I/Io ) dB Io = 1 × 10−12 W/m2 f = f (v ± vlistener )/(v ± vsource ), numerator: + listener moving TOWARD source numerator: − listener moving AWAY from source denominator: + source moving AWAY from listener denominator: − source moving TOWARD listener TF = 95 TC + 32 TK = TC + 273.15 ∆L = αLo ∆T ∆V = 3 αVo ∆T Q = cm∆T Qcond = kAt∆T /L Qrad = σtAT 4 Prad = Qrad /t σ = 5.67 × 10−8 W/(m2 ·K4 ) Blackbody: = 1 P V = kN T k = 1.38 × 10−23 J/K N = nNA NA = 6.022 × 1023 particles/mol R = NA k = 8.31 J/(mol·K) P V = RnT N k = nR Qlat = mL M = mNA √ vrms = v 2 = 3k T /m = 3R T /M K = 12 mv 2 = 32 kT U = N K = 32 N kT = 32 nRT ∆W = P ∆V , P = pressure ∆Q − ∆W = ∆U Wiso thrm = nRT n(Vf /Vi ) adiabatic: ∆Q = 0 Qv = nCv ∆T Qp = nCp ∆T monatomic: Cv = 32 R monatomic: Cp = 52 R all ideal gases: Cp − Cv = R γ = Cp /Cv adiabatic: P1 V1γ = P2 V2γ = W/Qh = (Qh − Qc )/Qh carnot = 1 − (Tc /Th ) COP = Qc /W ∆S = Q/T ∆Suniverse ≥ 0
© Copyright 2026 Paperzz